Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Biographic & Medicinal Constraints (Constraints) Biographic (Constraints) Constraints) Constrain

Chemical lead optimization of a pan G_q mAChR M_1 , M_3 , M_5 positive allosteric modulator (PAM) lead. Part II: Development of a potent and highly selective M_1 PAM

Thomas M. Bridges^{a,d}, J. Phillip Kennedy^{b,d}, Meredith J. Noetzel^a, Micah L. Breininger^{a,d}, Patrick R. Gentry^{a,c,d}, P. Jeffrey Conn^{a,c,d}, Craig W. Lindsley^{a,b,c,d,*}

^a Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA

^b Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA

^c Vanderbilt Program in Drug Discovery, Nashville, TN 37232, USA

^d Vanderbilt Specialized Chemistry Center(MLPCN), Nashville, TN 37232, USA

ARTICLE INFO

Article history: Received 21 December 2009 Revised 15 January 2010 Accepted 20 January 2010 Available online 1 February 2010

Keywords: mAChR Muscarinic Acetylcholine PAM

ABSTRACT

This Letter describes a chemical lead optimization campaign directed at VU0119498, a pan G_q mAChR M_1 , M_3 , M_5 positive allosteric modulator (PAM) with the goal of developing a selective M_1 PAM. An iterative library synthesis approach delivered a potent (M_1 EC₅₀ = 830 nM) and highly selective M_1 PAM (>30 μ M vs M_2 – M_5).

© 2010 Elsevier Ltd. All rights reserved.

Recently, we described the identification of VU0119498, a pan G_q mAChR M_1 , M_3 , M_5 positive allosteric modulator (PAM), from a functional high throughput screen (Fig. 1).¹ In subsequent Letters, we described chemical lead optimization efforts based on VU0119498 (1) that delivered the first highly M_5 -preferring PAM (VU0238429 (2)) and a highly M_5 -selective PAM (VU0400265 (3)).^{2,3}

Incorporation of a 5-OCF₃ moiety on the isatin ring was essential for M₅ PAM activity and can be viewed as a 'molecular switch' to modulate mAChR subtype selectivity.^{1–3} As we described previously, other substituents on the isatin ring led to pan mAChR PAMs with varying degree of potency and efficacy across M_1-M_5 .^{2,3}

Selective M₁ activation is an attractive therapeutic approach for the treatment of cognitive impairment, Alzheimer's disease, schizophrenia and a number of other CNS disorders.^{4–14} Until recently, no highly selective M₁ activators existed, and those that claimed to be highly M₁ selective were either not centrally penetrant or possessed significant ancillary pharmacology which prohibited their use as probes to study M₁ receptor function.^{15,16} We have disclosed three selective M₁ activators (Fig. 2): BQCA (**4**),^{17,18} a highly selective M₁ PAM, TBPB (**5**) a second generation M₁ allosteric agonist.²² While BQCA was a key compound (calcium mobilization assay $M_1 EC_{50} = 845$ nM, 100% ACh Max, 100-fold left-shift of ACh CRC at 100 μ M), brain penetration was acceptable, but not optimal, due presumably to the carboxylic acid moiety.^{17,18} Our initial report on the discovery of VU0119498 also described three other series of weak M_1 PAMs, and identified that different M_1 PAM chemotypes displayed different modes of activity on downstream receptor signaling.¹ Thus, all allo-

Figure 1. HTS lead VU0119498, a pan G_q mAChR M_1 , M_3 , M_5 PAM, VU0238441, VU0238429, a highly M_5 -preferring PAM and VU0400265, a highly selective M_5 PAM. Data represent means from at least three independent determinations with similar results using mobilization of intracellular calcium in M_1 - M_5 CHO cells (M_2 and M_4 cells co-transfected with G_{qi5}).

^{*} Corresponding author. Tel.: +1 615 322 8700; fax: +1 615 343 6532. *E-mail address:* craig.lindsley@vanderbilt.edu (C.W. Lindsley).

Figure 2. BQCA, a highly selective M₁ PAM, TBPB, a second generation M₁ allosteric agonist, and VU0357017, a best-in-class M₁ allosteric agonist.

steric M_1 activation is not equivalent, and additional tool compounds representing diverse chemotypes are required to truly dissect and study M_1 function in the CNS. Based on our ability to develop an M_5 -selective PAM from a pan $G_q M_1$, M_3 , $M_5 PAM$,^{2,3} we initiated an effort to optimize VU0119498 for M_1 PAM activity in an attempt to add a unique chemotype to our tool kit of selective M_1 activators.

Our initial optimization strategy is outlined in Figure 3, and as SAR with allosteric ligands is often shallow, we employed an iterative parallel synthesis approach. From our M_5 work where we counter-screened on M_1 , we quickly learned that most substitutions on the isatin ring led to pan mAChR activation profiles with various degrees of potency, efficacy, and subtype-selectivity.^{2,3} Thus, our first libraries employed a naked isatin core and surveyed diversity on the southern benzyl moiety.

Libraries were prepared according to Scheme 1, wherein commercial indoline-2,3-dione 7 was alkylated with p-bromobenzylbromide to deliver key intermediate 8. A 12-member Suzuki library was then prepared to explore the effect of introduction of biaryl and heterobiaryl motifs into VU0119498 providing analogs 9 (Fig. 4). In parallel, 7 was alkylated with functionalized phenethyl bromides **10** to probe the effect of chain homologation in analogs **11.** Compound libraries were triaged by a single point $(10 \,\mu\text{M})$ screen for their ability to potentiate an EC₂₀ concentration of ACh on M₁ CHO cells. SAR was extremely shallow, with only one analog **9a** demonstrating robust M₁ potentiation (Fig. 5). VU0365137 (**9a**), possessing an *N*-methyl pyrazole in the 4-position of the southern benzyl ring displayed an M1 EC50 of 2.3 µM, and good selectivity versus M₃ and M₅. Moreover, **9a** afforded a ~5-fold leftward shift of the M₁ ACh CRC at 10 μ M, and a larger \sim 14-fold shift at $30 \,\mu$ M, with $\sim 30\%$ intrinsic allosteric agonism. Intriguingly, the 5-OCF₃ congener of **9a** is an equipotent M₅-preferring PAM,^{2,3} highlighting the aforementioned 'molecular switch' to engender M₅ preference. However, it was exciting to see that we could develop an M₁-preferring PAM from our initial pan G_q M₁, M₃, M₅ PAM lead.1

Since SAR was incredibly shallow, we next incorporated subtle changes, in the form of fluorine atoms, to the VU0365137 (**9a**) scaffold, as we had previously shown was productive in optimizing BQCA, **4**.²³ Interestingly, there was some, but highly limited SAR overlap between these two series of M₁ PAMs. Following the synthetic route outlined in Scheme 1, analogs with fluorine on both the isatin scaffold and the benzyl ring were readily prepared and evaluated for their ability to potentiate an EC₂₀ of ACh at M₁. This effort was more productive (Table 1) with five of the analogs **12** dis-

Figure 3. Initial optimization strategy for VU0119498, a pan G_q M₁, M₃, M₅ PAM.

Scheme 1. Reagents and conditions: (a) *p*-bromobenzylbromide, K₂CO₃, KI, ACN, rt, 16 h (97%); (b) RB(OH)₂, Pd(Pt-Bu₃)₂, Cs₂CO₃, THF/H₂O, mw, 120 °C, 20 min (15–90%); (c) K₂CO₃, KI, ACN, rt, 16 h (50–90%).

Figure 4. Representative analogs 9 comprising the first generation M_1 PAM library. $EC_{50}s$ >10 $\mu M.$

playing potentiation of M₁, and two analogs provided M₁ EC₅₀s below 1 µM. Fluorine substitution was well tolerated on both the isatin core (4,7-difluoro or 7-fluoro) and on the benzyl ring (2-fluoro and 2,6-difluoro). The addition of a single fluorine atom to the 2-position of the benzyl ring delivered 12a, with an M₁ EC₅₀ of 830 nM (65% ACh Max)-comparable to BQCA ($M_1 EC_{50} = 845 nM$), but without the carboxylic acid moiety. This single change afforded a threefold increase in potency over VU0365137 (9a). A 2,6-difluorobenzyl congener **12b** provides equivalent M₁ potency with a slightly diminished ACh Max (60%). As fluorine content increased 12c-12e (fluoro-substitution on both the isatin core and benzyl ring) provided comparable M₁ potency, but lower ACh Max (40-55%). VU0366369 (12a) was studied further (Fig. 6). Gratifyingly, 12a was found to be a highly selective M₁ PAM, with minimal/no activation of M₂–M₅ up to 30 µM (Fig. 5A and B). However, in M₁ ACh CRC fold-shift experiments. 12a as well as the difluoro congener 12b displayed only a subtle effect, increasing the potency of ACh by only 3× and $2\times$, respectively, at 30 μ M (Fig. 5C). The smaller fold-shift appears to correlate with the lower overall ACh Max for this series.^{1,15,16} Lack of correlation between PAM potency and fold-shift is commonly observed within series of mAChR allosteric modulators and underscores the importance of determining both parameters when establishing SAR.¹⁵ Nonetheless, VU366369 (**12a**) represents

Figure 5. (A) Structure and activity of VU0365137 (**9a**); (B) CRCs for VU0365137 (**9a**) in the presence of a submaximal (\sim EC₂₀) concentration of ACh at M₁, M₃ and M₅; (C) Fold-shift experiments of the ACh CRC at M₅ with both 10 μ M and 30 μ M concentrations of **9a**, providing an approximately fivefold and 14-fold shift, respectively. Data represent means of at least three independent determinations with similar results using mobilization of intracellular calcium in M₁, M₃, or M₅ CHO cells.

Compd	VU number	Compound	$M_{1}EC_{50}{}^{a}$ (μM)	% ACh max ^a
12a	0366369		0.83	65
12b	0366368		0.86	60
12c	0366370		2.3	55
12d	0366367		1.1	40
12e	0366372		1.2	50

 $^a\,$ Average of at least three independent determinations. All compounds M_1EC_{50} >30 $\mu M.$

1974

Figure 6. (A) and (B) CRCs for VU0366368 (12b) and VU0366369 (12a) in the presence of a submaximal (~EC₂₀) concentration of ACh at M₁, M₂/G_{ni5}, M₃, M₄/G_{ni5} and M_5 ; (C) Fold-shift experiments of the ACh CRC at M_5 with 30 μ M of 12a and 12b, providing an approximately 3- and 2-fold-shift, respectively. Data represent means of at least two independent determinations with similar results using mobilization of intracellular calcium in M1, M2/Gqi5, M3, M4/Gqi5 and M5 CHO cells.

the second known chemotype to provide potent and selective M₁ positive allosteric modulation.

Having been able to optimize a pan G_q M₁, M₃, M₅ PAM to deliver a potent and selective M₁ PAM (VU0366369, 12a) and a potent and selective M_5 PAM (VU0400265, **3**),^{2,3} we hoped to identify 'molecular switches' within this chemotype that would engender M₃ PAM selectivity. We began by evaluating all analogs synthesized to date, that did not potentiate an EC_{20} of ACh at M_1 or M_5 , for their ability to potentiate an EC_{20} of ACh at M₃ at a 10 μ M concentration. Surprisingly, identification of an M₃ PAM within this chemotype remains elusive.

Thus, optimization of a pan G_q mAChR M₁, M₃, M₅ PAM, which previously led to the discovery of the first selective M5 PAM (VU0400265), provided VU0366369 (12a), a highly selective and potent M₁ PAM. VU0366369 possesses comparable potency to BQCA and represents only the second known chemotype to provide highly selective M₁ potentiation. Efforts to develop an M₃ PAM from this chemotype have thus far proven unsuccessful; however, the ability to dial in or out M₁ and M₅ PAM activity within a single scaffold is unprecedented. Further in vitro and in vivo characterization of VU0400265 and VU0366369 is in progress with exciting results, which will be reported in due course.

Acknowledgments

The authors thank NIMH (1RO1 MH082867), NIH, the MLPCN (1U54 MH084659) and the Alzheimer's Association (IIRG-07-57131) for support of our Program in the development of subtype selective allosteric ligands of mAChRs.

References and notes

- 1. Marlo, J. E.; Niswender, C. M.; Luo, Q.; Brady, A. E.; Shirey, J. K.; Rodriguez, A. L.; Bridges, T. M.; Williams, R.; Days, E.; Nalywajko, N. T.; Austin, C.; Williams, M.; Xiang, Y.; Orton, D.; Brown, H. A.; Kim, K.; Lindsley, C. W.; Weaver, C. D.; Conn, P. J. Mol. Pharmacol. 2009, 75, 577.
- Bridges, T. M.; Marlo, J. E.; Niswender, C. M.; Jones, J. K.; Jadhav, S. B.; Gentry, P. 2. R.; Weaver, C. D.; Conn, P. J.; Lindsley, C. W. J. Med. Chem. **2009**, *52*, 3445. Bridges, T. M.; Kennedy, J. P.; Cho, H. P.; Conn, P. J.; Lindsley, C. W. Bioorg. Med.
- 3 Chem. Lett. 2010, 20, 558.
- Felder, C. C.; Porter, A. C.; Skillman, T. L.; Zhang, L.; Bymaster, F. P.; Nathanson, 4 N. M.; Hamilton, S. E.; Gomeza, J.; Wess, J.; McKinzie, D. L. Life Sci. 2001, 68, 2605
- Anagnostaras, S. G.; Murphy, G. G.; Hamilton, S. E.; Mitchell, S. L.; Rahnama, N. 5. P.; Nathanson, N. M.; Silva, A. J. *Nat. Neurosci.* **2003**, 6, 51. Wess, J.; Eglen, R. M.; Gautam, D. *Nat. Rev. Drug Disc.* **2007**, 6, 721.
- 6
- Bartus, R. T. Exp. Neurol. 2000, 163, 495. 7
- Langmead, C. J.; Watson, J.; Reavill, C. Pharmacol. Ther. 2008, 117, 232. 8
- Fisher, A. Neurodegener. Dis. 2008, 5, 237. 9
- 10 Raedler, T. J.; Bymaster, F. P.; Tandon, R.; Copolov, D.; Dean, B. Mol. Psychiatry 2008. 12. 232. 11.
- Shekhar, A.; Potter, W. Z.; Lightfoot, J.; Lienemann, J.; Dube, S.; Mallinckrodt, C.; Bymaster, F. P.; McKinzie, D. L.; Felder, C. C. Am. J. Psychiatry 2008, 165, 1033. Scarr, E.; Sundrarn, S.; Keriakous, D.; Dean, B. Biol. Psychiatry 2001, 61, 1161. 12.
- Heinrich, J. N.; Butera, J. A.; Carrick, T.; Kramer, A.; Kowal, D.; Lock, T.; Marquis, 13 K. L.; Pausch, M. H.; Popiolek, M.; Sun, S. C.; Tseng, E.; Uveges, A. J.; Mayer, S. C. Eur. J. Pharmacol. 2009, 605, 53.
- Mirza, N. R.; Peters, D.; Sparks, R. G. CNS Drug Rev. 2003, 9, 159. 14
- 15. Conn, P. J.; Christopoulos, A.; Lindsley, C. W. Nat. Rev. Durg Disc. 2009, 8, 41.
- Conn, P. J.; Jones, C.; Lindsley, C. W. Trends Pharmacol. Sci. 2009, 30, 148. 16
- 17. Ma, L.; Seager, M.; Wittman, M.; Bickel, N.; Burno, M.; Jones, K.; Graufelds, V. K.; Xu, G.; Pearson, M.; McCampbell, A.; Gaspar, R.; Shughrue, P.; Danzinger, A.; Regan, C.; Garson, S.; Doran, S.; Kreatsoulas, C.; Veng, L.; Lindsley, C. W.; Shipe, W.; Kuduk, S.; Jacobson, M.; Sur, C.; Kinney, G.; Seabrook, G. R.; Ray, W. J. Proc. Natl. Acad Sci. U.S.A. 2009, 106, 15950.
- 18 Shirey, J. K.; Brady, A. E.; Jones, P. J.; Davis, A. A.; Bridges, T. M.; Jadhav, S. B.; Menon, U.; Christain, E. P.; Doherty, J. J.; Quirk, M. C.; Snyder, D. H.; Levey, A. I.; Watson, M. L.; Nicolle, M. M.; Lindsley, C. W.; Conn, P. J. J. Neurosci. 2009, 29, 14271
- 19. Jones, C. K.; Brady, A. E.; Davis, A. A.; Xiang, Z.; Bubser, M.; Tantawy, M. N.; Kane, A. S.; Bridges, T. M.; Kennedy, J. P.; Bradley, S. R.; Peterson, T. E.; Ansari, M. W.; Baldwin, R. M.; Kessler, R. M.; Deutch, A. Y.; Lah, J. J.; Levey, A. I.; Lindsley, C. W.; Conn, P. J. J. Neurosci. 2008, 28, 10422.
- 20 Bridges, T. M.; Brady, A. E.; Kennedy, J. P.; Daniels, N. R.; Miller, N. R.; Kim, K.; Breininger, M. L.; Gentry, P. R.; Brogan, J. T.; Jones, J. K.; Conn, P. J.; Lindsley, C. W. Bioorg. Med. Chem. Lett. 2008, 18, 5439.
- Miller, N. R.; Daniels, N. R.; Bridges, T. M.; Brady, A. E.; Conn, P. J.; Lindsley, C. 21. W. Bioorg. Med. Chem. Lett. 2008, 18, 5443.
- 22 Lebois, E. P.; Bridges, T. M.; Dawson, E. S.; Kennedy, J. p.; Xiang, Z.; Jadhav, S. B.; Yin, H.; Meiler, J.; Jones, C. K.; Conn, P. J.; Weaver, C. D.; Lindsley, C. W. ACS Chemical Neurosci. doi: 10.1021/cn900003h.
- 23 Yang, F. V.; Shipe, W. D.; Bunda, J. L.; Nolt, M. B.; Wisnoski, D. D.; Zhao, Z.; Barrow, J. C.; Ray, W. J.; Ma, L.; Wittman, M.; Seager, M.; Koeplinger, K.; Hartman, G. D.; Lindsley, C. W. Bioorg. Med. Chem. Lett. 2010, 20, 531.