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Abstract: The Suzuki–Miyaura reaction of the bis(triflate) of 3,4-
dihydroxybenzophenone with two equivalents of boronic acids
gave 3,4-diarylbenzophenones. The reaction with one equivalent of
arylboronic acids resulted in site-selective attack onto carbon atom
C-4. 3,4-Diarylbenzophenones containing two different aryl groups
were prepared by sequential addition of two different boronic acids.

Key words: catalysis, palladium, Suzuki–Miyaura reaction, site-
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Aryl-substituted benzophenones are of pharmacological
relevance. Biological properties include, for example,
cytotoxic1a and antibacterial activity,1b inhibition of vari-
ous enzymes,2 and activity as selectin antagonists.3 Struc-
turally related benzoylfluorenones are also of
pharmacological interest.4 The 4-arylbenzophenone core
structure occurs in polycyclic frameworks of naturally oc-
curring anthraquinones and tetracyclines.5 2-Hydroxy-
and 2-aminobenzophenones represent antitubulin agents
and are of importance in anticancer therapy.6 Functional-
ized benzophenones are also important as UV-filters (e.g.,
sun screens) and photosensitizers.7

Benzophenones are available by reaction of organometal-
lic reagents with aldehydes and subsequent oxidation or
by Friedel–Crafts acylation.6b,8 An alternative strategy re-
lies on the SmI2-mediated reaction of benzaldehydes with
benzylhalides and subsequent oxidation.9 Friedel–Crafts
acylations of highly substituted derivatives do not always
proceed with good regioselectivity. Recently, we reported
the synthesis of 2¢,4-diarylbenzophenones based on site-
selective10 Suzuki–Miyaura cross-coupling reactions of
bis(triflates) of 2¢,4-dihydroxybenzophenones.11 The se-
lectivity can be explained by steric reasons. Herein, we re-
port what are, to the best of our knowledge, the first site-
selective palladium(0)-catalyzed cross-coupling reactions
of the bis(triflate) of 3,4-dihydroxybenzophenone which
represents a commercially available and inexpensive sub-
strate. The site-selectivity can be explained by electronic
reasons. The products reported herein are not readily
available by other methods.

3,4-Dihydroxybenzophenone (1) was transformed into its
bis(triflate) 2 in 84% yield (Scheme 1).12

Scheme 1 Synthesis of 2. Reagents and conditions: i, CH2Cl2, 1 (1.0
equiv), –78 °C, pyridine (4.0 equiv), Tf2O (2.4 equiv), –78 to 0 °C, 4 h.

The Suzuki reaction of 2 with boronic acids 3a–i (2.6
equiv) afforded the novel 3,4-diarylbenzophenones 4a–i
in good yields (Scheme 2, Table 1). The best yields were
obtained when Pd(PPh3)4 (6 mol%) was used as the cata-
lyst, when 2.6 equivalents of the boronic acid were em-
ployed, and when the reaction was carried out in 1,4-
dioxane (reflux, 4 h) using K3PO4 as the base.13,14 The
structures of all products were established by spectroscop-
ic methods. The structure of 4c was independently con-
firmed by X-ray crystal-structure analysis (Figure 1).15

Scheme 2 Synthesis of 4a–i. Reagents and conditions: i, 2 (1.0
equiv), 3a–i (2.6 equiv), K3PO4 (3.0 equiv), Pd(PPh3)4 (6 mol%), 1,4-
dioxane (5 mL per 1 mmol of 2), 110 °C, 4 h.

The Suzuki reaction of 2 with boronic acids 3d and 3j–m
(1.3 equiv), in the presence of Pd(PPh3)4 (3 mol%), pro-
ceeded with very good site selectivity (attack at carbon
atom C-4) to give the benzophenones 5a–e (Scheme 3,
Table 2).13,16 In some cases, a small amount of the biscou-
pled product could be detected in the crude product (by 1H
NMR and GC-MS). The pure monocoupled products were
obtained after chromatographic purification. The reaction
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of 5a–e with (4-vinylphenyl)boronic acid (3n, 1.3 equiv)
gave 2,4-diarylbenzoates 6a–d containing two different
aryl groups. The structures of the products were proved by
2D NMR experiments (NOESY, HMBC).

The oxidative addition of palladium usually occurs first at
the most electron-deficient carbon atom.10 The site-selec-
tive formation of 5a–e can be explained by the fact that
carbon atom C-4 (located para to the keto group) is more
electron deficient than C-3 (located meta to the keto
group). Steric parameters have presumably no effect, due
to the similar steric environment of carbon atoms C-4 and
C-3 (Figure 2).

In conclusion, we have reported the synthesis of 3,4-di-
arylbenzophenones based on what are, to the best of our
knowledge, the first palladium(0)-catalyzed cross-
coupling reactions of bis(triflates) of 3,4-dihydroxyben-
zophenone. The reactions proceed with very good site se-
lectivity.
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Table 2 Synthesis of 5a–e and 6a–d
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5b OMe H H OMe 72 –b

5c 6b H H Me H 64 78

5d 6c H OMe OMe OMe 76 64

5e 6d H H t-Bu H 70 62

a Yields of isolated products.
b Experiment was not carried out.

Figure 2 Possible explanation for the site-selective formation of
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