

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 18 (2008) 2830-2835

Sulfamoyl benzamides as novel CB₂ cannabinoid receptor ligands

Karin Worm,^{a,*} Q. Jean Zhou,^a Christopher T. Saeui,^a Rosalyn C. Green,^a Joel A. Cassel,^b Gabriel J. Stabley,^b Robert N. DeHaven,^b Nathalie Conway-James,^b Christopher J. LaBuda,^b Michael Koblish,^b Patrick J. Little^b and Roland E. Dolle^a

> ^aDepartment of Chemistry, Adolor Corporation, 700 Pennsylvania Drive, Exton, PA, USA ^bDepartment of Pharmacology, Adolor Corporation, 700 Pennsylvania Drive, Exton, PA, USA

> > Received 21 January 2008; revised 1 April 2008; accepted 1 April 2008 Available online 7 April 2008

Abstract—Sulfamoyl benzamides were identified as a novel series of cannabinoid receptor ligands. Starting from a screening hit 8 that had modest affinity for the cannabinoid CB_2 receptor, a parallel synthesis approach and initial SAR are described, leading to compound 27 with 120-fold functional selectivity for the CB_2 receptor. This compound produced robust antiallodynic activity in rodent models of postoperative pain and neuropathic pain without traditional cannabinergic side effects. © 2008 Elsevier Ltd. All rights reserved.

Two cannabinoid receptors, CB₁ and CB₂, have been identified and subsequently cloned. They belong to the family of G-protein coupled receptors and share 44% amino acid sequence homology but differ in anatomical distribution. The CB_1 receptor is expressed mainly in the CNS and to a lesser extent in other tissues. The CB_2 receptor is primarily expressed in peripheral tissues associated with immune functions, including macrophages, B and T cells, as well as in peripheral nerve terminals and on mast cells.¹ Δ^9 -Tetrahydrocannabinol (THC, 1), the main active component of Cannabis sativa, and other classical cannabinoids display a wide range of physiological effects including analgesic, anti-inflammatory, anti-convulsive and immunosuppressive activities.² Cannabinoid receptor agonists also induce a number of unwanted CNS effects, which are believed to be mediated predominantly by the central distribution pattern of CB₁ receptors.³

A separation between therapeutic effects and undesirable CNS side effects could be accomplished either by preventing the cannabinoid from crossing the blood– brain barrier⁴ or by increasing the selectivity for the CB₂ receptor over the CB₁ receptor.⁵ Several structural classes have displayed selectivity for the CB₂ receptor (Fig. 1).⁶ Compound **4** (GW405833) was shown to be antihyperalgesic in rodent models of neuropathic, incisional and chronic inflammatory pain, but had no significant effect in CB₂ knockout mice in the same assays.⁷ Compound **5** (AM1241) was reported to reverse carrageenan-induced inflammatory thermal hyperalgesia in rats. This effect was attenuated by a CB₂ selective antagonist, but not a CB₁ selective antagonist.⁸ Thus, there is considerable interest in developing new cannabimimetic compounds possessing preferentially high affinity for the CB₂ receptor, which could lead to novel therapeutics for the treatment of inflammation and chronic pain.⁹

During a high-throughput screening campaign^{10a} we identified 8 as a compound with modest affinity for the CB₂ receptor (Fig. 2). Initially, SAR was explored via a parallel approach shown in Scheme 1 and Figure 3. Starting from commercially available 4-bromo-3-(chlorosulfonyl)benzoic acid 10a and amines 11a-h, we prepared eight 4-bromo-3-sulfamoyl-benzoic acids 12a-h. A diverse set of 10 amines 13a-j was attached to aldehyde-based polystyrene resin via reductive amination using sodium triacetoxyborohydride as the reducing agent.¹¹ The resulting resin-bound amines 14a-j were then reacted with the sulfamoyl-benzoic acids 12a-hpreviously obtained using the coupling reagent bromo-*tris*-pyrrolidinophosphonium hexafluorophos phate (PyBrop) and diisopropylethylamine. After cleavage from solid support with trifluoroacetic acid in

Keywords: Cannabinoid CB₂ receptor; Parallel synthesis; Sulfamoyl benzamides; Structure–activity relationship; Antiallodynic activity.

^{*} Corresponding author. Tel.: +1 484 595 1944; fax: +1 484 595 1551; e-mail: kworm@adolor.com

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2008.04.006

Figure 1. Cannabinoid receptor ligands.

Figure 2. Screening hit.

Scheme 1. Reagents and conditions: (a) R²-amine 11a-h EtOAc; (b) resin-bound R³-amine 14a-j, *i*-Pr₂EtN, PyBrop, CH₂Cl₂; (c) TFA/CH₂Cl₂; (d) R³-amine, TBTU, *i*-Pr₂EtN, ACN.

dichloromethane 80 final compounds, **9a**, were obtained. Almost half of these compounds retained or improved binding affinity for the CB₂ receptor compared to **8**, while the remaining compounds lost affinity for both CB receptors. Representative examples are shown in Table 1. Branched alkyl amines seemed to be preferred as both neopentyl and isobutyl amides yielded combinations with improved binding affinity (K_i CB₂ = 100– 450 nM).

Since the selective CB_2 antagonist $SR144528^{6b}$ (7) also bears a highly branched amine substituent, we

attempted to introduce this S-fenchyl residue into our system via the solid phase route just described. Due to steric hindrance the coupling of fenchyl amine to the polystyrene solid support failed. Therefore highly branched analogs 23-37 were synthesized in solution from respective sulfamoyl-benzoic acids 12a-d utilizing O-(benzotriazol-1-yl)-N, N, N', N'-tetra-methyluronium tetrafluoroborate (TBTU) as the coupling reagent (Table 2).^{12,13} All four sulfamoyl-benzoic acids 12a-d yielded analogs with greatly improved binding affinity (23-26). Morpholine, pyrrolidine, and piperidine in \mathbb{R}^2 showed similar profiles, with the morpholine analog 23 being slightly more selective. Methylbenzyl amine in R^2 led to the most selective analog 25 with a binding constant K_i $CB_2 = 11 \text{ nM}$ and ≥ 1000 -fold lower binding to the CB_1 receptor (33% inhibition at 10 μ M). Compounds 23-26 were then evaluated in the $[^{35}S]GTP\gamma \hat{S}$ functional assay.^{10b} Compounds 23, 24, and 26 were full agonists, but the most selective compound 25 behaved as an inverse agonist. To exclude possible reactivity with proteins in vivo the bromo substituent in 23 was replaced with a methyl group. Starting the synthesis from 3-(chlorosulfonyl)-4-methylbenzoic acid 10b we obtained compound 27, a 31-fold selective agonist with functional activities of EC_{50} $CB_2 =$ 4.6 nM and EC_{50} $CB_1 = 550$ nM.

In an attempt to further improve selectivity and retain agonist activity, other commercially available branched amines were attached to **12b** ($\mathbb{R}^2 = \text{morpholino}$, Table 2, **28**–**37**). Bicyclic amine substituents with branching in the 1 and/or 2 position seem to be preferred. Globular amines like 2-adamantyl, 1-(1-adamantyl)ethylamine, and bornyl amine yielded compounds with binding constants K_i CB₂ \leq 10 nM. Analogs containing open chain and monocyclic amides, as well as analog **34** containing the *R*-isomer of fenchyl amine, lost

Br O

R²

Figure 3. R^2 and R^3 amines used to prepare 9a.

Table 1. Parallel synthesis approach—example results^{a,b}

^a Values are the geometric means computed from at least three separate determinations.

^b For assay description see Ref. 10.

Figure 4. In vivo activity of compound 27 in two rat models: (A) L5 SNL model. Mechanical paw-withdrawal thresholds for the left hindpaw of the sham-operated control group, L5 ligation group, and gabapentin or compound 27 treatment groups. (B) Hindpaw incision model. Mechanical paw-withdrawal thresholds for the left hindpaw of the sham-operated control group, hindpaw incision group, and morphine, codeine and compound 27 treatment groups. Data are plotted as the mean (\pm SEM) paw-withdrawal threshold of the left hindpaw for each group. All statistical analyses were performed with one-way ANOVA followed by post-hoc comparisons (protected *t*-test) among groups. *p > 0.05 compared to vehicle-treated, surgery (L5 SNL or hindpaw incision) group.

 Table 2. Highly branched sulfamoyl benzamides^{a,b}

				0	IX .				
Compound	\mathbb{R}^1	\mathbb{R}^2	R ³	$K_i \operatorname{CB}_1(\mathrm{nM})$	$K_i \operatorname{CB}_2(\mathrm{nM})$	Ratio CB ₁ /CB ₂	EC50 CB1	EC50 CB2	Ratio
23	Br	§−N_O	§-N.	89	3.5	25	560	8.8	64
24	Br	ξ-N	§-N.	110	9.4	12	220	4.3 continued on ne	51 xt page)

at least one order of magnitude in CB₂-binding affinity. No improvement in selectivity could be observed.

Catalepsy in mice is a behavior that is indicative of central CB₁ receptor activation and predictive of cannabinoid psychoactivity. For example, Pertwee demonstrated a correlation between catalepsy in the ring test in mice and ataxia in the dog static ataxia model.¹⁴ Therefore catalepsy in mice is likely a predictor of central cannabinergic effects in humans.¹⁵ Since compound 27 had a functional selectivity of 120-fold over the CB_1 receptor, and it did not produce catalepsy at doses of 6 and 10 mg/kg ip, it was evaluated for efficacy in two rodent models of nociception, the L5 spinal nerve ligation model (L5 SNL)¹⁶ of neuropathic pain and the hindpaw incision model¹⁷ of postoperative pain (Fig. 4). In the L5 SNL model, compound 27 reversed the nerve injury-induced tactile allodvnia at a dose of 3 mg/kg ip. The magnitude of the antiallodynic effect was comparable to the effect produced by a dose of 60 mg/kg ip of gabapentin. In the incisional pain model, a dose of 10 mg/kg ip of compound 27 produced a significant antiallodynic effect that was comparable to the antiallodynic effect that was produced by a dose of 3 mg/kg sc of morphine. There were no overt behavioral side effects that were associated with doses up to 10 mg/kg ip of compound 27. Administered orally at 30 and 100 mg/kg compound 27 was not active in the incisional pain model, due to low bioavailability.

In summary, the sulfamoyl benzamides represent a new class of ligands that bind to the cannabinoid receptors. Derived from a screening hit with modest affinity to the CB₂ receptor, large lipophilic, branched amide substituents led to improved receptor binding. Increased selectivity for the CB₂ receptor was achieved by the introduction of an *S*-fenchyl residue. Small changes in the sulfonamide part of the molecule produced a switch from full agonist to inverse agonist. Compound **27**, a compound with 120-fold functional selectivity for the CB₂ receptor and devoid of traditional cannabimimetic side effects, dosed ip, showed robust antinociceptive

Table 2 (continued)

Compound	\mathbf{R}^1	R ²	R ³	$K_i \operatorname{CB}_1(\mathrm{nM})$	$K_i \operatorname{CB}_2(\mathrm{nM})$	Ratio CB ₁ /CB ₂	EC ₅₀ CB ₁	EC ₅₀ CB ₂	Ratio
25	Br	ξ-N	§-Ŋ'	>1000	11	>100	na	na ^c	
26	Br	ξ-N	§-Å.	93	13	7	280	6.6	42
27	CH ₃	ξ−N_O	§-J. J.	130	3.9	31	550	4.6	120
28	CH ₃	ξ−N_O	ξ-Ŋ-	33	5.6	15	270	12	23
29	CH ₃	Ş−N_O	}−NH	77	6.3	5	290	9.3	31
30	CH ₃	Ş−N_O	§-N:	50	8.1	7	210	14	15
31	CH ₃	§−N_O	§−NH	91	10	9	210	25	8
32	CH ₃	Ş−N_O	§-N-(260	19	14	570	48	12
33	CH ₃	ξ−N_O	§-X-	310	34	9	920	21	44
34	CH ₃	ξ−N_O	§-N-§-	540	48	11	880	25	35
35	CH ₃	ξ−N_O	§-Ŭ-	470	92	5	540	44	12
36	CH ₃	ξ−N_O	} }-NH	1300	180	9	2400	125	19
37	CH ₃	ξ−NO	ξ−NH	>1000	390	>3	>1000	1800	nd

^a Values are the geometric means computed from at least three separate determinations.

^b For assay description see Ref. 10.

^c Antagonist with $IC_{50} CB_2 = 14 nM$.

activity in rodent models of neuropathic and postoperative pain that was comparable to the effect produced by gabapentin and morphine, respectively. Due to their chemical accessibility and pharmacological activity, sulfamoyl benzamides can be considered an attractive lead series for further optimization, with the focus directed towards improving physicochemical and DMPK properties.

References and notes

- (a) Howlett, A. C.; Barth, F.; Bonner, T. I.; Cabral, G.; Casellas, P.; Devane, W. A.; Felder, C. C.; Herkenham, M.; Mackie, K.; Martin, B. R.; Mechoulam, R.; Pertwee, R. G. *Pharmacol. Rev.* 2002, *54*, 161; (b) Pertwee, R. G. *Prog. Neurobiol.* 2001, *63*, 569.
- (a) Farquhar-Smith, W. P. Pain Rev. 2002, 9, 41; (b) Klein, T. W. Nat. Rev. Immunol. 2005, 5, 400; (c) Walter, L.; Stella, N. Br. J. Pharmacol. 2004, 141, 775; (d) Smith, P. F. Curr. Opin. Investig. Drugs 2005, 6, 680.
- 3. Rice, A. S. Curr. Opin. Investig. Drugs 2001, 2, 399.
- Worm, K.; Zhou, Q. J.; Stabley, G. J.; DeHaven, R. N.; Conway-James, N.; LaBuda, C. J.; Koblish, M.; Little, P. J.; Dolle, R. E. *Abstracts of Papers*, 234th National Meeting of the American Chemical Society, Boston, MA, August 19–23, 2007; MEDI 030.
- Malan, T. P.; Ibrahim, M. M.; Lai, J.; Vanderah, T. W.; Makriyannis, A.; Porreca, F. Curr. Opin. Pharmacol. 2003, 3, 62.
- (a) Huffman, J. W. *Mini Rev. Med. Chem.* 2005, *5*, 641;
 (b) Rinaldi Carmona, M.; Barth, F.; Millan, J.; Derocq, J.; Casellas, P.; Congy, C.; Oustric, D.; Sarran, M.; Bouaboula, M.; Calandra, B.; Portier, M.; Shire, D.; Breliere, J.; Le Fur, G. *J. Pharmacol. Exp. Ther.* 1998, *284*, 644.
- Valenzano, K. J.; Tafesse, L.; Lee, G.; Harrison, J. E.; Boulet, J. M.; Gottschall, S. L.; Mark, L.; Pearson, M. S.; Miller, W.; Shan, S.; Rabadi, L.; Rotshteyn, Y.; Chaffer, S. M.; Turchin, P. I.; Elsemore, D. A.; Toth, M.; Koetzner, L.; Whiteside, G. T. *Neuropharmacology* 2005, *48*, 658.
- (a) Quartilho, A.; Mata, H. P.; Ibrahim, M. M.; Vanderah, T. W.; Porreca, F.; Makriyannis, A.; Malan, T. P. *Anesthesiology* 2003, 99, 955; (b) Ibrahim, M. M.; Deng, H.; Zvonok, A.; Cockayne, D. A.; Kwan, J.; Mata, H. P.; Vanderah, T. W.; Lai, J.; Porreca, F.; Makriyannis, A.; Malan, T. P. *Proc. Natl. Acad. Sci. U.S.A.* 2003, 100, 10529.
- Whiteside, G. T.; Lee, G. P.; Valenzano, K. J. Curr. Med. Chem. 2007, 14, 917.
- 10. (a) Binding assays were performed by modification of the method of Pinto, J. C.; Potie, F.; Rice, K. C.; Boring, D.; Johnson, M. R.; Evans, D. M.; Wilken, G. H.; Cantrell, C. H.; Howlett A. *Mol. Pharmacol.* 1994, 46, 516: Receptor binding assays were performed by incubating 0.2–0.6 nM [³H]CP55940 with membranes prepared from cells expressing cloned human CB₁ or CB₂ receptors in buffer consisting of 50 mM Tris–HCl, pH 7.0, 5.0 mM MgCl₂, 1.0 mM ethylene glycol-bis(2-aminoethylether)-*N*,*N*,*N'*, *N'*-tetraacetic acid (EGTA), and 1.0 mg/mL fatty acid free bovine serum albumin. After incubation for 60 min at room temperature for CB₂ binding or 120 min at 30 °C for CB₁ binding, the assay mixtures were filtered through GF/

C filters that had been pre-soaked overnight in 0.5% (w/v) poly(ethyleneimine) and 0.1% BSA in water. The filters were rinsed six times with 1 mL each of cold assay buffer, 30 µL of MicroScint 20 (Perkin-Elmer) was added to each filter and the radioactivity on the filters was determined by scintillation spectroscopy in a TopCount (Perkin-Elmer). Nonspecific binding was determined in the presence of 10 μ M WIN55212-2.; (b) The [³⁵S]GTP γ S binding method is a major modification of the method by Selley, D. E.; Stark, S.; Sim, L. J.; Childers, S. R. *Life Sci.* **1996**, *59*, 659: CB₂-mediated stimulation of $[^{35}S]$ GTP γ S binding was measured in a mixture containing 100–150 pM [³⁵S]GTPγS, 150 mM NaCl, 45 mM MgCl₂, 3 μM GDP, 0.4 mM dithiothreitol, 1.0 mM EGTA, 1.0 mg/mL fatty acid free bovine serum albumin, 25 µg of membrane protein, and agonist in a total volume of 250 µL of 50 mM Tris-HCl buffer, pH 7.0 in 96-well Basic FlashPlates (Perkin-Elmer). After incubation at room temperature for 6 h, the plates were centrifuged at 800 g at 4 °C for 5 min and the radioactivity bound to the membranes was determined by scintillation spectrometry using a Top-Count (Perkin-Elmer). The extent of stimulation over basal [³⁵S]GTP_YS binding was calculated as a percentage of the stimulation by 10 µM WIN55212-2. Basal [³⁵S]GTP_γS binding was determined in the absence of agonist. Generally, the stimulation by 10 µM WIN55212-2 was between 50% and 100% over basal binding. Full agonists stimulate binding to the same maximal extent as WIN55212-2.

- 11. General procedure for preparing resin-bound amines 14a-j: The polystyrene resin with aldehyde linker (1.6 mmol/g, 500 mg, 0.8 mmol) was placed in a vessel, 5 mL of solvent dichloroethane were added, followed by 4 mmol (5 equiv) of respective amine 13a-j. The mixture was shaken for 2 h at rt, then the reducing agent NaB(OAc)₃H (4 mmol, 5 equiv, 848 mg) was added and shaken overnight. The resin was filtered, washed six times, alternating between dichloromethane and MeOH and used for the next step.
- Compounds were fully characterized by ¹H NMR and LC/ MS.
- 13. Compound 27: ¹H NMR (CDCl₃), d 0.86 (s, 3H), 1.11 (s, 3H), 1.19 (s, 3H), 1.29 (m, 3H), 1.52 (m, 1H), 1.72 (m, 2H), 1.82 (t, J = 2 Hz, 1H), 2.69 (s, 3H), 3.20 (t, J = 5 Hz, 4H), 3.73 (t, J = 5 Hz, 4H), 3.83 (dd, J = 9 Hz and 2 Hz, 1H), 6.07 (d, J = 9 Hz, 1H), 7.43 (d, J = 8 Hz, 1H), 7.86 (dd, J = 8 Hz and 2 Hz, 1H), 8.26 (d, J = 2 Hz, 1H). MS m/z 421 (M+H⁺). Anal. Calcd (C₂₂H₃₂N₂O₄S): C, 62.83; H, 7.67; N, 6.66. Found: C, 62.84; H, 7.73; N 6.66.
- 14. Pertwee, R. G. Br. J. Pharmacol. 1972, 46, 753.
- (a) Compton, D. R. *Marijuana: Int. Res. Rep.* **1987**, *7*, 213;
 (b) Gill, E. W.; Jones, G. Biochem. Pharmacol. **1972**, *21*, 2237;
 (c) Gill, E. W.; Paton, W. D. M.; Pertwee, R. G. Nature **1970**, *228*, 134.
- 16. LaBuda, C. J.; Little, P. J. J. Neurosci. Methods 2005, 144, 175.
- Brennan, T. J.; Vandermeulen, E. P.; Gebhart, G. F. Pain 1996, 64, 493.