C-PHOSPHORYLATED 4,5-DIHYDRO-THIAZOLES AS PRODUCTS OF THE REACTION OF ACETALS OF α-THIO-CYANATO-α-PHOSPHORYLACET-ALDEHYDES WITH THIOAMIDES

Kh. A. Asadov¹*, S. N. Guseinova², G. G. Mikailov²,
R. J. Valiullina¹, A. M. Magerramov², and F. I. Guseinov¹

Keywords: acetals of phosphorylated α -thiocyanatoaldehydes, thioamides, C-phosphorylated 4,5-dihydro-1,3-thiazoles.

Compounds containing a thiazole ring have a broad spectrum of biological activity such as antimicrobial [1] and anti-inflammatory properties [2]. Thus, it was of interest to use acetals of phosphorylated α -thiocyanatoaldehydes 1 [3] as reagents in condensation with thioamides in order to synthesize thiazole derivatives with various pharmacophoric groups.

1 a $X = CO_2Et$, b X = Ph; 3 a R = Me, $X = CO_2Et$; b R = Ph, $X = CO_2Et$; c R = Me, X = Ph; d R = X = Ph

* To whom correspondence should be addressed, e-mail: esedoglu@mail.ru.

¹ Kazan State Technological University, Kazan 420015, Russia.

²Baku State University, Baku AZ-1148, Azerbaijan; e-mail: mikail_05@mail.ru.

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 1098-1100, July, 2009. Original article submitted November 14, 2008, submitted after revision April 20, 2009.

0009-3122/09/4507-0878©2009 Springer Science+Business Media, Inc.

878

We have shown that the reaction of acetals 1 with thioamides in acetonitrile or absolute ethanol gives C-phosphorylated 4,5-dihydro-1,3-thiazoles 3.

The reaction probably proceeds through formation of linear intermediate **2**. Attack of the proton of the C(4) imino group at the methine carbon atom in intermediate **2** is accompanied by intramolecular cyclization to give heterocycle **3**.

The IR spectra of **3a** and **3b** lack the C(4)=NH absorption band at 2500-2600 cm⁻¹ but have bands at 1070 (CH–O), 1290 (P=O), and 1635 (C=N), and 2980 cm⁻¹ (C(2)=NH) as well as ketone group stretching bands at 1680-1700 cm⁻¹.

The ¹H NMR spectra of compounds **3a-d** lack signals for the acetal and C(4)=NH imino fragments (at 5.0-5.2 ppm with ${}^{3}J_{PH} = 2.5$ Hz and 6.5-8.0 ppm, respectively). The ratio of the integral intensities of the protons of the ethoxy fragments at the phosphorus atom and at the methine carbon atom (9:2:4) exclude structure **2**. The S–C(R)=NH proton is found in the vicinity of 4.5 ppm as a broad singlet, while the semiaminal proton at C(4) appears as a double doublet (mixture of diastereomers) at 5.1-5.2 ppm with ${}^{3}J_{PH} = 12.5$ Hz. The phenyl ring protons appear as a series of downfield multiplets at 7.2-7.9 ppm. The ${}^{31}P$ NMR spectrum shows signals at 15.41 and 16.47 ppm, indicating formation of a mixture of diastereomers.

The IR spectra for KBr pellets were taken on a UR-20 spectrometer. The ¹H NMR spectra were taken for solutions in acetone- d_6 on a Tesla BW-567 spectrometer at 100 MHz with HMDS as the internal standard, while the ³¹P NMR spectra were taken on a Bruker WP-80 spectrometer at 32.38 MHz with 85% H₃PO₄ as the standard.

5-Diethoxyphosphoryl-4-ethoxy-5-ethoxycarbonyl-2-(1-imino)ethylthio-4,5-dihydrothiazole (3a). A solution of thiocyanatoacetal **1a** (3.83 g, 0.01 mol) and thioacetamide (0.75 g, 0.01 mol) in absolute acetonitrile or ethanol (30 ml) was heated at reflux for 16 h. The solvent was removed in vacuum and 10 ml 3:1 ether–acetone was added to the resultant oil. The yellow crystalline precipitate was filtered off and dried to give 2.31 g (56%) compound **3a**; mp 124-129°C. IR spectrum, v, cm⁻¹: 1070 (CH–O); 1290 (P=O); 1635 (C=N); 1680 (C=O); 2980 (NH). ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.0 (12H, m, 4CH₃); 2.3 (3H, s, CH₃); 3.5-4.1 (8H, m, 4OCH₂); 5.1 (1H, d, ³*J*_{PH} = 12.5, CHO); 7.8 (1H, br. s, NH). ³¹P NMR spectrum, δ , ppm: 15.41, 16.47. Found,%: N 6.76; P 7.47; S 15.41. C₁₄H₂₅N₂O₆PS₂. Calculated, %: N 6.80; P 7.52; S 15.53.

5-Diethoxyphosphoryl-4-ethoxy-5-ethoxycarbonyl-2-iminobenzylthio-4,5-dihydrothiazole (3b) was obtained in 58% yield; mp 136-141°C. IR spectrum, v, cm⁻¹: 1040 (CH–O); 1290 (P=O); 1635 (C=N); 1590-1595 (Ph); 1700 (C=O); 2990 (NH). ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.0 (9H, m, 3CH₃); 2.35 (3H, s, CH₃); 3.4-4.2 (6H, m, 3OCH₂); 5.1 (1H, d, ³*J*_{PH} = 12.5, CHO); 7.2-7.8 (5H, m, C₆H₅); 7.5 (1H, br. s, NH). ³¹P NMR spectrum, δ , ppm: 15.41, 16.47. Found, %: N 6.56; P 7.67; S 15.46. C₁₇H₂₅N₂O₄PS₂. Calculated, %: N 6.73; P 7.45; S 15.38.

5-Diethoxyphosphoryl-4-ethoxy-2-(1-imino)ethylthio-5-phenyl-4,5-dihydrothiazole (3c) was obtained in 70% yield; mp 118-121°C. IR spectrum, ν, cm⁻¹: 1060 (CH–O); 1267 (P=O); 1635 (C=N); 1130 (CH–O); 2979 (NH). ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.20 (12H, m, 4CH₃); 3.2-4.1 (8H, m, 4OCH₂); 5.1 (1H, d, ³*J*_{PH} = 12.5, CHO); 7.3-7.9 (5H, m, C₆H₅); 9.2 (1H, br. s, NH). ³¹P NMR spectrum, δ , ppm: 15.36. Found, %: N 5.76; P 6.38; S 13.44. C₁₉H₂₇N₂O₆PS₂. Calculated, %: N 5.91; P 6.54; S 13.50.

5-Diethoxyphosphoryl-4-ethoxy-2-iminobenzylthio-5-phenyl-4,5-dihydrothiazole (3d) was obtained in 75% yield; mp 112.5-114°C. IR spectrum, v, cm⁻¹: 1080 (CH–O); 1267 (P=O); 1635 (C=N); 1135 (CH–O); 2979 (NH). ¹H NMR spectrum, δ, ppm (*J*, Hz): 1.20 (9H, m, 3CH₃); 3.2-4.1 (6H, m, 3OCH₂); 5.1 (1H, d, ${}^{3}J_{PH}$ = 12.5, CHO); 7.3-7.9 (10H, m, C₆H₅); 8.9 (1H, br. s, NH). ³¹P NMR spectrum, δ, ppm: 15.33. Found, %: N 5.76; P 6.38; S 13.54. C₂₂H₂₇N₂O₄PS₂. Calculated, %: N 5.86; P 6.49; S 13.39.

This work was carried out with the financial support of the Russian Basic Research Fund (Grant 07-03-00316-a) and Russian Federation President's Grant (MK-4043.2007.3).

REFERENCES

- 1. D. Y. Panhekar and B. Y. Ghij'a, *Indian J. Heterocycl. Chem.*, **5**, 159 (1995).
- 2. J. Teller and J. Carner, Int. Pat. Appl., WO 9603.392; Chem. Abstr., 125, 33628 (1996).
- 3. Kh. A. Asadov, R. N. Burangulova, R. J. Valiullina, and F. I. Guseinov, in: *Organic Chemistry Youth Conference on Modern Trends in Organic Chemistry* [in Russian], St. Petersburg (2004); p. 53.