CHEMICAL PHYSICS LETTERS Chemical Physics Letters 343 (2001) 296–302 www.elsevier.com/locate/cplett # Atmospheric degradation mechanism of CF₃OCF₂H Y. Inoue a, M. Kawasaki a,*, T.J. Wallington b, M.D. Hurley b Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Yoshida, Kyoto 606-8501, Japan Ford Research Laboratory, SRL-3083, Ford Motor Company, Dearborn, P.O. Box 2053, Michigan 48121-2053, USA Received 27 January 2001; in final form 5 June 2001 #### **Abstract** Smog chamber/FTIR techniques were used to study the Cl atom initiated oxidation of CF_3OCF_2H in 700 Torr of N_2/O_2 at 295 ± 2 K. Atmospheric oxidation of CF_3OCF_2H proceeds via the formation of CF_3OCF_2 radicals. The atmospheric fate of CF_3OCF_2 radicals is addition of O_2 to give $CF_3OCF_2O_2$ radicals. In the atmosphere $CF_3OCF_2O_2$ radicals are converted via COF_2 and CF_3OH into CO_2 and CF_3OH into CO_3 and CF_3OCF_3OH radicals are discussed with respect to the atmospheric degradation and environmental impact of CF_3OCF_2H . © 2001 Elsevier Science B.V. All rights reserved. # 1. Introduction It is now well established that the release of chlorofluorocarbons (CFCs) into the atmosphere leads to stratospheric ozone loss [1,2]. Hydrofluoroethers (HFEs) are a class of compounds which have been developed to replace CFCs. HFEs do not contain chlorine and do not contribute to stratospheric ozone loss via the well established chlorine based catalytic cycles. CF₃OCF₂H is under consideration for use as a CFC replacement. Prior to its large-scale industrial use an assessment of the atmospheric chemistry, and hence environmental impact of this compound is needed. The atmospheric oxidation of CF₃OCF₂H is initiated by reaction with OH radicals: $$CF_3OCF_2H + OH \rightarrow CF_3OCF_2 + H_2O.$$ (1) From measurements of the kinetics of reaction (1) [3,4] the atmospheric lifetime of CF₃OCF₂H has been estimated to be 165 years. CF₃OCF₂H has a global warming potential which is 14 000 times that of CO₂ [5]. Reaction (1) proceeds via H-atom abstraction to give the CF₃OCF₂ radical. Computational and experimental data suggest that addition of O₂ and decomposition via C–O bond fission are competing atmospheric fates of the CF₃OCF₂ radical [6]: $$CF_3OCF_2 + O_2 + M \rightarrow CF_3OCF_2O_2 + M,$$ (2) $$CF_3OCF_2 + M \rightarrow CF_3 + COF_2 + M.$$ (3) It is highly unusual for the atmospheric fate of an alkyl radical to be anything other than reaction with O₂. The competition between reactions (2) and (3) deserves further study. By analogy to other peroxy radicals [7], CF₃OCF₂O₂ radicals are expected to react with NO, NO₂, HO₂, and other peroxy radicals in the atmosphere: ^{*} Corresponding author. Fax: +81-75-753-5526. *E-mail address:* mkawasa7@ip.media.kyoto-u.ac.jp (M. Kawasaki). $$CF_3OCF_2O_2 + NO \rightarrow CF_3OCF_2O + NO_2,$$ (4) $$CF_3OCF_2O_2 + NO_2 + M$$ $$\rightarrow CF_3OCF_2O_2NO_2 + M, \tag{5}$$ $$CF_3OCF_2O_2 + HO_2 \rightarrow products,$$ (6) $$CF_3OCF_2O_2 + R'O_2 \rightarrow products.$$ (7) We have conducted an experimental study of the atmospheric fate of CF₃OCF₂ and CF₃OCF₂O₂ radicals. No evidence for reaction (3) was observed and we conclude that the atmospheric fate of CF₃OCF₂ radicals is addition of O₂ to give CF₃OCF₂O₂ radicals. CF₃OCF₂O₂ radicals are observed to be converted into COF₂. The results are discussed with respect to the atmospheric chemistry and environmental impact of CF₃OCF₂H. # 2. Experimental With one exception (see Section 3.2) all experiments were performed in a 140 l Pyrex reactor interfaced to a Mattson Sirius 100 FTIR spectrometer [8]. The optical path length of the infrared beam was 27 m. The reactor was surrounded by 22 fluorescent blacklamps (GE F15T8-BL) which were used to photochemically initiate the experiments. The oxidation of CF_3OCF_2H was initiated by reaction with Cl atoms in 700 Torr total pressure at 295 ± 2 K: $$Cl_2 + hv \rightarrow 2Cl,$$ (8) $$Cl + CF_3OCF_2H \rightarrow CF_3OCF_2 + HCl,$$ (9) $$CF_3OCF_2 + O_2 + M \rightarrow CF_3OCF_2O_2 + M.$$ (2) The loss of CF₃OCF₂H and the formation of products were monitored by FTIR spectrometry at a resolution of 0.25 cm⁻¹. Infrared spectra were derived from 32 co-added interferograms. Reference spectra were acquired by expanding known volumes of authentic reference compounds into the chamber. All reagents were obtained from commercial sources at purities >99%. In smog chamber experiments, unwanted loss of reactants and products via photolysis, dark chemistry, and wall reactions have to be considered. Control experiments were performed to check for such unwanted losses of CF₃OCF₂H and COF₂ in the chamber; none were observed. Three sets of experiments were performed. First, relative rate techniques were used to determine the rate constant for the reaction of Cl atoms with CF₃OCF₂H, using CF₃CH₃ and CF₂ClCH₃ as references. Second, the fate of CF₃OCF₂ radical was investigated by irradiating CF₃OCF₂H/Cl₂ mixtures. Third, the products of the Cl atom initiated atmospheric oxidation of CF₃OCF₂H were determined. #### 3. Results and discussion 3.1. Relative rate studies of the reactions of Cl with CF₃OCF₂H The kinetics of reaction (9) were measured relative to reaction (10) and (11): $$CF_3OCF_2H + Cl \rightarrow products,$$ (9) $$CF_3CH_3 + Cl \rightarrow products,$$ (10) $$CF_2ClCH_3 + Cl \rightarrow products.$$ (11) Reaction mixtures consisted of 7.3–8.6 mTorr of CF₃OCF₂H, 0.74–0.90 Torr of Cl₂, and 15 mTorr of CH₃CF₃ or 3.0–4.3 mTorr of CF₂ClCH₃ in 700 Torr of N₂ or air diluent. UV irradiation for 1 h typically led to approximately 30% loss of the reactants. The rate constant k_9 was determined by observing the relative loss rates of CF₃OCF₂H and the reference compounds; results are shown in Fig. 1. Linear least squares analysis gives $k_9/k_{10} =$ 0.63 ± 0.004 and $k_9/k_{11} = 0.056 \pm 0.002$. Using $k_{10} = 3.6 \times 10^{-17}$ [9] and $k_{11} = 3.8 \times 10^{-16}$ (average of [10] and [11]) gives $k_9 = (2.3 \pm 0.01) \times 10^{-17}$ and $k_9 = (2.1 \pm 0.08) \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, respectively. We estimate that potential systematic errors associated with uncertainties in the reference rate constants could add an additional 10% uncertainty range for k_9 . Propagating this additional uncertainty gives $k_9 = (2.3 \pm 0.2) \times 10^{-17}$ and $k_9 = (2.1 \pm 0.2) \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. Fig. 1. Decay of CF_3OCF_2H versus CF_2CICH_3 (triangles) and CF_3CH_3 (circles) in the presence of Cl atoms. Experiments were performed at 295 ± 2 K in 700 Torr of N_2 (open symbols) or air (filled symbols). We choose to cite a final value of k_9 , which is an average of those determined using the two different reference compounds together with error limits which encompass the extremes of the individual determinations; hence, $k_9 = (2.2 \pm 0.4) \times 10^{-17} \text{ cm}^3$ molecule⁻¹ s⁻¹. This result can be compared to $k(\text{Cl} + \text{CF}_3 \text{ OCH}_3) = (1.4 \pm 0.2) \times 10^{-13} \text{ [12]}$ and $k(\text{Cl} + \text{CH}_3 \text{ OCH}_3) = (1.9 \pm 0.1) \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ [13]. Fluorination leads to a dramatic decrease in reactivity towards Cl atoms presumably reflecting an increase in C–H bond strength in the fluorinated species. Reported C–H bond dissociation energies from quantum chemical calculations are 95.7 kcal mol⁻¹ for CH₃OCH₃, 100.7 kcal mol⁻¹ for CF₃OCH₃ and 103.5 kcal mol⁻¹ for CF₃OCF₂ H [14]. #### 3.2. Atmospheric fate of CF₃OCF₂ radicals As discussed by Good et al. [6] there are two possible atmospheric fates of CF₃OCF₂ radicals: addition of O₂ and unimolecular decomposition: $$CF_3OCF_2 + O_2 + M \rightarrow CF_3OCF_2O_2 + M,$$ (2) $$CF_3OCF_2 + M \rightarrow CF_3 + COF_2 + M.$$ (3) In principle there is a straightforward test for the existence of reaction (3). Experiments can be performed using the UV irradiation of CF₃OCF₂ H/Cl₂/He in the absence of O₂. Under such conditions the chain chlorination of CF₃OCF₂H should lead to the formation of CF₃OCF₂Cl and, if reaction (3) is important, COF₂ and CF₃Cl: $$Cl + CF_3OCF_2H \rightarrow CF_3OCF_2 + HCl,$$ (9) $$CF_3OCF_2 + Cl_2 \rightarrow CF_3OCF_2Cl + Cl,$$ (12) $$CF_3OCF_2 + M \rightarrow CF_3 + COF_2 + M,$$ (3) $$CF_3 + Cl_2 \rightarrow CF_3Cl + Cl.$$ (13) The formation of COF2 in such experiments was one of two pieces of experimental evidence cited by Good et al. [6] for the importance of reaction (3). However, there is a potential problem associated with this approach. Namely, that fluorinated alkyl radical reacts slowly with Cl_2 and rapidly with O_2 . For example, in atmosphere pressure at 298 K, $k(CF_3 + Cl_2)/k(CF_3 + O_2) = 0.00929$ seems reasonable to assume that CF₃OCF₂ radicals will behave similarly to CF₃ radicals. If so, then the observation of COF2 following UV irradiation of CF₃OCF₂H/Cl₂/He in the absence of O₂ may reflect the reaction of CF₃OCF₂ radicals with trace amounts of O_2 in the system, rather than the existence of reaction (3). For the experimental conditions employed by Good et al. [6] (1 Torr CF₃OCF₂H, 1-2 Torr of Cl₂ in 100 Torr He) even a small O₂ contamination would lead to CF₃OCF₂ radicals reacting with O₂ (and hence giving COF_2) rather than reacting with Cl_2 . To minimize problems associated with O₂ contamination in the present work we performed experiments using CF₃OCF₂H/Cl₂ mixtures with high concentrations of both CF₃OCF₂H and Cl₂ without added diluent. These experiments were conducted in a 150 cm³ Pyrex reactor equipped with BaF₂ windows to enable in-situ FTIR analysis. Fig. 2 shows IR spectra obtained before and after a 30 min UV irradiation of a mixture of 1.3 Torr of CF₃OCF₂H and 100 Torr of Cl₂. Panel (C) in Fig. 2 shows the result of subtracting features Fig. 2. IR spectra acquired before (A) and after (B) a 30 min irradiation of a mixture of 1.3 Torr of CF₃OCF₂H and 100 Torr Cl₂ using a short cell reactor. Panel (C) shows the result of subtracting features attributable to CF₃OCF₂H from (B). attributable to CF₃OCF₂H from panel (B). COF₂ has an intense characteristic IR absorption feature at 1950 cm⁻¹. There was no evidence for the formation of COF₂ (<1% yield). The IR product features at 1085, 1146, 1240, and 1296 cm⁻¹ in Fig. 2 increased linearly with the consumption of CF₃OCF₂H and are presumably attributable to CF₃OCF₂Cl formed in reaction (12). While the absence of any observable COF₂ product following the UV irradiation of CF₃OCF₂H/Cl₂ mixtures proves that reaction (3) is not important in such systems it does not provide any information concerning the role of reaction (3) in the atmosphere. To provide such information we need to conduct a study of the relative rates of reactions (2) and (3) under atmospheric conditions. Reaction (3) generates CF_3 radicals. The competition between reactions (13) and (14) is well characterized [15] and can be used to measure the yield of CF_3 radicals and hence the importance of reaction (3) in the presence of O_2 : $$CF_3 + Cl_2 \rightarrow CF_3Cl + Cl,$$ (13) $$CF_3 + O_2 + M \to CF_3O_2 + M.$$ (14) As a preliminary exercise, control experiments were performed using CF₃I/Cl₂/O₂/N₂ mixtures to study the fate of CF₃ radicals using the 140 l reactor. Reaction of Cl atoms with CF₃I provides a convenient source of CF₃ radicals. $$CF_3I + Cl \rightarrow CF_3 + ICl.$$ (15) Reaction mixtures consisted of 16.3 mTorr of CF₃I, 3.7 Torr of Cl₂, and 0.42 Torr O₂ in 700 Torr of N₂. CF₃Cl and COF₂ were the only carbon-containing products observed. COF₂ formation has been proposed to result from reaction of CF₃O₂ radicals with I atoms to give CF₃OOI which then decomposes to give COF₂ and IOF [16]. Iodine atoms will be formed via the rapid reaction of Cl atoms with ICl [17]. The absence of CF₃OOOCF₃ and CF₃OOCF₃ products shows that reactions (16)–(18) are of negligible importance: $$CF_3O_2 + CF_3O_2 \rightarrow 2CF_3O + O_2.$$ (16) $$CF_3O + CF_3O \rightarrow CF_3OOCF_3.$$ (17) $$CF_3O + CF_3O_2 \rightarrow CF_3OOOCF_3.$$ (18) The observed yields of CF_3CI (triangles) and COF_2 (circles) are plotted versus the loss of CF_3I in Fig. 3. Linear least-squares analysis gives molar yields of CF_3CI and COF_2 of $7.5 \pm 0.6\%$ and $91 \pm 5\%$. Within the experimental uncertainties, the combined yield of COF_2 and CF_3CI accounts for 100% of the loss of CF_3I . The proposed mechanism by which COF_2 is formed during the irradiation of $CF_3I/Cl_2/N_2/O_2$ mixtures can explain our results. The detailed discussion about the mechanism is interesting but beyond the scope of the present work and was not pursued further. The observed CF_3CI yield can be compared to that expected based upon the following expression. $$Y_{CF_2Cl} = 1/\{1 + k_{14}[O_2]/(k_{13}[Cl_2])\}.$$ (E1) Using $k_{13}/k_{14} = 0.00929$ [15], $[Cl_2] = 3.7$ Torr, and $[O_2] = 0.42$ Torr the expected CF₃Cl yield is 7.6%. The observed CF₃Cl yield is consistent with Fig. 3. Formation of COF_2 (circles) and CF_3Cl (triangles) versus loss of CF_3I following the UV irradiation of $CF_3I/Cl_2/O_2$ at 295 ± 2 K in 700 Torr of N_2 diluent. expectations based upon the literature data for k_{13} and k_{14} . To investigate the fate of CF₃OCF₂ radicals mixtures consisting of 17.6 mTorr CF₃OCF₂H, 0.41 Torr O₂, 4.2 Torr Cl₂ in 700 Torr N₂ diluent were introduced into the reaction chamber and subjected to UV irradiation. No evidence for the formation of CF₃Cl was observed. After 87 min of irradiation the molar yield of CF₃Cl was less than 2%. If reaction (3) was the sole fate of CF₃OCF₂ radicals we would expect a 9% molar yield of CF₃Cl based on the above equation. There was no evidence for the formation of CF₃OCF₂Cl, indicating that reaction (12) does not compete effectively with reactions (2) and (3) under these experimental conditions and that $k_2/k_{12} > k_{14}/k_{13}$. We conclude that in the presence of 0.41 Torr of O_2 , $k_3/(k_3 + k_2[O_2]) < 2/9$ or 0.22 and therefore in atmosphere of air $([O_2] = 160 \text{ Torr})$ $k_3/(k_3 + k_2[O_2]) < 0.0007$. In contrast to the previous findings of Good et al. [6], we find that the sole (>99.93%) atmospheric fate of CF₃OCF₂ radicals is reaction with O₂ to give CF₃OCF₂O₂ radicals. 3.3. Products of Cl atom initiated oxidation of CF_3OCF_2H in the presence of O_2 To investigate the products of the Cl atom initiated oxidation of CF₃OCF₂H mixtures containing 7.1-8.1 mTorr CF₃OCF₂H, 2.1-4.4 Torr Cl₂, and 12–147 Torr of O₂ in 700 Torr total pressure of N_2 diluent at 295 ± 2 K were irradiated using the output of the UV fluorescent blacklamps. Fig. 4 shows spectra acquired before (A) and after (B) a 30 min irradiation of a mixture containing 8.14 mTorr CF₃OCF₂H, 4.4 Torr Cl₂, and 12 Torr O₂ in 700 Torr of N₂ diluent. Comparison of panel (B) with the reference spectrum of COF₂ given in panel (C) shows the formation of this product. The observed formation of COF₂ is plotted versus the loss of CF₃OCF₂H in Fig. 5. There was no discernable effect of variation of O₂ partial pressure over the range 12–147 Torr. Linear least squares analysis of the data in Fig. 5 gives a COF₂ yield of $132 \pm 15\%$. This yield is similar to that reported by Fig. 4. IR spectra acquired before (A) and after (B) a 30 min irradiation (using 22 fluorescent lamps) of a mixture of 8.1 mTorr of CF_3OCF_2H , 4.4 Torr Cl_2 and 12 Torr O_2 in 700 Torr of N_2 . Panel (C) shows a reference spectrum of COF_2 . Panel (D) is the result of subtracting features attributable to CF_3OCF_2H and COF_2 from (B). Panels (E) and (F) are reference spectra of CF_3OOCF_3 and CF_3OOOCF_3 . Fig. 5. Formation of COF_2 versus loss of CF_3OCF_2H following irradiation of mixtures of 7.1–8.1 mTorr CF_3OCF_2H , 2.1–4.4 Torr Cl_2 and either 12 Torr (squares), 147 Torr (circles) of O_2 in 700 Torr total pressure of N_2 diluent at 295 ± 2 K. Good et al. [6] $(152 \pm 13\%)$ following irradiation of CF_3OCF_2H/Cl_2 mixtures in a large excess of O_2 . As discussed in the preceding section, the reaction of Cl atoms with CF₃OCF₂H in the presence of O₂ generates CF₃OCF₂O₂ radicals. In the present system these CF₃OCF₂O₂ radicals will undergo self-reaction and reaction with Cl atoms to generate CF₃OCF₂O radicals. The observation of a substantial yield of COF₂ shows that the fate of CF₃OCF₂O radicals is decomposition via C–O bond scission: $$CF_3OCF_2O_2 + CF_3OCF_2O_2$$ $$\rightarrow CF_3OCF_2O + CF_3OCF_2O + O_2,$$ (19) $$CF_3OCF_2O_2 + Cl \rightarrow CF_3OCF_2O + ClO,$$ (20) $$CF_3OCF_2O \rightarrow CF_3O + COF_2.$$ (21) CF₃O radicals formed in reaction (21) react with hydrogen-containing compounds (for example HCl) in the system to give CF₃OH, which decomposes to give COF₂ and HF. The fact that the observed yield of COF₂ ($132 \pm 15\%$) is signifi- cantly less than 200% indicates the existence of other competing process for loss of CF₃O radicals, CF₃OCF₂O₂ radicals, or both. Possibilities include reaction (17) and reaction with CF₃OCF₂O₂ radicals to give CF₃OCF₂OOOCF₃: $$CF_3O + CF_3OCF_2O_2 \rightarrow CF_3OCF_2OOOCF_3.$$ (22) Subtraction of IR features attributable to CF₃OCF₂H and COF₂ from panel (B) in Fig. 4 gives the residual spectrum shown in panel (D) with prominent features at 1167, 1254, and 1289 cm⁻¹. Comparison of the IR features in panel (D) of Fig. 4 with reference spectra of CF₃OOCF₃ and CF₃OOOCF₃ in panels (E) and (F) shows that the residual features are similar, but not identical, to those of CF₃OOCF₃ and CF₃OOOCF₃. The present IR features in panel (D) cannot be described combination of as CF₃OOCF₃ CF₃OOOCF₃ (the molar yield of CF₃OOOCF₃ was <6%). We believe that the residual features in panel (D) are attributable to CF₃OCF₂OOOCF₃ formed in reaction (22) with a possible contribution by CF₃OOCF₃ formed in reaction (17). Good et al. [6] observed a residual spectrum with features at 1174, 1257, and 1294 cm⁻¹ and assigned this to CF₃OOOCF₃. The identification of CF₃OOOCF₃ was the second of two pieces of experimental evidence which led Good et al. [6] to conclude that CF₃OCF₂ radicals undergo decomposition to give CF₃ radicals (which then can form CF₃OOOCF₃). However, the relative intensities of the features reported by Good et al. [6] do not match those reported for authentic samples of CF₃OOOCF₃ [18-20]. It should be noted that exotic compounds such as CF₃OCF₂OOOCF₃ will not be formed in the real atmosphere where the CF₃O and CF₃OCF₂O₂ radical concentrations are much lower than in the reaction chamber. The exact identification of the residual product(s) responsible for the spectral features in panel (D) is not relevant in understanding the atmospheric oxidation mechanism of CF₃OCF₂H and was not pursued further. The important point is that the fate of CF₃OCF₂O radicals is decomposition via reaction (21) into CF₃O radicals and COF₂. # 4. Implications for atmospheric chemistry Atmospheric oxidation of CF₃OCF₂H is initiated by reaction with OH radicals to give CF₃OCF₂ radicals. We show herein that the atmospheric fate of CF₃OCF₂ radicals is addition of O₂. By analogy with other peroxy radicals, CF₃OCF₂O₂ radicals will react with NO to produce CF₃OCF₂O radicals that decompose to give CF₃O radicals and COF₂. It is well established that CF₃O radicals react with NO and hydrocarbons: $$CF_3OCF_2O_2 + NO \rightarrow CF_3OCF_2O + NO_2$$, (23) $$CF_3OCF_2O \rightarrow CF_3O + COF_2,$$ (21) $$CF_3O + NO \rightarrow COF_2 + FNO,$$ (24) $$CF_3O + CH_4 \rightarrow CF_3OH + CH_3.$$ (25) Reaction with NO yields COF₂ while reaction with hydrocarbons such as CH₄ produces CF₃OH. CF₃OH is not attacked by any trace atmospheric radical [21] and is not photolyzed [22,23]. CF₃OH undergoes heterogeneous decomposition on surfaces to give COF2 and HF and reaction with atmospheric water droplets to give CO₂ and HF [24,25]. COF₂ does not react with any gas phase trace atmospheric species and its photolysis is slow [26]. COF₂ is removed from the atmosphere by incorporation into water droplets and hydrolysis to give CO₂ and HF. The atmospheric oxidation of CF₃OCF₂H gives CO₂ and HF as the ultimate products. At the levels expected in the atmosphere, none of the intermediate or final products pose any environmental threat. ### Acknowledgements We thank the Japanese Government for a NEDO grant that made this collaborative research project possible. M.K. thanks the Ministry of Education for a Grant-in-Aid in Scientific Field. #### References - [1] M.J. Molina, F.S. Rowland, Nature 249 (1974) 810. - [2] J.D. Farman, B.G. Gardiner, J.D. Shanklin, Nature 315 (1985) 207. - [3] Z. Zhang, R.D. Saini, M.J. Kurylo, R.E. Huie, J. Phys. Chem. 96 (1992) 9301. - [4] K.-J. Hsu, W.B. DeMore, J. Phys. Chem. 99 (1995) 11141. - [5] K. Sihra, M.D. Hurley, K.P. Shine, T.J. Wallington, J. Geophys. Res. (in press). - [6] D.A. Good, M. Kamboures, R. Santiano, J.S. Francisco, J. Phys. Chem. A 103 (1999) 9230. - [7] G.S. Tyndall, R.A. Cox, C.M. Granier, R. Lesclaux, G.K. Moortgat, M.J. Pilling, A.R. Ravishankara, T.J. Wallington, J. Geophys. Res. (in press). - [8] T.J. Wallington, S.M. Japar, J. Atmos. Chem. 9 (1989) 399. - [9] O.J. Nielsen, E. Gamborg, J. Sehested, T.J. Wallington, M.D. Hurley, J. Phys. Chem. 98 (1994) 9518. - [10] T.J. Wallington, M.D. Hurley, Chem. Phys. Lett. 189 (1992) 437. - [11] E.C. Tuazon, R. Atkinson, S.B. Corchnoy, Int. J. Chem. Kinet. 24 (1992) 639. - [12] L.K. Christensen, T.J. Wallington, A. Guschin, M.D. Hurley, J. Phys. Chem. A 103 (1999) 4202. - [13] M.E. Jenkin, G.D. Hayman, T.J. Wallington, M.D. Hurley, J.C. Ball, O.J. Nielsen, T. Ellermann, J. Phys. Chem. 97 (1993) 11712. - [14] A.K. Chandra, T. Uchiamru, Chem. Phys. Lett. 334 (2001) 200 - [15] E.W. Kaiser, T.J. Wallington, M.D. Hurley, Int. J. Chem. Kinet. 27 (1995) 205. - [16] K.C. Clemitshaw, J.R. Sodeau, J. Photochem. Photobiol. A: Chemistry 86 (1995) 9. - [17] M.A.A. Clyne, H.W. Cruse, J. Chem. Soc. Faraday Trans. 68 (1972) 1377. - [18] P.G. Thompson, J. Am. Chem. Soc. 89 (1967) 4316. - [19] L.R. Anderson, W.B. Fox, J. Am. Chem. Soc. 89 (1967) 4313. - [20] R.P. Hirschmann, W.B. Fox, L.R. Anderson, Spectrochim. Acta 25 A (1969) 811. - [21] W.F. Schneider, T.J. Wallington, J. Phys. Chem. 97 (1993) 12783. - [22] W.F. Schneider, T.J. Wallington, K. Minschwaner, E.A. Stahlberg, Environ. Sci. Technol. 29 (1995) 247. - [23] L.T. Molina, M.J. Molina, Geophys. Res. Lett. 23 (1996) 563. - [24] T.J. Wallington, W.F. Schneider, Environ. Sci. Technol. 28 (1994) 1198. - [25] E.R. Lovejoy, L.G. Huey, D.R. Hanson, J. Geophys. Res. 100 (1995) 18775. - [26] A. Nölle, H. Heydtmann, R. Meller, W. Schneider, G.K. Moortgat, Geophys. Res. Lett. 19 (1992) 281.