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A dibenzo-ortho-terphenoquinone derivative, the first o-ter-
quinone derivative, is largely deviated from coplanarity, is in a
slight equilibrium with its diradical form, displays an easy rota-
tion of the exocyclic double bonds, and shows photoresponsive
switching property traceable by ESR spectroscopy.

Extended quinones have attracted considerable attention
from the structural and physicochemical, in particular electro-
chemical points of view.1 Extended p-phenoquinones tend to
be in equilibrium between the quinoid forms and diradical
forms depending on the degree of extension and substituent
effect.2 Recently, we have reported the synthesis and a switch-
ing functionality (ESR detection) of dibenzannelated p-
terphenoquinone (1) which shows a cleanly reversible photo-
chemical and thermal interconversion between the quinone
and diradical forms involving restricted conformational
change.3 The nonplanarity of 1 plays an important role in this
interconversion. Thus, in theory, there can be other switching
systems based on nonplanar extended quinones and quino-
methides. In this context, we have been interested in the devel-
opment of novel extended quinones rich in dynamic processes.
Here we report the synthesis, structure, and properties of diben-
zo-o-terphenoquinone (2), the first derivative of this kind as
well as the structural isomer of 1.

Synthesis of 2 was outlined in Scheme 1. Reaction of 4-
lithio-2,6-di-t-butylphenoxide, generated by treatment of 4-bro-
mo-2,6-di-t-butylphenol with three equivalents of t-BuLi,4 with
9,10-phenanthrenequinone in ether afforded bisadduct (3)5 as a
single stereoisomer in 35% yield. Use of THF as solvent did not
yield 3 at all probably because of electron transfer reaction as
judged from deep blue coloration of the reaction mixture. At-
tempted dehydration of 3 to 2 with either POCl3/pyridine or
CuSO4/THF was not successful, producing a complex mixture
or ketone (4) by the pinacol rearrangement. We, therefore,
transformed 3 to bisphenol (5) through the acid-catalyzed pina-
col rearrangement to 4 and its reductive rearrangement
(LiAlH4/THF and then I2/CH3COOH).

6 Oxidation of 5 with al-
kaline K3Fe(CN)6 afforded 2 as orange crystals in 99% yield.7
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The visible absorption of 2 [�max 423 nm/CH2Cl2 ("
21900)] is very similar to that of 1 [424 nm/CH2Cl2 (42700)]
in the wavelength but nearly half in the absorption coefficient
to suggest deviation of the quinomethide chromophores from
coplanarity more than 1. The 1H NMR spectra revealed the dy-
namic stereochemical process of 2 around room temperature:
while the spectrum at 30 �C shows the t-butyl protons as a sing-
let and the olefinic protons of quinomethide part almost invisi-
ble owing to broadening, that at �60 �C shows two singlets of
the t-butyl groups at d 1.21 and 1.24 and two doublets of the
quinomethide protons at d 7.22 and 7.55. These observations in-
dicate fairly easy rotation of the exocyclic double bonds (pinch
bonds) of 2 around room temperature.8 From the variable-tem-
perature NMR measurements, the rotational barrier (�Gz) is es-
timated to be as low as 13:6� 0:3 kcalmol�1

(Tc ¼ �15� 3 �C).
Recrystallization of 2 from ethanol gave single crystals

suitable for X-ray analysis.9 Figure 1 shows the ORTEP draw-
ings. The central six-membered ring takes a twisted chair form
probably to reduce the steric crowding around the quinomethide
units. Dihedral angle of the two pinch bonds (C4–C13–C26–
C10) is as large as 68.0�. The biphenyl part (C18–C19–C20–
C21) is twisted by 22.2�. On the other hand, the pinch bonds
are only slightly twisted with the average torsion angles of
4.1�. The average length of the pinch bonds of 2 (1.38 �A) is sim-
ilar to that of dibenzo-p-terquinone 1 (1.37 �A) but is shorter than
that of a nonbenzannelated p-terquinone derivative (1.42 �A).2a,b

Electrochemical properties of 2 (cyclic voltammetry) are
also significantly different from 1. First, 2 (Epc ¼ �0:87V)
has a higher electron affinity than 1 (Epc ¼ �1:08V; 25 �C).10
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Scheme 1. a; 3 equiv. t-BuLi/ether, 0 �C, 1 h, b; 0.4 equiv. 9,10-phenanthrenequinone, 35%, c; CF3CO2H/CH3CO2H, r.t., 1 h, 75%,
d; LiAlH4/THF, reflux, 1.5 h, 81%, e; 0.3% I2/CH3CO2H, reflux, 1.5 h, 74%, f; K3Fe(CN)6/0.1M KOH aq./benzene, r.t., 3 d, 99%.
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Second, 2 exhibits two re-oxidation peaks (Epa) at �0:79 and
�0:52V, which we tentatively assign to each one-electron oxi-
dation forming anion radical 2�� and diradical form of 2 (2B)
rather than involvement of hysteresis behavior, whereas 1
clearly shows temperature dependent hysteresis behavior
involving conformational change (large differences between
Epc and Epa).

3

Although p-terquinone 1 is ESR silent, o-terquinone 2 exhi-
bits weak ESR signals in a degassed toluene solution at room
temperature. The observed triplet pattern (aH ¼ 0:18mT,
g ¼ 2:0045) is similar to that of the diradical form of 1 and
other 4-substituted-2,6-di-t-butylphenoxy radicals, suggesting
a slight equilibrium of 2 with diradical 2B (Scheme 2).11 The
signals become larger upon heating or more effectively upon
photoirradiation: irradiation of 2 with a high pressure Hg lamp
causes gradual increase of the signal intensity which returns to
the original intensity in the dark in about 1.5 h at room tempera-
ture (Figure 2). Thus, like 1, o-terquinone 2 shows switching
function to some extent, although the response is slower.12

Further studies toward the development of an improved
photoresponsive switching system by structural modification
of 2 are in progress.
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Figure 1. ORTEP drawings (50% thermal ellipsoids) of 2.
Hydrogen atoms are omitted for clarity. Selected bond
lengths ( �A) and angles (�): O1–C1 1.228(3), C1–C2
1.485(4), C2–C3 1.350(4), C3–C4 1.455(4), C4–C13
1.378(4), C13–C26 1.490(4), O1–C1–C2 121.1(3), C1–
C2–C3 119.2(3), C2–C3–C4 123.0(3), C3–C4–C13
122.0(2), C4–C13–C26 125.1(2), C13–C26–C10 123.3(2).
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Figure 2. Change of ESR signal intensity of
2 under intermittent photoirradiation.
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