Tetrahedron Letters 52 (2011) 377-380

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

An enantioselective organocatalyzed aza-MBH domino process: application to the facile synthesis of tetrahydropyridines

Shinobu Takizawa, Naohito Inoue, Hiroaki Sasai*

The Institute of Scientific and Industrial Research (ISIR), Osaka University Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan

ARTICLE INFO

ABSTRACT

Article history: Received 6 October 2010 Revised 27 October 2010 Accepted 4 November 2010 Available online 16 November 2010

Keywords: Acid-base organocatalyst Domino reaction Aza-MBH reaction Tetrahydropyridines Enantioselective reaction

A chiral acid-base organocatalyst was found to promote an aza-MBH domino process between α , β -unsaturated carbonyl compounds and *N*-tosylimines to afford tetrahydropyridine derivatives with high enantioselectivity.

© 2010 Elsevier Ltd. All rights reserved.

Simple construction of highly functionalized chiral molecules is an ongoing substantial challenge in current synthetic chemistry. Considerable efforts have been directed toward the development of asymmetric organocatalyzed domino reactions¹ that allow a rapid increase in molecular complexity from readily available materials under mild reaction conditions. These reactions can save the time, chemicals, energy, and labor typically required for isolation or purification of synthetic intermediates. In addition, there is no concern about metal contamination of the products and toxic metal waste since organocatalysts contain no toxic or expensive metals.

The aza-Morita–Baylis–Hillman (aza-MBH) reaction is one of the most useful and atom-economical C–C bond-forming reactions of activated alkenes with imines catalyzed by Lewis bases (**LB**).^{2,3} The aza-MBH adducts are highly functionalized allylic amines that are valuable building blocks for medicinal chemistry.⁴ Although until now a number of attractive systems have been developed for this asymmetric catalytic process,⁵ few reports on the enantioselective domino reaction of activated alkenes with imines have been made.^{6,7} As a recent excellent investigation of aza-MBH domino cyclizations, Prof. Huang reported achiral organocatalysis to produce highly functionalized heterocyclic compounds such as tetrahydropyridines (Scheme 1),^{8a} dihydrobenzofurans,^{8b} and chromans.^{8c}

The aza-MBH reaction formally involves a sequence of reactions including a Michael addition, Mannich reaction, proton-transfer,

* Corresponding author. *E-mail address:* sasai@sanken.osaka-u.ac.jp (H. Sasai). and retro-Michael reaction (β -elimination) as shown in Scheme 2. In chiral acid-base organocatalysis of this process, Michael addition of the **LB** part of the catalyst to the activated alkene generates Brønsted acid (BA) stabilized chiral enolate I, which then reacts with the imine to afford the zwitterionic intermediate II. A proton shift from the α -carbon atom to the nitrogen anion in the intermediary ketone **II** followed by β-elimination of the **LB** catalyst yields the aza-MBH product with regeneration of the catalyst. With a suitable chiral acid-base organocatalyst, the nitrogen anion of intermediate II could react with a second equivalent of the activated alkene via an aza-Michael addition, followed by aldol/dehydration reactions to produce chiral tetrahydropyridines.⁹ Herein, we report the chiral acid-base organocatalyzed domino process based on aza-MBH reactions of α,β -unsaturated carbonyl compounds with N-tosylimines to give highly functionalized tetrahydropyridines with up to 93% ee.

 $\mbox{Scheme 1.}$ Achiral acid-base organocatalyzed aza-MBH domino reaction reported by Huang. 8a

^{0040-4039/\$ -} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.11.045

Scheme 2. Acid-base organocatalyzed domino process based on the enantioselective aza-MBH reaction.

We first conducted experiments to assess the feasibility of using chiral acid-base organocatalysts to promote the enantioselective domino reaction of acrolein (1a) with 4-chlorophenyl N-tosylimine (2a) as shown in Table 1. Among the catalysts we examined for the aza-MBH reaction, including the known chiral organocatalysts (S)-**5**,^{5m} (S)-**6**^{5d,f} and (S)-**7**^{5a-c} (Table 1, entries 1–3), the acid–base organocatalyst (S)- $\mathbf{8}^{5e,k}$ promoted the domino reaction to give **3a**

in high enantioselectivity (entry 4).¹⁰ We then went on to study the effects of other conditions on the reaction of 1a with 2a. Solvent effects were crucial for accelerating the domino reaction. THF and cyclopentyl methyl ether (CPME) (entries 5 and 6), along with toluene (entry 7) gave mainly the normal aza-MBH adduct **3a**. In contrast, halogenated solvents such as chloroform, dichloromethane, and dichloroethane afforded **4a** as a major product with

Н

Table 1

Enantioselective synthesis of tetrahydropyridines^a

	CHO + 1a (3 eq) CI	H NTs Catal 25°C,	24h CI State	CHO N 4a Ts	
Entry	Catalyst	Solvent	Ratio of 3a:4a	Yield ^b (%)	Ee ^{c,d} (%)
1	(S)- 5	CHCl ₃	100:0	81	9 ^e
2	(S)- 6	CHCl ₃	0:100	27	72
3	(S)- 7	CHCl ₃	0:100	27	73
4	(S)- 8	CHCl ₃	0:100	35	82
5	(S)- 8	THF	96:4	100	81
6	(S)- 8	CPME	99:1	37 ^f	81
7	(S)- 8	Toluene	83:17	35 ^f	80
8	(S)- 8	CH ₂ Cl ₂	0:100	31	83
9	(S)- 8	$(CICH_2)_2$	37:63	18	84
10 ^g	(S)- 8	$(CICH_2)_2$	38:62	58	85
11 ^{g,h}	(S)- 8	$(CICH_2)_2$	98:2	98	92
12 ^{g,i}	(S)- 8	$(CICH_2)_2$	0:100	60	87

^a 20 mol % of catalyst was used.

^b Isolated total yield of **3a** and **4a**.

Ee of major product.

^d Determined by HPLC (Daicel Chiralpak AS-H, EtOH/hexane = 35/65).

- ^e (R)-form.
- ^f Unreacted **2a** remained.

^g MS 3A was added. $^{\rm h}\,$ At 0 °C for 48 h.

ⁱ At 0 °C for 48 h then 25 °C for 24 h.

high enantioselectivity (entries 4, 8 and 9). The addition of MS 3A was beneficial for suppressing the decomposition of the moisture sensitive *N*-tosylimine, resulting in an improvement of the product yield (entry 10). The normal aza-MBH adduct **3a** was obtained in 96% yield with 92% ee at 0 °C, since the lower reaction temperature drastically diminished the reaction rate of the aza-Michael process

Table 2 Scope and limitations of the enantioselective synthesis of tetrahydropyridines^a

$Ar \frac{H}{2} NTs - \frac{H}{2}$	O (CICH	rganocataly I₂)₂, MS 3A	vst (S)- 8 A, 0 to 25°0		CHO 4b-i
Ar		Time (h)	Product	Yield ^b (%)	ee ^c (%)
3-Cl-C ₆ H ₄	2b	48	4b	55	80
2-Cl-C ₆ H ₄	2c	48	4c	60	83
$4-NO_2-C_6H_4$	2d	24	4d	40	85
Ph	2e	48	4e	49	75
3,4-(MeO) ₂ -C ₆ H ₃	2f	48	4f	58	83
4-NC-C ₆ H ₄	2g	48	4g	45	84
$4-Br-C_6H_4$	2h	48	4h	60	88
(E)-PhCH=CH	2i	48	4i	43	78
	Ar Ar $3-CI-C_6H_4$ $2-CI-C_6H_4$ $2-CI-C_6H_4$ $4-NO_2-C_6H_4$ $4-NO_2-C_6H_4$ $4-NC-C_6H_4$ $4-ST-C_6H_4$ (E)-PhCH=CH	$\begin{array}{c} \begin{array}{c} & H \\ Ar \\ \hline \\ 3-CI-C_6H_4 \\ 2-CI-C_6H_4 \\ 2-CI-C_6H_4 \\ 2-CI-C_6H_4 \\ 2c \\ 4-NO_2-C_6H_4 \\ 2d \\ Ph \\ 2e \\ 3,4-(MeO)_2-C_6H_3 \\ 2f \\ 4-NC-C_6H_4 \\ 2g \\ 4-NC-C_6H_4 \\ 2f \\ 4-Br-C_6H_4 \\ 2h \\ (E)-PhCH=CH \\ 2i \end{array}$	$\begin{array}{c c} & + & H \\ Ar & Time (h) \\ \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$	$\begin{array}{c c} & H \\ Ar & \hline \\ 2 & NTs \end{array} & \hline \\ \hline$	$\begin{array}{c c} & H \\ Ar & CICH_2)_2, \ MS \ 3A, \ 0 \ to \ 25 \ ^{\circ}C \\ \hline \\ Ar & CICH_2)_2, \ MS \ 3A, \ 0 \ to \ 25 \ ^{\circ}C \\ \hline \\ Ar & CICH_2)_2, \ MS \ 3A, \ 0 \ to \ 25 \ ^{\circ}C \\ \hline \\ Ar & CICH_2)_2, \ MS \ 3A, \ 0 \ to \ 25 \ ^{\circ}C \\ \hline \\ Ar & CICH_2)_2, \ MS \ 3A, \ 0 \ to \ 25 \ ^{\circ}C \\ \hline \\ Ar & CICH_2)_2, \ MS \ 3A, \ 0 \ to \ 25 \ ^{\circ}C \\ \hline \\ Ar & CICH_2)_2, \ MS \ 3A, \ 0 \ to \ 25 \ ^{\circ}C \\ \hline \\ Ar & CICH_2)_2, \ MS \ 3A, \ 0 \ to \ 25 \ ^{\circ}C \\ \hline \\ Ar & CICH_2)_2, \ MS \ 3A, \ 0 \ to \ 25 \ ^{\circ}C \\ \hline \\ Ar & CICH_2)_2, \ MS \ 3A, \ 0 \ to \ 25 \ ^{\circ}C \\ \hline \\ Ar & CICH_2)_2, \ MS \ 3A, \ 0 \ to \ 25 \ ^{\circ}C \\ \hline \\ \ \\ CICH_2)_2, \ MS \ 3A, \ 0 \ to \ 25 \ ^{\circ}C \\ \hline \\ \ \\ CICH_2)_2, \ MS \ 3A, \ 0 \ to \ 25 \ ^{\circ}C \\ \hline \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \$

^a 20 mol % of catalyst was used.

^b Isolated yield.

^c Determined by HPLC (Daicel Chiralpak AS-H for **4b,c,e,h**, 2-propanol/hexane = 35/65; Daicel Chiralpak AD-H for **4d,g,i**, 2-propanol/hexane = 35/65; Daicel Chiralcel OJ-H for **4f**, 2-propanol/hexane = 35/65).

between intermediate **II** and **1a** (entry 11). Finally, when the reaction mixture was stirred at 0 °C until the imine **2a** was consumed completely as determined by TLC analysis and then was slowly warmed up to 25 °C, tetrahydropyridine **4a** was obtained in 60% yield with 87% ee (entry 12).

The substrate scope under the optimized reaction conditions is summarized in Table 2. Regardless of whether the aromatic substituent of **2** is electron withdrawing or electron donating, acid–base organocatalyst (*S*)-**8** promotes the reaction with good to high enantioselectivities (Table 2, entries 1–7). α , β -Unsaturated *N*-tosylimine (**2i**) was able to use as a substrate (entry 8).

Being encouraged by the results obtained in Table 2, we attempted the cross domino reaction of the two different Michael acceptors **1a** and methyl vinyl ketone (MVK, **1b**) with imine **2b** in one-pot (Scheme 3). The reaction of **1b** and **2b** with catalyst (*S*)-**8** was allowed to proceed until **2b** was consumed and then **1a** was added. Although the normal aza-MBH product **3j** was formed in 93% yield and 93% ee, no desired domino product was obtained. To promote the following aza-Michael/aldol/dehydration sequence, various kinds of **LB** were tested. DBU, which can function as a strong **LB**¹¹ promoted the sequential reaction while maintaining the optical purity of **3** (Table 3).

To provide mechanistic insight into the present domino reaction, we performed the aza-Michael/aldol/dehydration reaction of aza-MBH adduct **3h** (optical purity 90% ee) with **1a** catalyzed by (*S*)-**8** (Scheme 4). The domino reaction led to **4h** in 60% yield with 88% ee, along with the formation of 4-bromobenzaldehyde, tosylamine, and aldehyde **9**. These side products derived from the decomposition of imine **2h** via the retro-aza-MBH reaction of **3h**. Judging from these results, the present acid–base organocatalyzed

Scheme 3. Attempt at the cross aza-MBH domino reaction of 1a, 1b and 2b.

Table 3			
Stepwise synthesis	of chiral	tetrahydropyridines	

	H Ar NTs 1b (1.2 eq) (S)-8 (10 mol%) (CICH ₂) ₂ MS 3A, 0 °C >90% yield	Ar ¹¹¹ Ar ¹¹¹ NHTs	1a (1.5 eq) Me DBU (10 mol%) CHO (CICH ₂) ₂ Ar [™] MS 3A, 0 °C Ts 4	
Entry	Ar	Product	Overall yield ^a (%)	ee ^b (%)
1	$4-Cl-C_6H_4$	4j	44	93
2	$3-C1-C_6H_4$	4k	52	91
3	Ph	41	40	87

^a Isolated yield.

^b Determined by HPLC (Daicel Chiralpak AS-H for **4j**,**k**, 2-propanol/hexane = 35/65; Daicel Chiralcel OD-H for **4l**, 2-propanol/hexane = 35/65).

Scheme 4. Aza-Michael/aldol/dehydration reaction of 1a with 3h.

aza-MBH reaction is likely reversible in halogenated solvents at 25 °C (Scheme 2). $^{12}\,$

In conclusion, we have developed the enantioselective aza-MBH/aza-Michael/aldol/dehydration reaction of α , β -unsaturated carbonyl compounds and *N*-tosylimines promoted by a chiral acid–base organocatalyst.^{13,14} The aza-MBH domino system described herein was easily accessed to give highly functionalized tetrahydropyridines in high enantioselectivities (up to 93% ee). Further investigations to extend the reaction scope and applications of this process in organic synthesis are underway.

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and The Naito Foundation. We thank the technical staff of the Comprehensive Analysis Center of ISIR, Osaka University.

Supplementary data

Supplementary data associated with (experimental procedures and compound characterization data) this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.11.045.

References and notes

- For recent reviews on organocatalytic enantioselective domino reactions. See:

 (a) Enders, D.; Grondal, C.; Huttl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570;
 (b) Walji, A. M.; MacMillan, D. W. C. Synlett 2007, 1477;
 (c) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167.
- (a) Morita, K.-I.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815; (b) Baylis, A. B.; Hillman, M. E. D. German Patent 2155,113, 1972; Chem. Abstr. 1972, 77, 34174q.
- 3. For recent reports on MBH and aza-MBH reaction. See: (a) Price, K. E.; Broadwater, S. J.; Walker, B. J.; McQuade, D. T. J. Org. Chem. 2005, 70, 3980; (b) Buskens, P.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2005, 127, 16762; (c) Masson, G.; Housseman, C.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 4614; (d) Robiette, R.; Aggarwal, V. K.; Harvey, J. N. J. Am. Chem. Soc. 2007, 129, 15513; (e) Kwong, C. K.-W.; Huang, R.; Zhang, M.; Shi, M.; Toy, P. H. Chem. Eur. J. 2007, 13, 2369; (f) Santos, L. S. Eur. J. Org. Chem. 2008, 235; (g) Ma, G.-N.; Jiang, J.-J.; Shi, M.; Wei, Y. Chem. Commun. 2009, 5496; (h) Amarante, G. W.; Benassi, M.; Milagre, H. M. S.; Braga, A. A. C.; Maseras, F.; Eberlin, M. N.; Coelho, F. Chem. Eur. J. 2009, 15, 12460; (i) Roy, D.; Patel, C.; Sunoj, R. B. J. Org. Chem. 2009, 74, 6936; (j) Mansilla, J.; Saa, J. M. Molecules 2010, 15, 709; (k) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005; (1) Yukawa, T.; Seelig, B.; Xu, Y.; Morimoto, H.; Matsunaga, S.; Berkessel, A.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 11988; (m) Shah, J.; Yacob, Z.; Bunge, A.; Liebscher, J. Synlett 2010, 2079; (n) Anstiss, C.; Garnier, J. M.; Liu, F. Org. Biomol. Chem. 2010, 8, 4400; (o) Yuan, K.; Song, H.-L.; Hu, Y.; Fang, J.-F.; Wu, X.-Y. Tetrahedron: Asymmetry 2010, 21, 903; (p) Anstiss, C.; Liu, F. Tetrahedron 2010, 66, 5486; (q) Dong, L.; Qin, S.; Su, Z.; Yang, H.; Hu, C. Org. Biomol. Chem. 2010, 8, 3985; (r) Oh, K.; Li, J.-Y.; Ryu, J. Org. Biomol. Chem. 2010, 8, 3015; (s) Bugarin, A.; Connell, B. T. Chem. Commun. 2010, 46, 2644; (t) Abermil, N.; Masson, G.; Zhu, J. Adv. Synth. Catal. 2010, 352, 656; (u) Takizawa, S.; Horii, A.; Sasai, H. Tetrahedron: Asymmetry 2010, 21, 891; (v) Liu, Y.-L.; Wang, B.-L.; Cao, J.-J.; Chen, L.; Zhang, Y.-X.; Wang, C.; Zhou, J. J. Am. Chem. Soc. 2010, 132, 15176.

- (a) Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653; (b) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811; (c) Kataoka, T.; Kinoshita, H. Eur. J. Org. Chem. 2005, 45; (d) Shi, Y.-L.; Shi, M. Eur. J. Org. Chem. 2007, 2905; (e) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511; (f) Krishna, P. R.; Sachwani, R.; Reddy, P. S. Synlett 2008, 2897; (g) Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1; (h) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447.
- (a) Shi, M.; Xu, Y.-M. Angew. Chem., Int. Ed. 2002, 41, 4507; (b) Balan, D.; Adolfsson, H. Tetrahedron Lett. 2003, 44, 2521; (c) Kawahara, S.; Nakano, A.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Org. Lett. 2003, 5, 3103; (d) Shi, M.; Chen, L.-H. Chem. Commun. 2003, 1310; (e) Matsui, K.; Takizawa, S.; Sasai, H. J. Am. Chem. Soc. 2005, 127, 3680; (f) Shi, M.; Chen, L.-H.; Li, C.-Q. J. Am. Chem. Soc. 2005, 127, 3790; (g) Shi, M.; Li, C.-Q. Tetrahedron: Asymmetry 2005, 16, 1385; (h) Raheem, I. T.; Jacobsen, E. N. Adv. Synth. Catal. 2005, 347, 1701; (i) Wurz, R. P.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 12234; (j) Shi, M.; Xu, Y.-M.; Shi, Y.-L. Chem. Eur. J. 2005, 11, 1794; (k) Matsui, K.; Tanaka, K.; Horii, A.; Takizawa, S.; Sasai, H. Tetrahedron: Asymmetry 2006, 17, 578; (1) Liu, Y.-H.; Chen, L.-H.; Shi, M. Adv. Synth. Catal. 2006, 348, 973; (m) Matsui, K.; Takizawa, S.; Sasai, H. Synlett 2006, 761; (n) Gausepohl, R.; Buskens, P.; Kleinen, J.; Bruckmann, A.; Lehmann, C. W.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2006, 45, 3689; (o) Ito, K.; Nishida, K.; Gotanda, T. Tetrahedron Lett. 2007, 48, 6147; (p) Vesely, J.; Dziedzic, P.; Cordova, A. Tetrahedron Lett. 2007, 48, 6900; (q) Utsumi, N.; Zhang, H.; Tanaka, F.; Barbas, C. F., III Angew. Chem., Int. Ed. 2007, 46, 1878; (r) Shi, Y.-L.; Shi, M. Adv. Synth. Catal. 2007, 349, 2129; (s) Fleury-Bregeot, N.; Jean, L.; Retailleau, P.; Marinetti, A. Tetrahedron 2007, 63, 11920; (t) Shi, M.; Ma, G.-N.; Gao, J. J. Org. Chem. 2007, 72, 9779; (u) Abermil, N.; Masson, G.; Zhu, J. J. Am. Chem. Soc. 2008, 130, 12596; (v) He, L.; Zhang, Y.-R.; Huang, X.-L.; Ye, S. Synthesis 2008, 2825; (w) Qi, M.-J.; Ai, T.; Shi, M.; Li, G. Tetrahedron 2008, 64, 1181; (x) Fang, Y.-Q.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 5660; (y) Wang, X.; Chen, Y.-F.; Niu, L.-F.; Xu, P.-F. Org. Lett. 2009, 11, 3310; (z) Garnier, J.-M.; Anstiss, C.; Liu, F. Adv. Synth. Catal. 2009, 351, 331.
- Till date a number of attractive domino reactions involving achiral aza-MBH process have been developed. See: Ref. 3g.
- Recently we have reported the first enantioselective aza-MBH domino reaction of activated alkenes with imines. Takizawa, S.; Inoue, N.; Hirata, S.; Sasai, H. Angew. Chem., Int. Ed., doi:10.1002/anie.201004547.
- (a) Meng, X.; Huang, Y.; Chen, R. Chem. Eur. J. 2008, 14, 6852; (b) Meng, X.; Huang, Y.; Chen, R. Org. Lett. 2009, 11, 137; (c) Meng, X.; Huang, Y.; Zhao, H.; Xie, P.; Ma, J.; Chen, R. Org. Lett. 2009, 11, 991.
- (a) Rueping, M.; Antonchick, A. P. Angew. Chem., Int. Ed. 2008, 47, 5836; (b) Jiang, J.; Yu, J.; Sun, X.-X.; Rao, Q.-Q.; Gong, L.-Z. Angew. Chem., Int. Ed. 2008, 47, 2458; (c) Hayashi, Y.; Gotoh, H.; Masui, R.; Ishikawa, H. Angew. Chem., Int. Ed. 2008, 47, 4012; (d) Ona-Burgos, P.; Fernandez, I.; Roces, L.; Torre-Fernandez, L.; Garcia-Granada, S.; Lopez-Ortiz, F. Org. Lett. 2008, 10, 3195; (e) Burns, N. Z.; Krylova, I. N.; Hannoush, R. N.; Baran, P. S. J. Am. Chem. Soc. 2009, 131, 9172; (f) Pena-Lopez, M.; Martinez, M. M.; Sarandeses, L. A.; Sestelo, J. P. Org. Lett. 2010, 12, 852; (g) Shimada, N.; Ashburn, B. O.; Basak, A. K.; Bow, W. F.; Vicic, D. A.; Tius, M. A. Chem. Commun. 2010, 46, 3774; (h) Wang, Y.; Yu, D.-F.; Liu, Y.-Z.; Wei, H.; Luo, Y.-C.; Dixon, D. I.; Xu, P.-F. Chem. Eur. J. 2010, 16, 3922.
- The self-condensation of 1a and the formation of unidentified side-products were observed.
- (a) Shi, M.; Xu, Y.-M. Chem. Commun. 2001, 1876; (b) Shi, M.; Xu, Y.-M.; Zhao, G.-L.; Wu, X.-F. Eur. J. Org. Chem. 2002, 3666.
- The reversibility of aza-MBH reaction when using acrolein (1a) with chiral acid-base organocatalyst was reported. See Ref. 5f.
- 13. Representative procedure for the domino reaction of 1a with 2a: To a solution of organocatalyst (S)-8 (5.1 mg, 0.012 mmol) and imine (2a, 0.059 mmol) in (ClCH₂)₂ (0.20 mL) was added acrolein (1a, 12 µL, 0.18 mmol) at 0 °C. The solution was stirred until 2a was completely consumed as determined by TLC analysis and then allowed to slowly warm to 25 °C. The mixture was directly purified by preparative TLC (SiO₂, *n*-hexane/CH₂Cl₂ = 1/5 or CH₂Cl₂ only) to give the corresponding cyclic products 4a as white solids.
- We also attempted to utilize an aliphatic N-sulfonated imine (c-C₆H₁₁CH=NTs) for the reaction. However, the corresponding aza-MBH product was not formed.