DOI: 10.1002/ejoc.201000295

The Grignard Reaction of Cyclodextrin-6-aldehydes Revisited: A Study of the Stereoselectivity Upon Addition of Organometallic Reagents to Aldehydes and Ketones

Emil Lindbäck,^[a] You Zhou,^[a] Lavinia Marinescu,^[a] Christian M. Pedersen,^[a] and Mikael Bols^{*[a]}

Keywords: Supramolecules / Carbohydrates / Cyclodextrins / Nucleophilic addition

 2^{A-G} , 3^{A-G} , 6^{B-G} -Icosakis-O-benzyl- 6^A -O-oxo- β -cyclodextrin was treated with aromatic and aliphatic Grignard reagents to give diastereomeric mixtures of the secondary alcohols with remarkable difference in polarity. Moderate-to-good yields and selectivity were obtained. By oxidizing the secondary

alcohols, followed by a second Grignard reaction, good to excellent yields and selectivity of tertiary alcohols could be obtained. The stereochemistry of the reaction outcome was shown to be dependent on the order of addition of the Grignard reagents and could be efficiently controlled.

Introduction

Cyclodextrins are readily available cyclic amylose oligomers consisting of 6, 7 or 8 glucose units.^[1] These compounds are referred to as α -, β -, and γ -cyclodextrins respec-

tively. Because of their ability to bind hydrophobic substrates in their cavity, cyclodextrins are attractive compounds as starting materials for the synthesis of artificial enzymes,^[2–4] and other supramolecular devices. Though

(* true when R has lower priority)

Figure 1. Benzylated β -cyclodextrin-aldehyde and its reaction with organometallic reagents. This leads to two stereoisomers with rather different polarity.

- [a] Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201000295.

many interesting enzyme mimics have been made, a limiting factor in this research is probably the difficult and often low yielding methods available for the preparation of modified cyclodextrins.^[5] Consequently new and elegant ways of

Figure 2. TLC plate showing the different polarity of diastereomeric $6^{A,D}$ -di-*C*-allyl-substituted nonadeca-*O*-benzylated β -cyclodextrins in the eluent pentane/ethyl acetate 4:1 (left). Depiction showing how steric hindrance from the subsequent glucose residue prevents substituents at C-6 to enter the *tg* conformation thereby forcing each diastereomer to adopt the shown conformers (right).

modifying these compounds are required and are indeed continuously being developed.^[6] One of the very powerful methods with which to modify cyclodextrins is the method developed by Sollogoub and Sinaÿ,^[6–8] where perbenzylated cyclodextrins are selectively mono- or di-6-debenzylated with DIBAL-H in high yield. From the resulting alcohols, aldehydes, such as 1 (Figure 1), can readily be obtained from oxidation by Dess–Martin periodane (DMP)^[9] or Swern conditions.^[10] These are potentially important building blocks for artificial enzymes or molecular machines since C–C bond formation at the oxidized position can be achieved.

The Grignard reaction of perbenzylated β -cyclodextrin derivatives containing one 6-aldehyde group, or two 6-aldehydo groups in the A and D rings, was therefore investigated quite early with aliphatic Grignard reagents.^[10] The reaction gave the stereoisomeric secondary alcohols expected for 1,2-addition in diastereomeric ratios of about 1 : 3 ratio for the 6R- and 6S-isomers. Surprisingly the 6Risomers were consistently found to be much less polar in terms of chromatographic retention times than the 6S-isomers. The polarity difference, which disappeared upon acetylation or oxidation, was interpreted as being caused by the presence or absence of intramolecular hydrogen bonding. The configurations of the diastereomers were determined showing that the polar isomer was the S-isomer, and the apolar isomer is the R-isomer. Modeling studies suggested that 6-C-alkylation restricts the conformation around the C5-C6 bond such that the 6S-isomer will adopt a gg conformation, which has the hydroxy group pointing outwards, while the 6R-isomer will adopt a gt conformation, which has the OH group pointing towards the inner face of the cyclodextrin (Figure 2).

Recently we wanted to attach other functional groups, particularly pyridine, to the cyclodextrin. This led us to revisit this reaction now using other, predominantly aromatic, organometallic reagents. We have also studied reaction of organometallic reagents to the corresponding ketones, which are readily obtained from oxidation of the Grignard products. We find that the yield and stereoselectivity of these Grignard reactions depend very much on the reagent used.

Results and Discussion

 β -Cyclodextrin-aldehyde^[11] (1) (Figure 1) was treated with Grignard and organolithium reagents (Table 1, entry

1–17). Aliphatic Grignard reagents gave generally a modest yield of product, except methylmagnesium bromide which gave 82% of adducts **2a** and **3a** (entry 1).

Table 1. Results of reaction of organometallic reagents with benzylated β -cyclodextrin-aldehyde 1, methyl ketone 4a, phenyl ketone 4b and phenyl ethynyl ketone 4c (* ratio may be reversed. *i*Pr = isopropyl).

Entry	Substrate	Reagent	% Yield	Products (ratio)
1	1	MeMgBr	82	2a and 3a (1:1)
2	1	allylMgBr	31	2b and 3b (3:4)
3	1	BnMgBr	<14	_
4	1	iPrMgCl	<10	_
5	1	c-pentylMgBr	0	_
6	1	propargyl MgBr	82	2c and 3c (1:5)
7	1	Ph-ethynylMgBr	70	2d and 3d (5:1)
8	1	Ph-ethynylMgBr	47	2d and 3d (2:1)
		(+ PhMe)		
9	1	Ph-ethynylLi	60	2d and 3d (8:1)
10	1	Ph-ethynylCeCl ₂	42	2d and 3d (4:1)
11	1	Ph-ethynylZnCl	49	2d and 3d (5:4)
12	1	PhMgBr	60	2e and 3e (11:1)
13	1	PhLi	0	-
14	1	4-F-C ₆ H ₄ MgBr	71	2f and 3f (15:1)
15	1	4-F-C ₆ H ₄ MgBr	57	2f and 3f (5:1)
		$(+ MgBr_2)$		
16	1	2-pyridylMgBr	73	2g and 3g (7:1)
17	1	2-pyridylLi	0	-
18	7a	ethynylMgBr	86	8a and 9a (4:1*)
19	7a	PhMgBr	81	8b and 9b (4:1*)
20	7a	4-F-C ₆ H ₄ MgBr	77	8c and 9c (4:1*)
21	7d	allylMgBr	41	8d (>99:1)
22	7e	4-F-C ₆ H ₄ MgBr	68	8e (>99:1)
23	7f	Ph-ethynylMgBr	90	9e (>99:1)
				-

Benzylmagnesium bromide and isopropylmagnesium chloride (entries 3–4) gave low yield of products that were difficult to purify or separate from the aldehyde, and cyclopentylmagnesium bromide (entry 5) gave no yield. Enolization and possibly reduction of the aldehyde in the latter cases is the most likely reason why these reactions fare so badly. Allyl and propargylmagnesium bromide (entries 2 and 5) gave 33 and 82% of predominantly the polar *S*-isomers **3b** and **3c**. Again the difference in yield is remarkable and is a result of the allyl reagent giving unreacted starting material and possibly side products; presumably enolisation is a bigger problem with allylmagnesium bromide.

The aromatic Grignard reagents, phenyl, 4-fluorophenyl and 2-pyridylmagnesium bromide gave good yields of predominantly the apolar R-isomers 2e, 2f and 2g with selec-

tivities up to 11:1 (entries 12, 14 and 16). However none of the aromatic organolithium reagents gave any product and starting material appeared to be present after reaction. It is believed that these strongly basic compounds caused enolization of the aldehyde in **1**. Phenylethynylmagnesium bromide behaved similar to aromatic Grignards giving a 70% yield of **2d** in a 5:1 ratio over **3d** (entry 7). The better yields may be due to the lower reactivity of aryl and alkyl reagents compared with the more reactive alkyl Grignard reagents, which causes more side reactions.^[12]

All the stereoisomeric Grignard products had a polarity similar to what had been observed previously, with one C-6 stereoisomer being significantly more polar than the other, and stereochemistry was assigned accordingly. However, to check if aromatic substituents might behave differently we hydrolyzed the apolar, major isomer from the reaction of 4-fluorophenylmagnesium bromide, presumably 2f, separated the arylated glucose residue from the unmodified glucose residues by chromatography, and subjected it to Fisher glycosylation to give 5a (Figure 3). Simultaneously the two reference compounds 5a and 5b were prepared from methyl 2,3,4-O-benzyl-a-D-glucopyran-1,6-diuloside (4) by reaction with 4-fluorophenylmagnesium bromide followed by hydrogenolysis (Figure 3). The identity of 5a and 5b was established by conversion of the major isomer 5b to the 4,6-benzylidene derivative 6 with benzaldehyde dimethyl acetal and acid catalysis. In 6 NMR showed a small coupling constant (5.4 Hz) between H-5 and H-6 which is only consistent with the 6S-stereochemistry. This confirms that also for aromatic substituents the less polar isomer has R-stereochemistry. A TOCSY spectrum of the debenzylated **2f** showed a very small $J_{5,6}$ in the modified glucose residue. This shows that the compound has a fixed conformation around the C-5/C-6 bond and that the 6-H is not in gg position. This is consistent with the interpretation that the 6-H is in tg position, the aromatic group in ggposition, thereby on the outside of the cyclodextrin and the hydroxyl group in gt position pointing towards the cavity; the only alternative staggered conformer would leave the 4-fluorophenyl group in the space-demanding tg-position which is improbable.

In summary aromatic Grignard reagents yield rather selectively the *R*-isomer upon addition to aldehyde 1, while aliphatic Grignard reagents give a mixture with predominance for *S*-isomer. If empirical stereoselectivity models can be applied here, and assuming that C_4 is a sterically larger group than O⁵ (intuitively reasonable), the Felkin–Anh polar model^[13] (Figure 5) predict that the *R*-isomer should be the preferred product. In this model a polar α -substituent, here O⁵, in the reacting aldehyde or ketone have to be oriented perpendicular to the carbonyl group so that there is a favorable orbital overlap between its π *-orbital and the antibonding orbital of the C⁵–O⁵ bond. Attack by the nucleophile (Nu) near the smallest group (H5) then result in the observed stereochemistry.

The observation that addition of $MgBr_2$ result in a small lowering of *R*-selectivity (entry 15) supports that chelation is not involved in formation of the major product. Also the experiment with phenethynyllithium, where chelation cannot occur and which gives *R*-product, fits the Felkin–Anh polar model.

Albeit the S-selectivity observed with some aliphatic reagents not is large, the difference in selectivity is nevertheless puzzling. It suggests a difference in mechanism or rate-determining step between aliphatic and aromatic reagents.

Figure 3. Preparation of two reference monosaccharide derivatives, **5a** and **5b**, that could be used to determine the stereochemistry at C-6. The major isomer **5b** from addition of (4-fluorophenyl)magnesium bromide to glucose-6-aldehyde **4** was converted into the benzylidene derivative **6**. This compound had a small $J_{5,6}$, which is consistent with *S*-stereochemistry only. Hydrolysis of the β -cyclodextrin derivative **2f** and conversion to methyl glycoside led to the minor *R*-isomer **5a**.

Oxidation of the secondary alcohols 2 and 3 to the ketone 7 is readily achieved with Dess-Martin periodinane (DMP) or pyridinium dichromate solution (PDC) (Figure 4). This was done on 4 different alcohols giving ketones 7a,7d,7e, and 7f. Addition of Grignard reagents to these ketones proceeded in good yield with both aliphatic and aromatic reagents to give the tertiary alcohols. From the methyl ketone 7a mixtures of isomers, 8 and 9, were obtained, but from the other ketones 7d-f only a single isomer of either 8 or 9 was formed. The relative ratio of the two isomers is readily determined by NMR, but the stereochemical identity of the isomers is not, and 8 and 9 have essentially identical chromatographic retention. For 8/9 a-c (Table 1, entries 18-20) the stereochemistry of the isomers was not determined, because the product was mixtures that could not be separated. On the other hand for 8e and 9e, which gave pure products, the product was identified by hydrolytic degradation and comparison with reference compounds (see below).

These results show that reaction of 7e with 4-fluorophenylmagnesium bromide exclusively yields the S-isomer 8e (Table 1, entry 22), while reaction of 7f with phenethynylmagnesium bromide exclusively yield the R-isomer 9e (Table 1, entry 23). This means that ketones 7e and 7f gives stereoselectivity accordance with the Felkin–Anh polar model and thereby with the same mode of reaction as the aldehydes. It also means that the stereochemistry of the tertiary center can be controlled: When starting from aldehyde 1 and reacting with Grignard reagent, oxidizing to ketone and Grignard reaction the order of Grignard reagents determines the stereochemistry, so reversion of the order will generate the antipode. The single product formed from **7d** has not been specifically determined, but it is assumed to be the *S*-isomer **8d** based on the observed stereoselectivity in the Grignard reactions.

The stereochemistry of 8e and 9e was determined as outlined in Figure 5. Cyclodextrin derivative 9e was hydrogenolyzed and subjected to acidic hydrolysis with IR-120 ion-exchange resin followed by Fischer glycosylation with methanol and acid. The product was a mixture of methyl glycosides from which the C6-modified methyl glycoside was isolated and compared with reference samples using TLC and HPLC. The reference samples were made from 4 by reaction with the corresponding Grignard reagents followed by oxidation to the ketones 11 and 12 respectively (Figure 5). These were then reacted with Grignard reagent and deprotected to give 13S and 13R with high diastereoselectivity. Reaction of the isomer mixture with dimethoxvtoluene and acid gave the 4,6-benzylidene derivatives 10R and 10S that could be separated by chromatography. The relative stereochemistry of 14R and 14S could conclusively be determined from NOE experiments: In 14S there is strong NOE between the benzylidene proton and the aromatic protons of the 4-fluorophenyl group, that is not the case in 14R, which shows a strong NOE to one of the protons on C7. Acidic hydrolysis of 14R and 14S to reference compounds 10R and 10S was performed (not shown). The hydrolysis product from 9e was found to be identical with 10S (Figure 5).

Overall it can be concluded that the stereoselectivity of the addition is similar for the reaction of ketones and for the addition of large Grignard reagents to aldehydes: The selectivity follows the one predicted by Felkin–Anh's polar

R = Me (**a**, **b** or **c**), Ph (**d**), PhCC- (**e**) or 4-F-Ph (**f**)

R' = HCC- (a), Ph (b), 4-F-Ph (c or e), CH₂=CHCH₂- (d) or Ph-CC- (f)

Figure 4. Oxidation of secondary alcohols to the β -cyclodextrin ketone 4, 7e and 7f followed by reaction with organometallic reagents to give tertiary alcohols.

Figure 5. Preparation of two reference monosaccharide derivatives, **10***S* and **10***R* that could be used to determine the stereochemistry at C-6 of tertiary alcohols **8e** and **9e**. The mixture of secondary alcohols from the Grignard reaction with **4** was oxidized to the ketones **11** and **12** followed by an additional Grignard reaction. After hydrogenolysis the reference compounds **10***S* and **10***R* were obtained. By converting them into the **4**,6-benzylidene derivatives **14***S* and **14***R* the stereochemistry could be determined by NMR studies. The insert (bottom left) show nucleophilic addition to carbonyl group according to Felkin–Anh's polar model.

model. The selectivity is high and stereoselectivity of the tertiary alcohols can be controlled by the order in which the organometallic reactions are carried out.

Experimental Section

General: Solvents were distilled under anhydrous conditions. All reagents were used as purchased without further purification. Glassware used for water-free reactions was dried for 2 h at 130 °C before use. Columns were packed with silica gel 60 (230–400 mesh) as the stationary phase. TLC plates (Merck, 60, F_{254}) were visualized by spraying with cerium sulfate (1%) and molybdic acid (1.5%) in 10% H₂SO₄ and heating until colored spots appeared. ¹H-, ¹³C-NMR and COSY experiments were carried out with a Varian Mercury 300 or a Varian Unity 500 instrument. Monoisotopic mass spectra (MALDI-TOF MS) were obtained on a Bruker Daltonics mass spectrometer using ditranol (1,8-dihydroxyanthron)

as matrix. Spectra were calibrated using a polymer calibration standard.

2^{A-G},3^{A-G},4^{A-G},6^{B-G}-Icosakis-*O*-benzyl-6^A-deoxy-6^A-oxy-6^A-phenylβ-cyclodextrin (7d): A solution of compound **2e** (706 mg, 0.234 mmol) in DCM (16 mL) was added PDC (793 mg, 2.1 mmol). The reaction mixture was left stirring overnight at room temperature. Then Celite was added and the solvent was removed under reduced pressure. The crude product was added on the top of a silica pad, elution (EtOAc/*n*-pentane: 1/1) afforded compound **7d** (98%, 693.1 mg) as a white foam; $R_f = 0.59$ (EtOAc/*n*-pentane: 3/5); $[a]_D = +41.5$ (c = 1.0, DCM). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.97-7.95$ (m, 2 H, H arom.), 7.31–6.97 (m, 103 H, H arom.), 5.25–5.16 (m, 5 H), 5.13–5.09 (m, 3 H), 5.05–4.95 (m, 4 H), 4.91 (d, ²J = 11 Hz, 1 H, CHPh), 4.63 (d, ²J = 11 Hz, 1 H, CHPh), 4.68 (d, ²J = 11 Hz, 1 H, CHPh), 4.63 (d, ²J = 11 Hz, 1 H, CHPh), 4.59–4.32 (m, 22 H), 4.26 (d, ²J = 12 Hz, 1 H, CHPh), 4.16–3.78 (m, 28 H), 3.66–3.35 (m, 15 H), 2.78 [d, ²J(H,H) = 11 Hz, 1 H,] pm. ¹³C NMR (75 MHz, CDCl₃): δ = 194.0 (C=O), 139.7–137.9 (C arom. quat.), 135.6, 133.8 (C arom. quat.), 129.6–127.2 (Carom. tert.), 99.1, 99.0, 98.8, 98.7, 98.5, 98.2, (C-1), 81.5, 81.1, 80.9, 80.8, 80.5, 79.7, 79.6, 79.3, 79.2, 79.0, 78.7, 78.2, 78.1, 77.6, 76.1, 75.8, 75.7, 75.5, 75.2, 73.8, 73.7, 73.5, 73.3, 73.1, 73.0, 72.9, 72.8 71.9, 71.8, 69.9,, 69.6, 68.9, 68.7 (CH, CH₂) ppm. MALDI-TOF-MS: *m*/*z* calcd. for C₁₈₈H₁₉₂O₃₅Na 3034.321 found 3034.398.

 $2^{A-G}, 3^{A-G}, 4^{A-G}, 6^{B-G}-I cosakis-\textit{O-benzyl-}6^{A}-deoxy-6^{A}-(4-fluorophen-fluoroph$ yl)-6^A-oxy-β-cyclodextrin (7f): See experimental part for compound 7d; yield (98%, 1.62 g); $R_{\rm f} = 0.35$ (EtOAc/*n*-pentane: 2/3); $[a]_{\rm D} =$ +34.4 (c = 0.5, DCM). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.94$ (dd, ${}^{4}J_{\text{H,F}} = 6$, ${}^{3}J_{\text{H,H}} = 9$ Hz, 2 H, H arom.), 7.26–6.98 (m, 102 H, H arom.), 5.25–5.20 (m, 3 H, 1-H), 5.16 (d, ${}^{3}J_{1,2} = 3$ Hz, 1 H, 1-H), 5.14 (d, ³*J*_{1,2} = 3 Hz, 1 H, 1-H), 5.09–5.07 (m, 7 H, 2 1-H, 5CHPh), 5.02 (d, ${}^{2}J$ = 10 Hz, 1 H, CHPh), 4.94 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 4.88 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 4.81–4.75 (m, 4 H), 4.72 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 4.68-4.62 (m, 2 H, 2CHPh), 4.57-4.53 (m, 3 H), 4.51-4.41 (m, 12 H), 4.39-4.33 (m, 6 H), 4.31-4.26 (m, 3 H), 4.18 (br. s, 2 H), 4.11-3.76 (m, 25 H), 3.58-3.44 (m, 11 H), 3.41-3.37 (m, 2 H), 2.90 (d, ${}^{2}J_{H,H}$ = 10 Hz, 1 H) ppm. ${}^{13}C$ NMR (75 MHz, CDCl₃): δ = 193.0 (C=O), 166.1 (d, ${}^{1}J_{C,F}$ = 254 Hz, C arom. quat.), 139.7-138.0 (C arom. quat.), 132.4-132.1 (C arom. quat., C arom. tert.), 128.6–127.2 (C arom. tert.), 116.2 (d, ${}^{2}J_{C,F}$ = 21 Hz, C arom. tert.), 99.2, 98.9, 98.7, 98.3, 98.2 (C-1), 81.4, 81.0, 80.8, 80.5, 80.0, 79.8, 79.5, 79.3, 79.1, 78.8, 78.1, 77.6, 75.9, 75.8, 75.4, 75.3, 73.8, 73.7, 73.5, 73.3, 73.1, 73.0, 72.9, 72.8, 72.1, 71.8, 71.7, 69.8, 69.6 69.5, 69.4, 68.9, 68.6 (CH, CH₂) ppm. ¹⁹F NMR (300 MHz, CDCl₃): δ = -103.67 ppm. MALDI-TOF-MS: *m*/*z* calcd. for C188H191FO35Na 3052.311, found 3052.307.

2^{A-G},3^{A-G},4^{A-G},6^{B-G}-Icosakis-O-benzyl-6^A-deoxy-6^A-methyl-6^Aoxy-β-cyclodextrin (7a): A solution of aldehyde 1 (1.0 g, 0.341 mmol) in THF (5.5 mL) under nitrogen was slowly added MeMgBr (1.14 mL, $3 \text{ mol } L^{-1}$ in Et₂O) at room temperature. The reaction mixture was left stirring for 1 h before quenching by slowly addition of saturated aqueous NH₄Cl (15 mL) at 0 °C. Then the phases were separated and the aqueous phase was extracted with DCM $(3 \times 15 \text{ mL})$. The combined organic layers were dried (MgSO₄) and concentrated under reduced pressure. Then the crude was dissolved in DCM (25 mL) and was added Dess-Martin periodinane (444 mg, 1.02 mmol). The reaction mixture was left stirring overnight under a nitrogen atmosphere. Quenched by adding Et₂O (50 mL) and saturated aqueous NaHCO₃ (50 mL) consisting of $Na_2S_2O_3$ (2 g), followed by stirring for 1 h. Then the layers were separated and the organic phase was washed with saturated aqueous NaHCO₃ (50 mL) and H₂O (50 mL). The organic layer was dried (MgSO₄) and concentrated in vacuo. Purification on a silica column (EtOAc/*n*-pentane: 1/5) afforded ketone **6** (58%, 585 mg) as a white foam; $R_{\rm f} = 0.35$ (EtOAc/*n*-pentane: 3/5); $[a]_{\rm D} =$ +27.6 (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.27$ -7.01 (m, 100 H, H arom.), 5.32 (d, ${}^{3}J_{1,2} = 4$ Hz, 1 H, 1-H), 5.25 (d, ${}^{3}J_{1,2} = 4$ Hz, 1 H, 1-H), 5.23–5.17 (m, 4 H, 2 1-H, 2CHPh), 5.13– 4.98 (m, 7 H, 3 1-H, 4CHPh), 4.87–4.76 (m, 6 H), 4.71 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 4.66-4.60 (m, 2 H), 4.56-4.28 (m, 24 H), 4.26-4.17 (m, 2 H), 4.12-3.82 (m, 25 H), 3.71-3.68 (m, 1 H), 3.62-3.35 (m, 13 H), 1.98 (s, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 203.9 (C=O), 139.8–138.1 (C arom. quat.), 128.6–127.2 (C arom. tert.), 99.0, 98.8, 98.6, 98.4, 98.2 (C-1) 81.6, 81.3, 81.1, 80.9, 80.5, 80.2, 79.6, 79.5, 79.3, 79.1, 78.9, 78.8, 77.6, 76.5, 76.1, 75.9, 75.8, 75.5, 75.4, 73.8, 73.7, 73.6, 73.5, 73.1, 73.0, 71.8, 71.6, 69.6, 69.2, 69.0 (CH, CH₂), 26.4 (CH₃) ppm. MALDI-TOF-MS: m/z calcd. for $C_{183}H_{190}O_{35}Na\ 2971.302$ found 2971.681.

 2^{A-G} , 3^{A-G} , 4^{A-G} , 6^{B-G} -Icosakis-*O*-benzyl- 6^{A} -deoxy- 6^{A} -oxy- 6^{A} -(phenylethynyl)- β -cyclodextrin (7e): A solution of phenylacetylene

(0.95 mL, 8.52 mmol) in THF (2 mL) under nitrogen was cooled down to 0 °C before slowly adding EtMgBr (8.52 mL, 1 mol L^{-1} in THF). Then the reaction mixture was allowed to reach room temperature and stirring for 30 min. The Grignard reagent was added a solution of aldehyde 1 (1.0 g, 0.341 mmol) in THF (7.5 mL) at room temperature. The reaction mixture was left stirring at room temperature for 2 h before quenching by slowly adding saturated aqueous NH₄Cl (15 mL) at 0 °C. Then the layers were separated and the water phase was extracted with DCM $(3 \times 15 \text{ mL})$. The combined organic phases were dried (MgSO₄) and concentrated in vacuo. The crude was dissolved in DCM (25 mL) and was added Dess-Martin periodinane (444 mg, 1.02 mmol). The reaction mixture was left stirring overnight under nitrogen at room temperature. The reaction was quenched by adding Et₂O (50 mL) and saturated aqueous NaHCO₃ (50 mL) and Na₂S₂O₃ (2 g), followed by stirring for 1 h. Then the layers were separated and the organic phase was washed with saturated aqueous NaHCO₃ (50 mL) and H₂O (50 mL). The organic layer was dried (MgSO₄) and concentrated under reduced pressure. Purification on a silica column (EtOAc/n-pentane: $1/10 \rightarrow 1/5$) afforded the desired product (70%, 721.6 mg) as a white foam; $R_{\rm f} = 0.37$ (EtOAc/*n*-pentane: 4/5); $[a]_D = +46.2$ (c = 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.52–6.96 (m, 105 H, H arom.), 5.46 (br. s, 2 H, 1-H), 5.30 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 5.21–5.08 (m, 8 H, 5 1-H, 3CHPh) 4.92-4.66 (m, 10 H), 4.50-3.94 (m, 51 H), 3.79-3.59 (m, 5 H), 3.54–3.40 (m, 10 H) ppm. 13 C NMR (75 MHz, CDCl₃): δ = 183.5 (C=O), 139.9–138.4 (C arom. quat.), 133.6, 131.3 (C arom. tert.), 129.2-127.3 (C arom. tert.), 119.8 (C arom. quat.), 99.3, 99.1, 98.9, 98.4, 98.1, 97.8 (C-1), 94.8, 86.8 (Csp), 81.9, 81.6, 81.5, 81.4, 81.2, 80.9, 80.4, 80.0, 79.8, 79.6, 79.4, 79.2, 79.1, 78.6, 77.1, 76.3, 76.1, 75.3, 75.2, 73.7, 73.6, 73.5, 73.1, 72.9, 71.8, 71.6, 71.4, 70.0, 69.7, 69.5, 69.3 (CH, CH₂) ppm. MALDI-TOF-MS: m/z calcd. for C₁₉₀H₁₉₂O₃₅Na 3058.3 found 3058.1.

Preparation of (4-Fluorophenyl)magnesium Bromide (in THF): A suspension of Mg turnings (485 mg, 20.0 mmol) in THF under nitrogen at room temperature was slowly added 1-bromo-4-fluorobenzene (1.57 mL, 14.3 mmol). The reaction mixture was left stirring for 90 min before use.

2^{A-G} , 3^{A-G} , 6^{B-G} -Icosakis-O-benzyl- $6^{A}R$ -(4-fluorophenyl)- β -cyclodextrin (2f) and 2^{A-G} , 3^{A-G} , 6^{B-G} -Icosakis-O-benzyl- $6^{A}S$ -(4-fluorophenyl)- β -cyclodextrin (3f)

Method A-1: A freshly prepared solution of (4-fluorophenyl)magnesium bromide (3.17 mL in THF) was slowly added to a solution of aldehyde 1 (559 mg, 0.190 mmol) in THF (7.4 mL) under nitrogen at ambient temperature. The reaction mixture was stirred for 2.5 h before quenching by slowly adding saturated aqueous NH₄Cl (10 mL) at 0 °C. The phases were separated and the water phase was extracted with DCM (4×10 mL). The combined organic phases were dried (MgSO₄) and concentrated under reduced pressure. Purification on a silica column (EtOAc/n-pentane: $1/10 \rightarrow 1/5$) afforded the monol **2f** (67%, 386.6 mg) as a white foam; $R_{\rm f} = 0.40$ (EtOAc/*n*-pentane: 3/5); $[a]_{\rm D} = +35.0$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.36–7.17 (m, 102 H, H arom.), 7.05–6.99 (m, 2 H, H arom.), 5.57 (d, ${}^{3}J_{1,2} = 3$ Hz, 1 H, 1-H), 5.38– 5.32 (m 3 H, 2 1-H, CHPh), 5.27 (d, ${}^{2}J = 11$ Hz, 1 H, CHPh), 5.20–5.00 (m, 8 H), 4.93–4.86 (m, 4 H), 4.81 (d, ${}^{3}J_{H,H} = 5$ Hz, 1 H), 4.76–4.41 (m, 30 H), 4.26–3.91 (m, 26 H), 3.78–3.36 (m, 15 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 162.5 (d, ¹J_{C,F} = 244 Hz, C arom. quat.), 139.8–137.1 (C arom. quat.), 130.4 (d, ${}^{3}J_{C,F} = 8$ Hz, C arom. tert.), 128.7–127.2 (C arom. tert.), 114.9 (d, ${}^{2}J_{C,F} = 21$ Hz, C arom. tert.), 99.5, 99.4, 99.3, 99.0, 98.7, 97.7 (C-1), 81.5, 81.4, 81.3, 80.9, 80.4, 80.2, 79.8, 79.4, 79.3, 79.2, 76.4, 76.2, 75.9, 75.7,

75.2, 75.0, 74.7, 73.9, 73.8, 73.7, 73.6, 73.4, 73.2, 73.0, 72.9, 72.5, 72.4, 72.0, 71.9, 71.6, 70.1, 69.8, 69.6, 69.1 (CH, CH₂) ppm. ¹⁹F NMR (300 MHz, CDCl₃): δ = -115.05 ppm. MALDI-TOF-MS: m/z calcd. for C₁₈₈H₁₉₃FO₃₅Na 3054.327 found 3054.110. Further elution afforded monol **3f** (4%, 23.5 mg) as a white foam; $R_{\rm f} = 0.34$ (EtOAc/*n*-pentane: 3/5); $[a]_D = +33.4$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.47–7.05 (m, 102 H, H arom.), 6.99–6.93 (m, 2 H, H arom.), 5.76 (br. s, 1 H, 1-H), 5.60 (d, ${}^{3}J_{1,2} = 4$ Hz, 1 H, 1-H), 5.36–5.18 (m, 5 H, 1 1-H, 4CHPh), 5.14 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 4.99 (d, ${}^{3}J_{1,2}$ = 3 Hz, 1 H, 1-H), 4.95 (d, ${}^{3}J_{1,2}$ = 3 Hz, 1 H, 1-H), 4.91-4.72 (m, 11 H), 4.63-4.60 (m, 2 H), 4.58-4.44 (m, 15 H), 4.42–4.37 (m, 2 H), 4.35–4.28 (m, 4 H), 4.23–4.04 (m, 12 H), 4.02-3.85 (m, 11 H), 3.79-3.64 (m, 9 H), 3.59-3.41 (m. 8 H) 3.21-3.02 (m, 3 H), 2.80-2.76 (m, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 161.7 (d, ¹*J*_{C,F} = 277 Hz, C arom. quat.), 139.9–138.6 (C arom. quat.), 138.4 (d, ${}^{4}J_{C,F}$ = 4 Hz, C arom. quat.), 138.1, 137.9 (C arom. quat.), 128.7-127.0 (C arom. tert.), 114.9 (d, ²J_{C,F} = 20 Hz, C arom. tert.), 100.4, 100.2, 100.0, 98.8, 98.5, 98.4, 97.7 (C-1), 82.1, 81.6, 81.5, 81.4, 81.2, 81.0, 80.9, 80.7, 80.2, 80.1, 80.0, 79.5, 79.1, 79.0, 78.8, 77.6, 76.8, 76.5, 76.2, 76.1, 75.4, 74.9, 74.7, 74.4, 73.8, 73.7, 73.6, 73.4, 73.3, 73.0, 72.8, 72.7, 72.6, 72.3, 72.1, 72.0, 71.8, 71.5, 70.0, 69.2, 67.9 (CH, CH₂) ppm. ¹⁹F NMR (300 MHz, CDCl₃): δ = -115.26 ppm. MALDI-TOF-MS: m/zcalcd. for $C_{188}H_{193}FO_{35}Na$ 3054.327 found 3054.012.

Method A-2: A suspension of MgBr₂ [prepared by slowly adding 1,2-dibromoethane (0.49 mL, 5.53 mmol) to a suspension of Mg turnings (134.4 mg, 5.53 mmol) in Et₂O (3.2 mL) under nitrogen at room temperature and stirring for 45 min] under nitrogen at room temperature was slowly added aldehyde 1 (650 mg, 0.221 mmol) dissolved in Et_2O (5.3 mL). Then the mixture was left stirring for 45 min before cooling it down to 0 °C and slowly adding (4-fluorophenyl)magnesium bromide (3.69 mL) [prepared by slowly adding 1-bromo-4-fluorobenzene (1.5 mL, 14.1 mmol) to a suspension of Mg turnings (480 mg, 19.7 mmol) in Et₂O (7.9 mL) under nitrogen at room temperature, and stirring for 1.5 h]. The obtained reaction mixture was left stirring for 10 min before adjusting to room temperature and stirring for 80 min more followed by quenching with saturated aqueous NH₄Cl (10 mL) at 0 °C. Then the phases were separated and the water layer was extracted with DCM $(3 \times 15 \text{ mL})$. The combined organic phases were dried (MgSO₄) and concentrated in vacuo. Purification on a silica column (EtOAc/ *n*-pentane: $1/10 \rightarrow 1/5$) afforded diastereoisomers 3 (48%, 323 mg) and 7 (9%, 61.7 mg).

2^{A-G},3^{A-G},6^{B-G}-Icosakis-O-benzyl-6^A*R*-phenyl-β-cyclodextrin (2e)2^{A-G},3^{A-G},6^{B-G}-Icosakis-O-benzyl-6^AS-phenyl-β-cyclodextrin and (3e): A solution of aldehyde 1 (1.0 g, 0.341 mmol) in Et_2O (3 mL) under nitrogen was cooled down to -78 °C and was slowly added PhMgBr (7.57 mL) [prepared by adding a solution of PhBr (1.42 mL, 13.5 mmoL) in Et₂O (10.7 mL) to a suspension of Mg turnings (1.31 g, 54 mmol) in Et₂O (4.3 mL) at room temperature under nitrogen. Then the reaction mixture was stirred for 4 h before use]. The reaction mixture was left stirring for 5 min at -78 °C before increasing the temperature to ambient temperature and stirring for 24 h. The reaction was quenched by adding saturated aqueous $NH_4Cl\ (15\ mL)$ at 0 °C. Then the phases were separated and the water phase was extracted with DCM (4×15 mL). The combined organic layers were dried (MgSO₄) and concentrated in vacuo. Purification chromatography (EtOAc/n-pentane: $1/10 \rightarrow 1/5$) afforded compound 2e (55%, 561.8 mg) as a white foam; $R_f = 0.35$ (EtOAc/ *n*-pentane: 3/5; $[a]_D = +36.8$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.52–7.20 (m, 105 H, H arom.), 5.65 (d, ${}^{3}J_{1,2} = 3$ Hz, 1 H, 1-H), 5.55 (d, ${}^{3}J_{1,2} = 3$ Hz, 1 H, 1-H), 5.41–5.35 (m, 3 H, 1 1-H, 2CHPh), 5.27-5.06 (m, 8 H, 3 1-H, 5CHPh), 4.994.87 (m, 5 H, 1 1-H, 4CHPh), 4.83–4.67 (m, 6 H), 4.62–4.48 (m, 20 H), 4.45–4.39 (m, 2 H), 4.34–3.94 (m, 26 H), 3.86–3.71 (m, 8 H), 3.67–3.37 (m, 9 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = ppm. 141.6–138.5 (C arom. quat.), 128.7–127.2 (C arom. tert.) 99.7, 99.6, 99.3, 98.7, 98.4, 97.6 (C-1), 81.5, 81.3, 81.0, 80.8, 80.6, 80.5, 80.0, 79.8, 79.5, 79.4, 79.1, 77.8, 76.5, 76.2, 76.0, 75.9, 75.1 74.9, 74.6, 74.5, 73.8, 73.5, 73.3, 73.1, 72.9, 72.6, 72.5, 72.1, 72.0, 71.8, 71.7, 69.9, 69.6, 69.0 (CH, CH₂). MALDI-TOF-MS: *m*/*z* calcd. for C₁₈₈H₁₉₄O₃₅Na 3036.337 found 3036.204.

Further elution afforded monol 3e (5%, 50.6 mg) as a white; $R_{\rm f}$ = 0.30 (EtOAc/*n*-pentane: 3/5); $[a]_D = +35.1$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.36–6.84 (m, 105 H, H arom.), 5.68 (br. s, 1 H, 1-H), 5.50 (d, ${}^{3}J_{1,2}$ = 3 Hz, 1 H, 1-H), 5.28–5.23 (m, 2 H, 2CHPh), 5.19–5.09 (m, 3 H, 1 1-H, 2CHPh), 5.04 (d, ²J = 11 Hz, 1 H, CHPh), 4.86 (d, ${}^{3}J_{1,2}$ = 3 Hz, 1 H, 1-H), 4.82–4.57 (m, 14 H), 4.57-4.51 (m, 2 H), 4.48-4.50 (m,11 H), 4.37-4.25 (m, 8 H), 4.22-3.94 (m, 18 H), 3.92-3.75 (m, 7 H), 3.68-3.54 (m, 10 H), 3.49-3.22 (m, 6 H), 3.06–3.00 (m, 2 H), 2.86 (d, ${}^{2}J_{H,H}$ = 17 Hz, 1 H), 2.58 (d, ${}^{2}J_{H,H}$ = 17 Hz, 1 H) ppm. ${}^{13}C$ NMR (75 MHz, CDCl₃): δ = 143.0-138.0 (C arom. quat.), 128.6-126.0 (C arom. tert.) 100.6, 100.0, 99.7, 98.7, 98.4, 97.7 (C-1) 82.1, 82.0, 81.5, 81.4, 81.1, 80.8, 80.7, 80.2, 80.1, 80.0, 79.6, 79.5, 79.0, 78.8, 79.0, 78.8, 77.6, 76.6, 76.5, 76.2, 76.1, 75.4, 74.9, 74.5, 73.8, 73.6, 73.5, 73.4, 73.3, 73.1, 73.0, 72.8, 72.6, 72.2, 72.1, 71.9, 71.7, 71.5, 69.9, 69.7, 69.3, 67.8 (CH, CH₂) ppm. MALDI-TOF-MS: m/z calcd. for C₁₈₈H₁₉₄O₃₅Na 3036.337 found 3036.152.

6^A*R*-Propargyl-2^{A-G},3^{A-G},6^{B-G}-icosakis-*O*-benzyl-β-cyclodextrin (2c) and 6^AS-Propargyl-2^{A-G},3^{A-G},6^{B-G}-icosakis-O-benzyl-β-cyclodextrin (3c): A solution of aldehyde 1 (540 mg, 0.184 mmol) in Et₂O (12 mL) at ambient temperature under nitrogen was slowly added propargylmagnesium bromide solution in Et₂O (12 mL) [prepared by adding a solution of propargyl bromide (0.82 mL, 7.360 mmol) in Et₂O (7 mL) to a suspension of Mg turnings (203.4 mg, 8.464 mmol) and ZnBr₂ (82 mg, 0.368 mmol) in Et₂O (5 mL) under nitrogen at room temperature and stirring for 2.5 h before use]. The reaction mixture was left stirring for 3 h before cooling it down to 0 °C and slowly adding saturated aqueous NH₄Cl (30 mL). The two phases were separated and the water phase was extracted with Et_2O (3 × 30 mL). The combined organic layers were dried (MgSO₄) and concentrated in vacuo. Purification on a silica column (EtOAc/*n*-pentane: $1/8 \rightarrow 1/5$) afforded monol 2c (14%, 76 mg) as a white foam; $R_f = 0.44$ (EtOAc/petroleum ether: 1/3; $[a]_{D} = +37.7$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.28–6.99 (m 100 H, H arom.), 5.43 (d, ${}^{3}J_{1,2}$ = 3 Hz, 1 H, 1-H), 5.38 (d, ${}^{3}J_{1,2} = 3$ Hz, 1 H, 1-H), 5.20–5.12 (m, 2 H, 1 1-H, 1CHPh), 5.11–5.02 (m, 3 H, 1 1-H, 2CHPh), 4.98 (d, ${}^{3}J_{1,2} = 3$ Hz, 1 H, 1-H), 4.96–4.88 (m, 3 H, 1 1-H, 2CHPh), 4.85 (d, ${}^{3}J_{1,2} = 3$ Hz, 1 H, 1-H), 4.82–4.64 (m, 7 H), 4.55–4.27 (m, 26 H), 4.23 (dd, 1 H), 4.18–3.73 (m, 27 H), 3.73–3.35 (m, 14 H), 3.31 (dd, ${}^{3}J = 9$, 3 Hz, 1 H, 2-H), 3.13 (s, 1 H, OH), 2.62 (m, 1 H, $CH_2C\equiv$), 2.31 (m, 1 H, $CH_2C\equiv$), 2.00 (s, 1 H, $C\equiv CH$) ppm. ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 139.7-138.1$ (C arom. quat.), 128.4-126.8 (C arom. tert.), 99.5, 99.2, 99.1, 99.0, 98.8, 97.7, 97.5 (C-1), 82.2, 81.1, 81.0, 80.9, 80.6, 80.5, 80.0, 79.9, 79.5, 79.0, 78.8, 78.6, 77.3, 76.2, 75.9, 75.5, 75.4, 74.9, 74.8, 73.4, 73.2, 72.9, 72.8, 72.6, 72.4, 72.2, 71.7, 71.6, 71.2, 70.5, 70.2, 70.0, 69.6, 69.4, 69.2, 69.0, 68.7, 68.1, 22.4 $(CH_2C\equiv)$ ppm. MALDI-TOF-MS: m/z calcd. for $C_{185}H_{192}O_{35}Na$ 2996.324 found 2996.252.

Further elution afforded monol **3c** (68%, 370 mg); $R_{\rm f} = 0.30$ (EtOAc/petroleum ether: 1/3); $[a]_{\rm D} = +30.7$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.37-6.96$ (m, 100 H, H arom.), 5.67 (d, ${}^{3}J_{1,2} = 4$ Hz, 1 H, 1-H), 5.42 (d, ${}^{3}J_{1,2} = 3$ Hz, 1 H, 1-H), 5.25–

5.18 (m, 2 H, 1 1-H, 1CHPh), 5.10 (m, 1 H, CHPh), 5.07 (m, 1 H, CHPh), 5.00 (d, ${}^{3}J_{1,2} = 3$ Hz, 1 H, 1-H), 4.91–4.58 (m, 10 H, 2 1-H, 8CHPh), 4.56–4.14 (m, 26 H), 4.12–3.67 (m, 30 H), 3.65–3.33 (m,15 H), 3.15 (br. s, 1 H, OH), 2.35–2.24 (m, 2 H, CH₂C=), 2.18 (s, 1 H, C=CH) ppm. 13 C NMR (75 MHz, CDCl₃): $\delta = 139.8-137.4$ (C arom. quat.), 128.4–126.8 (C arom. tert.), 99.7, 99.2, 99.1, 98.5, 98.0, 97.3 (C-1), 82.0, 81.7, 81.3, 81.2, 81.0, 80.9, 80.7, 80.3, 80.2, 80.0, 79.9, 79.6, 79.5, 79.2, 79.1, 78.7, 78.1, 77.3, 76.8, 76.3, 76.0, 76.0, 75.5, 75.3, 75.1, 74.7, 74.4, 74.3, 73.4, 73.3, 73.2, 73.1, 72.9, 72.7, 72.3, 72.0, 71.7, 71.6, 71.4, 71.2, 71.1, 71.0, 69.8, 69.4, 69.3, 68.5, 67.1, 23.9 (CH₂C=) ppm. MALDI-TOF-MS: *m*/*z* calcd. for C₁₈₅H₁₉₂O₃₅Na 2996.324 found 2996.121.

6^A*R*-Allyl-2^{A-G},3^{A-G},6^{B-G}-icosakis-*O*-benzyl-β-cyclodextrin (2b) and 6^AS-Allyl-2^{A-G},3^{A-G},6^{B-G}-icosakis-O-benzyl-β-cyclodextrin (3b): To a solution of aldehyde 1 (1.0 g, 0.341 mmol) in Et₂O (40 mL) at ambient temperature under nitrogen was slowly added allylmagnesium bromide (5.16 mL) [prepared by adding a solution of allyl bromide (0.685 mL, 7.92 mmol) in Et₂O (8.5 mL) to a suspension of Mg turnings (385.1 mg, 15.84 mmol) in Et₂O (2.8 mL) under nitrogen at room temperature and stirring for 90 min before use]. The reaction mixture was left stirring for 3 h before cooling it down to 0 °C and slowly adding saturated aqueous NH₄Cl (30 mL). The two phases were separated and the water phase was extracted with DCM $(3 \times 30 \text{ mL})$. The combined organic layers were dried and concentrated under reduced pressure. In order to separate the enolization product from the two diastereoisomers the crude was dissolved in EtOH/THF (2/3, 8 mL) and was added NaBH₄ (53.9 mg, 1.36 mmol) at room temperature. The reaction mixture was left stirring overnight before slowly adding aqueous HCl ($0.5 \text{ mol } L^{-1}$, 10 mL) and DCM (15 mL). Then the phases were separated and the organic layer was washed with aqueous NaHCO₃ (15 mL) and H_2O (15 mL). Then the organic phase was dried with MgSO₄ and concentrated under reduced pressure. Purification on a silica column afforded compound 2b (14%, 137 mg) as a white foam; $R_{\rm f}$ = 0.61 (EtOAc/*n*-pentane: 4/5); $[a]_{D} = +36.5$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.24–7.02 (m 100 H, H arom.), 5.78– 6.63 (m, 1 H, CH=CH₂), 5.32 (d, ${}^{3}J_{1,2}$ = 3 Hz, 1 H, 1-H), 5.29 (d, ${}^{3}J_{1,2} = 4$ Hz, 1 H, 1-H), 5.21 (d, ${}^{3}J_{1,2} = 3$ Hz, 1 H, 1-H), 5.16–4.92 (m, 11 H), 4.79–4.61 (m, 8 H), 4.54–4.25 (m, 26 H), 4.12–3.89 (m, 28 H), 3.61–3.31 (m, 15 H), 2.26–2.02 (m, 2 H, CH₂CH =) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 139.7–138.2 (C arom. quat.), 135.9 (CH=CH₂), 128.6-127.1 (C arom. tert.), 117.2 (CH=CH₂), 99.31, 99.2, 98.8, 98.5, 98.4, 97.6 (C-1), 81.5, 81.4, 81.2, 80.9, 80.4, 80.3, 79.9, 79.7, 79.4, 79.2, 78.9, 78.4, 78.3, 77.5, 76.2, 76.0, 75.8, 75.7, 75.6, 75.4, 74.8, 74.3, 73.7, 73.6, 73.5, 73.3, 73.1, 73.0, 72.9, 72.8, 72.0, 71.9, 71.8, 71.6, 69.7, 69.5, 69.1 (CH, CH₂), 35.1 $(CH_2CH =)$ ppm. MALDI-TOF-MS: m/z calcd. for C185H194O35Na 2998.330 found 2998.169.

Further elution afforded monol **3b** (17%, 177 mg); $R_{\rm f} = 0.54$ (EtOAc/*n*-pentane: 4/5); $[a]_{\rm D} = +32.5$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.24-6.93$ (m, 100 H, H arom.), 5.78-5.64 (m, 1 H, CH=CH₂), 5.57 (d, ³J_{1,2} = 4 Hz, 1 H, 1-H), 5.48 (d, ³J_{1,2} = 4 Hz, 1 H, 1-H), 5.26-5.20 (m, 2 H), 5.16, 4.96 (m, 8 H), 4.91-4.59 (m, 12 H), 4.56-4.50 (m, 4 H), 4.46-4.30 (m, 20 H), 4.09-3.71 (m, 30 H), 3.59-3.36 (m,12 H), 2.79 (br. s, 1 H, OH), 2.33-2.23 (m. 1 H, CH₂CH =), 2.12-2.04 (m, 1 H, CH₂CH =) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 139.7-138.1$ (C arom. quat.), 135.9, (CH=CH₂), 128.7 (C arom. tert.), 117.9 (CH=CH₂), 100.1, 99.3, 99.0, 98.6, 98.3, 98.2, 97.9 (C-1), 82.0, 81.8, 81.2, 81.1, 80.9, 80.7, 80.1, 79.8, 79.6, 79.4, 79.2, 79.1, 79.0, 78.9, 76.5, 76.2, 76.1, 76.0, 75.7, 75.4, 75.3, 75.0, 74.9, 73.6, 73.5, 73.2, 73.1, 73.0, 72.9, 72.8, 72.2, 72.1, 71.8, 71.6, 69.9, 69.6, 69.4, 68.7, 68.0 (CH, CH₂), 39.1

 $(CH_2CH =)$ ppm. MALDI-TOF-MS: m/z calcd. for $C_{185}H_{194}O_{35}Na$ 2998.330 found 2998.268.

$6^{A}R$ -Phenylethynyl- 2^{A-G} , 3^{A-G} , 6^{B-G} -icosakis-O-benzyl- β -cyclodextrin (2d) and $6^{A}S$ -Phenylethynyl- 2^{A-G} , 3^{A-G} , 6^{B-G} -icosakis-O-benzyl- β -cyclodextrin (3d)

Method B-1: A solution of phenylacetylene (0.484 mL, 4.32 mmol) in THF (1 mL) at 0 °C under nitrogen was slowly added EtMgBr (4.32 mL, $1 \text{ mol } L^{-1}$ in THF). Then the reaction mixture was allowed to reach room temperature and stirring for additional 30 min. Then the solution of Grignard reagent was slowly added a solution of aldehyde 1 (507 mg, 0.173 mmol) in THF (3.8 mL). The reaction mixture was left stirring for 2 h at ambient temperature before quenching the reaction by slowly adding saturated aqueous NH₄Cl (15 mL). After separation of the phases the water layer was extracted with DCM (3×15 mL). The combined organic phases were dried (MgSO₄) and concentrated under reduced pressure. Purification of the crude product by chromatography (EtOAc/n-pentane: $1/10 \rightarrow 1/5$) afforded compound 2d (57%, 300.8 mg) as a white foam; $R_f = 0.45$ (EtOAc/*n*-pentane: 4/5); $[a]_D = +39.9$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.42–6.95 (m, 105 H, H arom.), 5.44 (d, ${}^{3}J_{1,2}$ = 3 Hz, 1 H, 1-H), 5.30 (d, ${}^{3}J_{1,2}$ = 3 Hz, 1 H, 1-H), 5.21.5.08 (m, 9 H, 5 1-H, 4CHPh), 5.00 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 4.88–4.70 (m, 7 H), 4.63–4.28 (m, 26 H), 4.20–3.87 (m, 28 H), 3.68–3.46 (m, 15 H) ppm. $^{13}\mathrm{C}$ NMR (75 MHz, CDCl₃): δ = 139.7-138.1 (C arom. quat.), 132.2 (C arom. tert.), 128.9-127.3 (C arom. tert.), 122.9 (quat, C arom.), 98.8, 98.5, 98.4, 98.3 (C-1), 87.23, 87.18 (C_{sp}), 81.5, 81.3, 81.1, 81.0, 80.1, 80.0, 79.6, 79.4, 79.2, 78.9, 78.7, 78.5, 76.1, 76.0, 75.7, 75.6, 75.5, 74.1, 73.9, 73.6, 73.3, 73.1, 73.0, 72.9, 72.2, 72.1, 72.0, 71.8, 71.7, 69.7, 69.6, 63.5 (CH, CH₂) ppm. MALDI-TOF-MS: m/z calcd. for C₁₉₀H₁₉₄O₃₅Na 3060.337 found 3060.281.

Further elution afforde compound **3d** (13%, 66.2 mg); $R_{\rm f} = 0.38$ (EtOAc/*n*-pentane: 4/5); $[a]_{\rm D} = +36.2$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.30-7.00$ (m, 105 H, H arom.), 5.30 (br. s, 2 H, 2 1-H), 5.23 (d, ${}^{3}J_{1,2} = 3$ Hz, 1 H, 1-H), 5.15–4.95 (m, 8 H), 4.91–4.84 (m, 2 H), 4.78–4.60 (m, 8 H), 4.57–4.21 (m, 26 H), 4.14–3.76 (m, 27 H), 3.68–3.38 (m, 15 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 139.6-138.1$ (C arom. quat.), 131.74 (C arom. tert.), 128.6–127.1 (C arom. tert.), 123.0 (C arom. tert.), 99.4, 99.3, 99.0, 98.8, 98.5 (C-1), 89.2, 85.7 (C_{sp}), 81.5, 81.2, 81.1, 80.9, 80.4, 79.9, 79.6, 79.4, 79.3, 79.2, 79.1, 78.9, 78.6, 76.1, 75.9, 75.8, 75.4, 75.2, 74.9, 73.6, 73.5, 73.4, 73.2, 72.9, 72.7, 72.5, 72.1, 72.0, 71.8, 71.6, 69.6, 69.5, 69.3, 68.7 (CH, CH₂) ppm. MALDI-TOF-MS: *m*/*z* calcd. for C₁₉₀H₁₉₄O₃₅Na 3060.337 found 3060.243.

Method B-2: A solution of phenylacetylene (0.11 mL, 0.94 mmol) in PhMe (0.2 mL) under nitrogen at 0 °C was slowly added EtMgBr (0.94 mL, 1 mol L⁻¹ in THF). Then the temperature was adjusted to room temperature and stirring for 30 min. Aldehyde **1** (110 mg, 37.5 µmol) dissolved in PhMe (0.9 mL) was slowly added to the Grignard reagent, followed by stirring for 1.5 h at room temperature. Then quenching and workup as described for method B-1 afforded diastereoisomers **2d** (33%, 37.5 mg) and **3d** (15%, 16.5 mg).

Method B-3: A solution of phenylacetylene (61 μ L, 0.511 mmol) in THF (0.55 mL) under nitrogen at -78 °C was slowly added *n*BuLi (0.32 mL, 1.6 mol L⁻¹ in *n*-hexane). Then stirring for 30 min before slowly adding **1** (100 mg, 34.1 μ mol) dissolved in THF (1 mL). The reaction mixture was left stirring for 1.5 h before increasing to room temperature and stirring for 30 min more. Then quenching and workup as described for method B-1 afforded the diastereoisomers **2d** (53%, 55.3 mg) and **3d** (7 mg, 7%).

Method B-4: A suspension of CeCl₃ (210 mg 0.853 mmol) in THF (2.6 mL) was left stirring for 2 h. Then the suspension was cooled down to -78 °C and was slowly added a solution of Ph-ethynylLi [prepared by mixing phenylacetylene (90 µL, 0.80 mmol) in THF (0.8 mL) with *n*BuLi (0.49 mL, 1.6 molL⁻¹ in *n*-hexane) at -78 °C, for 30 minn]. The mixture was left stirring for 30 min before adding **5** (100 mg, 34.1 µmol) dissolved in THF (1 mL). Then the mixture was stirred at -78 °C for 1.5 h and room temperature for 30 min. Then quenching and workup as described for method B-1 afforded diastereoisomers **2b** (33%, 34.6 mg) and **3b** (9%, 9.1 mg).

Method B-5: A suspension of ZnCl₂ (116.2 mg, 0.85 mmol) in Et₂O (1.7 mL) was cooled down to 0 °C and was added Ph-ethynylLi [prepared by mixing phenylacetylene (97 μ L, 0.87 mmol) in Et₂O (3.3 mL) and *n*BuLi (0.54 mL, 1.6 mol L⁻¹ in *n*-hexane) at -78 °C, for 30 min] followed by stirring for 45 min. Then a solution of **1** (100 mg, 34.1 μ mol) in Et₂O (3.3 mL) was added and the temperature was adjusted to room temperature and the reaction stirred for 2 h. Quenching and workup as described for method B-1 afforded diastereoisomers **2d** (27%, 28.2 mg) and **3d** (22%, 23.2 mg).

 $6^{A}R$ -Methyl- 2^{A-G} , 3^{A-G} , 6^{B-G} -icosakis-O-benzyl- β -cyclodextrin (2a) and 6^AS-Methyl-2^{A-G},3^{A-G},6^{B-G}-icosakis-O-benzyl-β-cyclodextrin (3a): A solution of aldehyde 1 (443 mg, 0.151 mmol) in THF (2.4 mL) under nitrogen at room temperature was slowly added MeMgBr (0.503 mL, 3 mol L^{-1} in Et₂O). The reaction mixture was left stirring for 2 h at room temperature before slowly adding saturated aqueous NH₄Cl (15 mL) at 0 °C. Then the phases were separated and the water layer was extracted with DCM $(3 \times 15 \text{ mL})$. The combined organic layers were dried (MgSO₄) and concentrated in vacuo. Purification on a silica column (EtOAc/n-pentane: 1/4) afforded compound 2a (40%, 180.2 mg) as a white foam; $R_{\rm f} = 0.30$ (EtOAc/*n*-pentane: 3/5); $[a]_D = +36.1$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.34–7.13 (m, 100 H, H arom.), 5.39 5.37 (m, 2 H, 2 1-H), 5.35 (d, ${}^{3}J_{1,2}$ = 4 Hz, 1 H, 1-H), 5.27–5.07 (m, 9 H), 5.02 (d, ${}^{3}J_{1,2}$ = 4 Hz, 1 H, 1-H), 4.88–4.73 (m, 9 H) 4.64–4.37 (m, 25 H), 4.19–3.98 (m, 27 H), 3.73–3.51 (m, 13 H), 3.42 (dd, ${}^{3}J_{2.1}$ = 4, ${}^{3}J_{2,3}$ = 9 Hz, 1 H, 2-H), 1.05 (d, ${}^{3}J_{7,6}$ = 6 Hz, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 139.7–138.3 (C arom. quat.), 128.6-127.2 (C arom. tert.), 99.3, 98.9, 98.7, 98.6, 98.0 (C-1), 81.5, 81.4, 81.1, 80.4, 80.3, 80.0, 79.7, 79.5, 79.4, 79.2, 78.8, 78.2, 78.0, 76.2, 76.0, 75.6, 74.9, 74.4, 73.8, 73.6, 73.4, 73.1, 72.9, 72.7, 71.2, 72.0, 71.9, 71.8, 71.7, 71.2, 69.5, 69.3, 66.8 (CH, CH₂); 17.1 (CH₃) ppm. MALDI TOF-MS: *m/z* calcd. for C₁₈₃H₁₉₂O₃₅K 2988.3 found 2988.2.

Further elution afforded compound **3a** (41 %, 183.7 mg); $R_{\rm f} = 0.23$ (EtOAc/*n*-pentane: 3/5); $[a]_{\rm D} = +34.7$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.25$ ppm. 7.01 (m, 100 H, H arom.), 5.54–5.49 (m, 2 H, 2 H-1), 5.29–5.08 (m, 5 H), 4.97–4.88 (m, 4 H), 4.79–4.67 (m, 7 H), 4.64–4.30 (m, 26 H), 4.16–3.78 (m, 28 H), 3.70–3.39 (m, 15 H), 2.72–2.65 (m, 2 H), 1.06 (d, 3 H, $^{3}J_{7,6}$ 6 Hz, CH₃), ¹³C NMR (75 MHz, CDCl₃): $\delta = 139.7–139.1$ (C arom. quat.), 128.6–127.1 (C arom. tert.), 99.9, 98.9, 98.7, 98.5, 98.2, 97.8, 97.5 (C-1), 82.1, 81.6, 81.4, 81.0, 80.8, 79.8, 79.6, 79.5, 78.9, 78.8, 77.5, 76.0, 75.8, 75.2, 75.0, 73.7, 73.6, 73.5, 73.1, 73.0, 72.8, 72.0, 71.7, 71.6, 69.7, 69.6, 69.4, 69.2, 68.6, 63.9 (CH, CH₂); 20.7 (CH₃) ppm. MALDI TOF-MS: *m*/*z* calcd. for C₁₈₃H₁₉₂O₃₅K 2988.288 found 2988.423.

 $6^{A}R$ -(2-Pyridyl)- 2^{A-G} , 3^{A-G} , 6^{B-G} -icosakis-*O*-benzyl- β -cyclodextrin (2 g) and $6^{A}S$ -(2-Pyridyl)- 2^{A-G} , 3^{A-G} , 6^{B-G} -icosakis-*O*-benzyl- β -cyclodextrin (3g): A solution of 2-pyridylMgBr was prepared by slowly adding *i*PrMgCl (4.40 mL, 2 mol L⁻¹ in THF) to a solution of 2bromopyridine (0.848 mL, 8.806 mmol) in THF (7.3 mL) under nitrogen at room temperature. The obtained reaction mixture was left

stirring for 14 h at this temperature. Then the solution of Grignard reagent was cooled down to -78 °C and was slowly added a solution of aldehyde 1 (1.62 g, 0.550 mmol) in THF (5.5 mL). The reaction mixture was stirred at -78 °C for 1 h before increasing to room temperature and stirring for 2 h before quenching by slowly adding H₂O (25 mL) at 0 °C. Then the layers were separated and the water phase was extracted with DCM (3×40 mL). The combined organic phases were dried (MgSO₄) and concentrated in vacuo. Purification of the crude product on a silica column (EtOAc/n-pentane: $1/9 \rightarrow 1/$ 4) afforded compound **2g** (64%, 1.06 g) as a white foam; $R_{\rm f} = 0.26$ (EtOAc/*n*-pentane: 1/3); $[a]_{D} = +40.2$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 8.81 (d, ³J_{H,H} = 5 Hz, 1 H, H arom.), 7.61– 7.55 (m, 1 H, H arom.), 7.49-7.46 (m, 1 H, H arom.), 7.34-7.13 (m, 101 H, H arom.), 5.84 (d, ${}^{3}J_{1,2} = 3$ Hz, 1 H, 1-H), 5.47 (d, ${}^{3}J_{1,2}$ = 3 Hz, 1 H, 1-H), 5.36 (d, ${}^{3}J_{1,2}$ = 3 Hz, 1 H, 1-H), 5.30 (d, ${}^{3}J_{1,2}$ = 3 Hz, 1 H, 1-H), 5.26–5.03 (m, 9 H), 4.95 (d, ${}^{3}J_{1,2}$ = 3 Hz, 1 H, 1-H), 4.88-4.71 (m, 8 H), 4.62-4.27 (m, 28 H), 4.21-4.01 (m, 25 H), 3.81 (d, ${}^{2}J_{H,H}$ = 12 Hz, 1 H), 3.71–3.46 (m, 11 H), 3.23 (dd, ${}^{3}J_{2,1} = 3$, ${}^{3}J_{2,3} = 9$ Hz, 1 H, 2-H) ppm. ${}^{13}C$ NMR (75 MHz, $CDCl_3$): $\delta = 159.6$ (C arom. quat.), 148.1 (C arom. tert.), 139.7– 138.3 (C arom. quat.), 136.3 (C arom. tert.), 128.6-127.2 (C arom. tert.), 122.5, 122.4 (C arom. tert.), 99.1, 99.0, 98.9, 98.7, 98.3, 97.6 (C-1), 81.5, 81.3, 80.8, 80.4, 80.0, 79.7, 79.4, 79.3, 78.9, 78.8, 78.7, 78.3, 78.0, 77.6, 76.3, 75.8, 75.7, 75.3, 73.6, 73.5, 73.4, 73.1, 73.0, 72.4, 72.0, 71.8, 71.7, 69.8, 69.6, 69.5, 69.1 (CH, CH₂) ppm. MALDI-TOF-MS: *m/z* calcd. for C₁₈₇H₁₉₃NO₃₅Na 3014.342 found 3014.910.

Further elution afforded an 85% pure mixture of **3g** (9%, 150 mg); $R_{\rm f} = 0.18$ (EtOAc/*n*-pentane: 1/3). MALDI-TOF-MS: *m*/*z* calcd. for C₁₈₇H₁₉₃NO₃₅Na 3014.3 found 3014.7.

 $6^{A}(R)$ -(4-Fluorophenyl)- β -cyclodextrin: Compound 2f (392.2 mg, 0.129 mmol) and TFA (cat) were dissolved in 2-methoxyethanol (85 mL) under nitrogen. Palladium on carbon (10%, 200 mg) was added, and a hydrogen atmosphere (1 atm) was introduced. Then the reaction mixture was left stirring for 20 h at room temperature before filtration through a pad of Celite. Concentration of the filtrate afforded the desired product (74%, 117 mg) as a white solid; $R_{\rm f} = 0.69 \ (i \text{PrOH/MeOH/H}_2\text{O: 5/4/3}); \ [a]_{\rm D} = +151.8 \ (c = 0.5,$ MeOH). ¹H NMR [300 MHz, (CD₃O)₂SO₂]: δ = 7.52 (dd, ⁴J_{H,F} = 6, ${}^{3}J_{H,H}$ = 8 Hz, 2 H, H arom.), 7.08–7.02 (m, 2 H, H arom.), 6.08 (d, ${}^{3}J_{H,H}$ = 5 Hz, 1 H), 5.81- 5.63 (m, 10 H), 5.48 (d, ${}^{3}J_{H,H}$ = 7 Hz, 1 H), 5.13 (d, ${}^{3}J_{1,2} = 4$ Hz, 1 H, 1-H), 4.92–4.77 (m, 7 H), 4.59-4.40 (m, 5 H), 4.03-3.93 (m, 2 H), 3.63-3.21 (m, 40 H), 3.01-2.94 (m, 1 H), 2.71–2.65 (m, 1 H) ppm. $^{13}\mathrm{C}$ NMR [75 MHz, $(CD_3O)_2SO_2$]: $\delta = 162.0$ (d, ${}^1J_{C,F} = 220$ Hz, C arom. quat.), 137.3 (d, ${}^{4}J_{C,F} > = 0$ Hz, C arom. quat.), 131.3 (d, ${}^{3}J_{C,F} = 8$ Hz, C arom. tert.), 114.6 (d, ${}^{2}J_{C,F}$ = 21 Hz, C arom. tert.), 102.7, 102.5, 102.4, 101.9 (C-1), 82.4, 82.3, 82.2, 81.9, 81.7, 74.6, 74.5, 73.8, 73.6, 73.5, 73.4, 73.3, 73.1, 73.0, 72.8, 72.7, 72.4, 70.3, 60.6, 60.4 (CH) ppm. Ms (ES) *m*/*z* calcd. C₄₈H₇₃FO₃₅Na 1251.4 found 1251.7.

2^{A-G},3^{A-G},6^{B-G}-Icosakis-*O*-benzyl-6^A*R*-(4-fluorophenyl)-(phenylethynyl)-β-cyclodextrin (9e): A solution of phenylacetylene (0.66 mL, 5.85 mmol) in THF (1.3 mL) under nitrogen at 0 °C was slowly added EtMgBr (5.73 mL, 1 mol L⁻¹ in THF). Then the temperature was adjusted to room temperature and the stirring was continued for 30 min. Then the solution of Grignard reagent was cooled down to -10 °C and a solution of ketone (709 mg, 0.243 mmol) in THF (7 mL) was slowly added. The reaction mixture was left stirring at this temperature for 2 h before increasing to room temperature and stirring for 1 h more. The reaction was quenched at 0 °C by slowly adding saturated aqueous NH₄Cl (15 mL). Then the phases were separated and the water phase was extracted with DCM

FULL PAPER

 $(3 \times 15 \text{ mL})$. The combined organic phases were dried (MgSO₄) and concentrated under reduced pressure. Purification of the crude product on a silica column (EtOAc/n-pentane: $1/9 \rightarrow 1/3$) afforded compound **9e** (90%, 659.4 mg) as a light yellow foam; $R_{\rm f} = 0.39$ (EtOAc/*n*-pentane: 2/3); $[a]_D = +36.4$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.74 (dd, ⁴*J*_{H,F} = 5, ³*J*_{H,H} = 8 Hz, 2 H, H arom.), 7.49-7.46 (m, 2 H, H arom.), 7.37-6.87 (m, 105 H, H arom.), 5.98 (br. s, 1 H, OH), 5.81 (d, ${}^{3}J_{1,2} = 4$ Hz, 1 H, 1-H), 5.43– 5.28 (m, 4 H, 4CHPh), 5.07 (d, ${}^{3}J_{1,2} = 3$ Hz, 1 H, 1-H), 5.01 (d, ${}^{2}J$ = 12 Hz, 1 H, CHPh), 4.95–4.54 (m, 16 H), 4.50–3.91 (m, 40 H), 3.87-3.79 (m, 5 H), 3.76-3.73 (m, 2 H), 3.68-3.54 (m, 8 H), 3.46-3.28 (m, 5 H), 3.10 (d, ${}^{2}J_{H,H}$ = 10 Hz, 1 H), 2.82 (d, ${}^{2}J_{H,H}$ = 11 Hz, 1 H), 2.60–2.49 (m, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 162.3 (d, ${}^{1}J_{C,F}$ = 245 Hz, C arom. quat.), 140.6 (d, ${}^{4}J_{C,F}$ = 2 Hz, C arom. quat.), 140.2-138.1 (C arom. quat.), 132.6 (C arom. tert.), 129.5 (d, ${}^{3}J_{C,F}$ = 7 Hz, C arom. tert.), 129.2–126.8 (C arom. tert.), 123.7 (C arom. quat.), 114.9 (d, ${}^{2}J_{C,F}$ = 20 Hz, C arom. tert.), 101.2, 100.7, 100.1, 98.5, 97.5 (C-1), 88.9 (C_{sp}), 82.4, 82.0, 81.6, 81.4, 81.2, 80.8, 80.4, 79.9, 79.6, 79.0, 78.5, 76.6, 76.4, 76.2, 76.8, 75.2, 74.2, 73.8, 73.6, 73.5, 73.4, 73.3, 73.1, 73.0, 72.5, 72.4, 72.2, 72.0, 71.4, 71.1, 69.8, 69.7, 69.3, 67.5 (CH, CH₂) ppm. ¹⁹F NMR (300 MHz, CDCl₃): $\delta = -114.04$ ppm. MALDI-TOF-MS: *m*/*z* calcd. for C₁₉₆H₁₉₇FO₃₅Na 3154.4 found 3154.3.

 $2^{A-G}, 3^{A-G}, 6^{B-G}-I cosak is-{\it O}-benzyl-6^{A}S-(4-fluorophenyl)-(phenyleth-fluorophenyleth-fluorophenyl)-(phenyleth-fluorophenyle$ ynyl)-β-cyclodextrin (8e): To a solution of the ketone (438 mg, 0.144 mmol) in THF (5.6 mL) at -10 °C under nitrogen atmosphere was slowly added (4-fluorophenyl)magnesium bromide (2.4 mL in THF). Then the reaction mixture was left stirring for 1.5 h before adjusting to 0 °C and slowly adding saturated aqueous NH₄Cl (10 mL). The layers were separated and the water phase was extracted with DCM (3×10 mL). The combined organic layers were dried (MgSO₄) and concentrated in vacuo. Purification by chromatography (EtOAc/n-pentane: $1/9 \rightarrow 1/4$) afforded compound 8e (68%, 308.1 mg) as alight yellow foam; $R_f = 0.39$ (EtOAc/npentane: 2/3; $[a]_D = +36.1$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.83 (dd, ${}^{4}J_{H,F}$ = 5, ${}^{3}J_{H,H}$ = 8 Hz, 2 H, H arom.), 7.78-7.73 (m, 1 H, H arom.), 7.58-7.55 (m, 2 H, H arom.), 7.45-6.96 (m, 104 H, H arom.), 6.07 (br. s, 1 H, 1-H), 5.89 (d, ${}^{3}J_{1,2}$ = 4 Hz, 1 H, 1-H), 5.52–5.37 (m, 4 H), 5.16 (d, ${}^{3}J_{1,2} = 3$ Hz, 1 H, 1-H), 5.10 (d, ²*J* = 12 Hz, 1 H, CHPh), 4.59–4.37 (m, 76 H), 3.32 (d, ${}^{2}J_{H,H}$ = 10 Hz, 1 H), 2.91 (d, ${}^{2}J_{H,H}$ = 11 Hz, 1 H), 2.69–1.42 (m, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 162.3 (d, ¹J_{C,F} = 245 Hz, C arom. quat.), 140.7 (d, ${}^{4}J_{C,F}$ = 2 Hz, C arom. quat.), 140.2–138.1 (C arom. quat.), 132.4 (C arom. tert.), 129.5 (d, ${}^{3}J_{C,F} = 7$ Hz, C arom. tert.), 129.2-126.8 (C arom. tert.), 122.8 (C arom. quat.), 114.9 (d, ${}^{2}J_{C,F}$ = 20 Hz, C arom. tert.), 101.2, 100.8, 100.1, 98.6, 97.6, 97.3, (C-1); 88.9 (C_{sp}), 82.4, 82.1, 81.6, 81.5, 81.3, 80.8, 80.5, 80.0, 79.6, 79.0, 78.5, 76.6, 76.4, 76.3, 75.9, 75.3, 74.5, 74.2, 73.8, 73.7, 73.5, 73.3, 73.2, 73.1, 73.0, 72.5, 72.4, 72.2, 72.1, 71.5, 71.4, 71.2, 69.8, 69.7, 69.3, 69.0, 67.5 (CH, CH₂) ppm. ¹⁹F NMR (300 MHz, CDCl₃): δ = -114.03 ppm. MALDI-TOF-MS: *m*/*z* calcd. for C₁₉₆H₁₉₇FO₃₅Na 3154.358 found 3154.390.

2^{A-G},**3^{A-G}**,**6^{B-G}**-**Icosakis**-*O*-benzyl-**6^A**-(**4**-fluorophenyl)methyl-βcyclodextrin (8c and 9c): To a solution of the ketone (399 mg, 0.135 mmol) in THF (5.3 mL) under nitrogen atmosphere at room temperature was slowly added (4-fluorophenyl)magnesium bromide (2.3 mL in THF). The reaction mixture was left stirring for 3 h adjusting the temperature to 0 °C followed by slowly addition of saturated NH₄Cl (10 mL). Then the phases were separated and the aqueous phase was extracted with DCM (3×10 mL). The combined organic layers were dried (MgSO₄) and concentrated in vacuo. Purification of the crude product on a silica column (EtOAc/*n*-pentane: 1/10→1/7) afforded compound 9c (15%, 65.1 mg) as a white foam; $R_f = 0.48$ (EtOAc/*n*-pentane: 1/2). MALDI-TOF-MS: *m*/*z* calcd. for C₁₈₉H₁₉₅F5₃₅Na 3066.3 found 3066.4.

Further elution afforded compound 8c (61%, 252.3 mg); $R_{\rm f} = 0.46$ (EtOAc/*n*-pentane: 1/2); $[a]_D = +30.7$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.35–6.98 (m, 102 H, H arom.), 6.87–6.81 (m, 2 H, H arom.), 5.73 (d, ${}^{3}J_{1,2} = 4$ Hz, 1 H, 1-H), 5.32–5.37 (m, 2 H, 2CHPh), 5.12 (d, ${}^{3}J_{1,2}$ = 3 Hz, 1 H, 1-H), 4.99–4.90 (m, 2 H, 2CHPh), 4.84-4.70 (m, 10 H), 4.61-4.52 (m, 7 H), 4.48-4.28 (m, 19 H), 4.23–4.80 (m, 28 H), 3.71–3.25 (m, 17 H), 1.39 (s, 3 H, Me) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 161.7 (d, ¹*J*_{C,F} = 243 Hz, C arom. quat.), 140.1–138.5 (C arom. quat.), 138.4 (d, ${}^{4}J_{C,F}$ = 3 Hz, C arom. quat.), 128.8–126.9 (C arom. tert.), 114.6 (d, ${}^{2}J_{C,F}$ = 20 Hz, C arom. tert.), 100,6, 100.4, 99.9, 99.1, 98.7, 97.6 (C-1), 82.1, 82.0, 81.4, 81.1, 81.0, 80.8, 80.4, 79.5, 79.2, 79.0, 77.6, 77.2, 76.5, 76.3, 76.1, 75.7, 75.2, 74.1, 73.7, 73.6, 73.3, 73.1, 72.4, 72.2, 72.1, 71.4, 71.2, 69.8, 69.4, 69.3, 69.1, 69.0, 67.9 (CH, CH₂); 32.3 (CH₃) ppm. ¹⁹F NMR (300 MHz, CDCl₃): δ = -116.07 ppm. MALDI-TOF-MS: m/z calcd. for C189H195FO35Na 3068.343 found 3068.387.

6^A-Allylphenyl-2^{A-G},3^{A-G},6^{B-G}-icosakis-O-benzyl-β-cyclodextrin (8d): A solution of ketone 7d (210 mg, 69.7 µmol) in Et₂O (3.1 mL) at room temperature under nitrogen was slowly added allylmagnesium bromide (1.59 mL) [prepared by adding a solution of allyl bromide (286 µL, 3.3 mmol) in Et₂O (3.5 mL) to a suspension of Mg turnings (160.4 mg, 6.6 mmol) in Et₂O (1.2 mL) under nitrogen at room temperature, then stirring for 90 min before use]. The reaction mixture was left stirring for 3 h at room temperature before adjusting the temperature to 0 °C and slowly adding saturated aqueous NH₄Cl (10 mL). Then the phases were separated and the water phase was extracted with DCM (3×10 mL). The combined organic phases were dried (MgSO₄) and concentrated in vacuo. Purification on a silica gel (EtOAc/n-pentane: $1/10 \rightarrow 1/5$) afforded compound 8d (41%, 86.2 mg) as a pure diastereoisomer; $R_{\rm f} = 0.28$ (EtOAc/*n*-pentane: 3/5); $[a]_D = +28.4$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.35–6.89 (m, 105 H, H arom.) 5.76 (d, ${}^{3}J_{1,2} = 4$ Hz, 1 H, 1-H), 5.63–5.54 (m, 1 H, CH=CH₂), 5.34–5.28 (m, 2 H, 2CHPh), 5.15-4.95 (m, 7 H), 4.87-4.72 (m, 8 H), 4.68-4.58 (m, 5 H), 4.53-4.25 (m, 25 H), 4.14-3.94 (m, 23 H), 3.76-3.32 (m, 17 H), 2.93–2.86 (m, 1 H, CH₂CH =), 2.76–2.69 (m, 1 H, CH₂CH =) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 144.4 (C arom. quat.), 139.9–138.3 (C arom. quat.), 134.7 (CH=CH₂), 128.6–126.9 (C arom. tert.), 117.5 (CH=CH₂), 100.2, 99.8, 98.7, 98.3, 98.1 (C-1), 82.1, 81.8, 81.2, 81.0, 80.8, 80.5, 80.3, 79.5, 79.3, 78.9, 76.4, 76.1, 75.8, 74.7, 74.3, 73.5, 73.4, 73.0, 72.5, 72.2, 71.9, 71.7, 71.6, 71.2, 69.9, 69.6, 69.4, 69.3, 68.9 (CH, CH₂) ppm. MALDI-TOF-MS: m/z calcd. for C₁₉₁H₁₉₈FO₃₅Na 3075.4 found 3075.4.

2^{A-G},3^{A-G},6^{B-G}-Icosakis-O-benzyl-6^A-(ethynylmethyl)-β-cyclodextrin (**8a and 9a):** To a solution of the ketone **7a** (100 mg, 33.9 μmol) in THF (0.2 mL) under nitrogen at -78 °C was slowly added ethynylmagnesium bromide (1.69 mL, 0.5 mol L⁻¹ in THF). The reaction mixture was left stirring at this temperature for 3 h before increasing to room temperature and stirring for additional 1 h. The reaction was quenched by adjusting the temperature to 0 °C and slowly adding saturated aqueous NH₄Cl (5 mL). Then the phases were separated and the water phase was extracted with DCM (3×5 mL). The combined organic phases were dried (MgSO₄) and concentrated in vacuo. Purification on a silica gel (EtOAc/*n*-pentane: 1/3) afforded compounds **8a** an **9a** (86%, 86.7 mg) as a mixture of diastereoisomers (4/1); $R_f = 0.38$ (EtOAc/*n*-pentane: 3/5). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.29$ –6.93 (m, H arom.), 5.62 (d, ³J_{1,2} = 3 Hz, 1-H), 5.53 (d, ³J_{1,2} = 3 Hz, 1-H), 5.32 (d, ³J_{1,2} = 3 Hz,

1-H), 5.26 (d, ${}^{2}J$ = 11 Hz, CHPh), 5.22–5.04 (m), 5.02 (d, ${}^{3}J_{1,2}$ = 3 Hz, 1-H), 4.98 (d, ${}^{3}J_{1,2}$ = 3 Hz, 1-H), 4.90–4.71 (m), 4.66–4.55 (m), 4.52–4.29 (m), 4.25–3.94 (m), 3.91–3.71 (m), 3.67–3.35 (m), 2.42 (s, OH), 2.08 (s, OH), 1.47 (s, CH₃), 1.31 (s, CH₃) ppm. 13 C NMR (75 MHz, CDCl₃): δ = 139.9–138.0 (C arom. quat.), 128.6–127.0 (C arom. tert.), 99.8, 99.3, 98.9, 98.7, 98.4, 98.3, 98.1, 97.7, 97.6, 97.3 (C-1), 87.5, 85.4 (C_{sp}), 82.1, 81.6, 81.4, 81.2, 81.1, 80.6, 80.3, 80.0, 79.3, 79.2, 79.1, 76.4, 76.3, 76.1, 75.7, 75.5, 73.7, 73.4, 73.2, 73.0, 72.7, 72.5, 72.2, 72.1, 71.9, 71.6, 71.5, 71.3, 70.2, 70.0, 69.9, 69.6, 69.3, 69.0 (CH, CH₂, C_{sp}), 29.2, 26.0 (CH₃) ppm. MALDI-TOF-MS: *m*/*z* calcd. for C₁₈₅H₁₉₂O₃₅Na 2996.314 found 2996.364.

 $2^{A-G}, 3^{A-G}, 6^{B-G}\text{-}Icosakis\text{-}\textit{O}\text{-}benzyl\text{-}6^{A}\text{-}(methylethynyl)\text{-}\beta\text{-}cyclodextrines and a straight of the second seco$ (8b and 9b): To a solution of the ketone 7a (258 mg, 87.4 μ mol) in THF (1.5 mL) under nitrogen atmosphere at room temperature was slowly added PhMgBr (3.3 mL) [prepared by adding a solution of PhBr (0.7 mL, 6.60 mmol) in THF (7 mL) to a suspension of Mg turnings (481 mg, 19.8 mmol) in THF (2.3 mL) under nitrogen at room temperature, then stirring for 3 h before use]. The reaction mixture was left stirring at the same temperature for 2 h before quenching by slowly adding saturated aqueous NH₄Cl (5 mL). Then the phases were separated and the aqueous phase was extracted with DCM $(3 \times 5 \text{ mL})$. The combined organic phases were dried (MgSO₄) and concentrated in vacuo. Purification on silica gel (EtOAc/*n*-pentane: $1/10 \rightarrow 1/3$) afforded compounds **8b** and **9b** (81%, 213.1 mg) as a mixture of diastereoisomers (4/1); $R_f = 0.34$ (EtOAc/*n*-pentane: 3/5). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.44$ – 6.97 (m, H arom.), 5.75 (d, ${}^{3}J_{1,2} = 4$ Hz, 1-H), 5.48 (d, ${}^{3}J_{1,2} = 3$ Hz, 1-H), 5.33–5.16 (m), 5.12 (d, ${}^{3}J_{1,2} = 3$ Hz, 1-H), 5.03–4.90 (m), 4.83-4.69 (m), 4.63-4.30 (m), 4.26-4.14 (m), 4.12-3.92 (m), 3.81-3.67 (m), 3.61-3.50 (m), 3.46-3.20 (m), 1.58 (s, CH₃), 1.43 (s, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 147.6, 146.4 (C arom. quat.), 139.9-130.1 (C arom. quat.), 128.5-126.7 (C arom. tert.), 100.7, 100.1, 99.5, 99.1, 98.9, 98.8, 98.6, 98.4, 97.3, 97.2 (C-1), 82.5, 81.7, 81.3, 81.2, 80.9, 80.7, 80.6, 80.4, 80.2, 79.8, 79.5, 79.2, 79.0, 78.8, 78.6, 77.9, 77.3, 76.2, 76.1, 75.9, 75.8, 75.5, 75.3, 74.7, 74.6, 74.5, 73.8, 73.5, 73.4, 73.3, 73.0, 72.9, 72.8, 72.5, 72.2, 72.1, 71.9, 71.7, 71.4, 71.3, 71.1, 71.0, 69.6, 69.5, 69.1, 69.0, 68.8, 68.5, 67.5 (CH, CH₂), 31.2, 30.4 (CH₃) ppm. MALDI-TOF-MS: *m*/*z* calcd. for C₁₈₉H₁₉₆O₃₅Na 3048.3 found 3048.31.

(S)-(4-Fluorophenyl)[(2R,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxy-tetrahydro-2H-pyran-2-yl]methanol and (R)-(4-Fluorophenyl)[(2R,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxy-tetrahydro-2H-pyran-2-yl]methanol: To a solution of aldehyde 4 (296 mg, 0.64 mmo) in THF (5.1 mL) under nitrogen at room temperature was slowly added (4-fluorophenyl)magnesium bromide (3.4 mL in THF). The reaction mixture was left stirring at this temperature for 1 h before adjusting the temperature to 0 °C and slowly adding saturated aqueous NH₄Cl (10 mL). The two phases were separated and the water phase was extracted with DCM (4×10 mL). The combined organic layers were dried (MgSO₄) and concentrated in vacuo. Purification on a silica column (EtOAc/n-pentane: $1/20 \rightarrow 1/20$ 12) afforded the *R*-isomer (41%, 146 mg) as a yellow syrup; $R_{\rm f}$ = 0.45 (EtOAc/*n*-pentane: 1/3); $[a]_D = +20.5$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.38–7.25 (m, 17 H, H arom.), 7.00– 6.93 (m, 2 H, H arom.), 5.01-4.94 (m, 3 H, 6-H, 2CHPh), 4.84 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 4.76 (d, ${}^{2}J$ = 12 Hz, 1 H, CHPh), 4.73 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 4.62 (d, ${}^{2}J$ = 12 Hz, 1 H, CHPh), 4.47 (d, ${}^{3}J_{1,2}$ = 4 Hz, 1 H, 1-H), 4.02–3,96 (m, 1 H, 3-H), 3.75–3.65 (m, 2 H, 4-H, 5-H), 3.52 (dd, ${}^{3}J_{2,1} = 4$, ${}^{3}J_{2,3} = 10$ Hz, 1 H, 2-H), 2.84 (s, 3 H, OCH₃), 2.33 (br. s, OH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 162.0$ (d, ${}^{1}J_{C,F} = 243$ Hz, C arom. quat.), 138.7, 138.3, 138.1 (C arom. quat.), 137.7 (d, ${}^{4}J_{C,F}$ = 3 Hz, C arom. quat.), 128.6127.5 (C arom. tert.), 114.6 (d, ${}^{2}J_{C,F}$ = 21 Hz, C arom. tert.), 98.1 (C-1), 82.4 (C-3), 79.9 (C-2), 77.7, 75.9, 75.2, 73.53, 73.46, 70.3 (CH, CH₂), 54.8 (OCH₃) ppm. Ms (ES) m/z calcd. for C₃₄H₃₅FO₆Na 581.2 found 581.2. Further elution afforded the Sisomer (26%, 94 mg) as a light yellow syrup; $R_{\rm f} = 0.30$ (EtOAc/npentane: 1/3; $[a]_D = +37.9$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.37–7.23 (m, 17 H, H arom.), 7.00–6.93 (m, 2 H, H arom.), 5.02 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 5.01 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 4.79–4.76 (m, 3 H, 6-H, 2CHPh), 4.61 (d, ${}^{2}J$ = 12 Hz, 1 H, CHPh), 4.60 (d, ${}^{2}J$ = 12 Hz, 1 H, CHPh), 4.48 (d, ${}^{3}J_{1,2}$ = 4 Hz, 1 H, 1-H), 4.07–4.01 (m, 3 H, 3-H), 3.82–3.74 (m, 2 H, 5-H, OH), 3.49–3.43 (m, 2 H, 2-H, 4-H), 3.08 (s, 3 H, OCH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 162.4 (d, ¹J_{C,F} = 244 Hz, C arom. quat.), 138.5, 138.0, 137.6 (C arom. quat.), 136.6 (d, ${}^{4}J_{C,F}$ = 3 Hz, C arom. quat.), 129.2 (d, ${}^{3}J_{C,F}$ = 8 Hz, C arom. tert.), 128.7–127.8 (C arom. tert.), 114.6 (d, ${}^{2}J_{C,F}$ = 21 Hz, C arom. tert.), 97.7 (C-1), 82.4, 81.1, 80.4, 75.7, 75.1, 74.9, 73.4, 71.6 (CH, CH₂), 55.1 (OCH₃) ppm. Ms (ES) *m*/*z* calcd. for C₃₄H₃₅FO₆Na 581.2 found 581.3.

(2R,3S,4S,5R,6S)-2-[(S)-4(-Fluorophenyl)(hydroxy)methyl]-6-methoxy-tetrahydro-2H-pyran-3,4,5-triol (5b): To a solution of the benzylated sugar (160 mg, 0.286 mmol) in MeOH (10 mL) under nitrogen was added Pd/C (10%, 96 mg) before degassing the mixture and introducing a hydrogen atmosphere (1 atm). The reaction mixture was left stirring at room temperature for 7 h before filtering the mixture through a pad of Celite. Concentration of the filtrate and purification on a pad of silica (EtOAc/MeOH: 20/1) afforded compound **5b** (99%, 82 mg) as a white solid; $R_{\rm f} = 0.18$ (EtOAc/ MeOH: 20/1). ¹H NMR (300 MHz, CD₃OD): δ = 7.45 (dd, ⁴J_{H,F} $= 6, {}^{3}J_{H,H} = 8 \text{ Hz}, 2 \text{ H}, \text{ H arom.}), 7.07-7.01 \text{ (m, 2 H, H arom.)},$ 5.07 (br. s, 1 H, 6-H), 4.59 (d, ${}^{3}J_{1,2} = 4$ Hz, 1 H, 1-H), 3.68–3.58 (m, 2 H, 3-H, 4-H), 3.53-3.50 (m, 1 H, 5-H), 3.46-3.42 (m, 1 H, 2-H) ppm. ¹³C NMR (75 MHz, CD₃OD): δ = 163.3 (d, ¹J_{CF} = 242 Hz, C arom. quat.), 140.2 (d, ${}^{4}J_{C,F}$ = 3 Hz, C arom. quat.), 129.2 (d, ${}^{3}J_{C,F}$ = 8 Hz, C arom. tert.), 115.3 (d, ${}^{2}J_{C,F}$ = 22 Hz, C arom. tert.), 101.2 (C-1), 76.0, 75.5,73.4, 71.5, 70.9 (CH), 54.9 (OCH₃) ppm. MS (ES) m/z calcd. for C₁₃H₁₇FO₆Na 311.1 found 311.1.

(2*R*,3*S*,4*S*,5*R*,6*S*)-2-[(*R*)-(4-Fluorophenyl)(hydroxy)methyl]-6-methoxy-tetrahydro-2*H*-pyran-3,4,5-triol (5a): The benzylated sugar (74 mg, 0.132 mmol) was debenzylated in the same way as for 5b to afford 5a (100%, 38 mg); $R_f = 0.18$ (EtOAc/MeOH: 20/1). ¹H NMR (300 MHz, CD₃OD): $\delta = 7.47-7.43$ (m, 2 H, H arom.), 7.06–7.02 (m, 2 H, H arom.), 4.87 (d, ³J_{6.5} = 5 Hz, 1 H, 6-H), 4.57 4.59 (d, ³J_{1,2} = 4 Hz, 1 H, 1-H), 3.73 (dd, ³J_{5.6} = 5, ³J_{5.4} = 10 Hz, 1 H; 5-H), 3.64–3.58 (m, 1 H, 3-H), 3.23–3.19 (m, 4 H, 2-H, OCH₃), 3.13–3.06 (m, 1 H, 4-H) ppm. ¹³C NMR (75 MHz, CD₃OD): $\delta = 163.3$ (d, ¹ $J_{C,F} = 242$ Hz, C arom. quat.), 138.3 (d, ⁴ $J_{C,F} = 3$ Hz, C arom. quat.), 130.8 (d, ³ $J_{C,F} = 8$ Hz, C arom. tert.), 115.3 (d, ² $J_{C,F} = 22$ Hz, C arom. tert.), 101.2 (C-1), 75.2, 75.1, 74.4, 74.3, 73.3 (CH), 55.7 (OCH₃) ppm. MS (ES) *m*/*z* calcd. for C₁₃H₁₇FO₆Na 311.1 found 311.1.

(2*R*,4*S*,4*aR*,6*S*,7*R*,8*R*,8*aS*)-4-(4-Fluorophenyl)-6-methoxy-2-phenylhexahydropyrano[3,2-*d*][1,3]dioxine-7,8-diol (6): To a solution of 5b (68 mg, 0.236 mmol) and *p*-toluenesulfonic acid monohydrate (4.49 mg, 23.6 µmol) in DMF (3 mL) under nitrogen was added PhCH(OMe)₂ (0.248 mL, 1.65 mmol). The reaction mixture was heated to 100 °C and left stirring for 18 h. Then an additional amount of PhCH(OMe)₂ (0.48 mL, 3.304 mmol) was added and the reaction was allowed continue at the same temperature for 24 h. The reaction mixture was then added PhCH(OMe)₂ (0.248 mL, 1.625 mmol) and the reaction mixture was stirred for 5 h more at 100 °C before cooling it down to room temperature and neutralized by adding Et₃N. The solvent was removed under reduced pressure. Purification of the crude product on a silica column (EtOAc/npentane: $1/3 \rightarrow 1/1$) afforded the benzylidene 6 (27%, 23.8 mg) as a white solid; $R_{\rm f} = 0.68$ (EtOAc); $[a]_{\rm D} = +37.5$ (c = 0.27, CHCl₃). ¹H NMR (300 MHz, CD₃OD): δ = 7.83–7.79 (m, 2 H, H arom.), 7.49– 7.46 (m, 2 H, H arom.), 7.36-7.33 (m, 3 H, H arom.), 7.17-7.11 (m, 2 H, H arom.), 5.60 (s, 1 H, CHPhO₂), 5.40 (d, ${}^{3}J_{6,5} = 5$ Hz, 1 H,, 6-H), 4.89 (d, ${}^{3}J_{1,2}$ = 4 Hz, 1 H, 1-H), 4.41–4.36 (m, 1 H, 5-H), 3.93-3.82 (m, 2 H, 4-H, 3-H), 3.62-3.58 (m, 1 H, 2-H), 3.51 (s, 3 H, OCH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 163.8 (d, ¹J_{C,F} = 246 Hz, C arom. quat.), 138.7 (C arom. quat.), 133.8 (d, ${}^{4}J_{CF}$ = 3 Hz, C arom. quat.), 131.8 (d, ${}^{3}J_{C,F}$ = 8 Hz, C arom. tert.), 130.8, 130.0, 127.9 (C arom. tert.), 117.1 (d, ${}^{2}J_{C,F}$ = 22 Hz, C arom. tert.), 101.3, 97.1 (CHPhO₂, C-1), 76.8, 75.2, 74.1, 74.0, 69.2 (CH), 57.4 (OCH₃) ppm. MS (ES) m/z calcd. for C₂₀H₂₁FO₆Na 399.1 found 399.1.

(4-Fluorophenyl) [(2S,3S,4S,5R,6S)-3,4,5-trihydroxy-6-methoxy-tetrahydo-2H-pyran-2-yl]methanone (11): Dess-Martin periodinane (720 mg, 1.70 mmol) was added to a solution of the alcohol (621.2 mg, 1.11 mmol) in DCM (30 mL) under nitrogen. The reaction mixture was left stirring overnight at room temperature. The reaction was quenched by adding Et₂O (50 mL) and saturated aqueous NaHCO₃ (30 mL) consisting of Na₂S₂O₃ (3 g) and stirring for 1 h at room temperature. Then Et₂O (50 mL) was added and the phases were separated. The organic layer was washed with NaHCO₃ (40 mL) and H₂O (40 mL). Then the organic phase was dried (MgSO₄) and concentrated in vacuo. Purification by chromatography (EtOAc/n-pentane: 1/9) afforded ketone 11 (89%, 552 mg) as a light yellow syrup; $R_f = 0.58$ (EtOAc/*n*-pentane: 1/4); $[a]_{\rm D}$ = +40.7 (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 8.04 (dd, ${}^{4}J_{H,F}$ = 5, ${}^{3}J_{H,H}$ = 9 Hz, 2 H, H arom.), 7.38–7.26 (m, 10 H, H arom.), 7.16-7.05 (m, 5 H, H arom.), 6.93-6.90 (m, 2 H, H arom.), 5.07-4.99 (m, 2 H, 5-H, CHPh), 4.88-4.81 (m, 2 H, 2CHPh), 4.73 (d, ${}^{2}J$ = 10 Hz, 1 H, CHPh), 4.68–4.64 (m, 2 H, 1-H, CHPh), 4.43 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 4.15–4.09 (m, 1 H, 3-H), 3.93–3.86 (m, 1 H, 4-H), 3.63 (dd, ${}^{3}J_{2,1} = 4$, ${}^{3}J_{2,3} = 10$ Hz, 1 H, 2-H), 3.46 (s, 3 H, OCH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 194.7 (C=O), 166.3 (d, ¹J_{C,F} = 255 Hz, C arom. quat.), 138.9, 138.3, 137.9 (C arom. quat.), 132.9 (d, ${}^{4}J_{C,F}$ = 3 Hz, C arom. quat.), 132.1 (d, ${}^{3}J_{C,F}$ = 9 Hz, C arom. tert.), 128.8–128.0 (C arom. tert.), 116.0 (d, ${}^{2}J_{C,F}$ = 22 Hz, C arom. tert.), 99.7 (C-1), 82.0, 79.83, 79.75, 76.2, 72.5, 74.0, 70.0 (CH, CH₂), 56.7 (OCH₃) ppm. $^{19}\mathrm{F}$ NMR (300 MHz, CDCl₃): $\delta = -104.20$ ppm. MS (ES) *m*/*z* calcd. for C₃₄H₃₃FO₆Na 579.2 found 579.2.

3-Phenyl-1-[(2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxytetrahydro-2H-pyran]prop-2-yn-1-one (12): A solution of phenylacetylene (1.60 mL, 14.0 mmol) in THF (3.5 mL) under nitrogen was cooled down to 0 °C. Then EtMgBr (12.76 mL, 1 mol L⁻¹ in THF) was slowly added and the temperature was adjusted to room temperature and stirring for 30 min. The solution of Grignard reagent was cooled down to -10 °C and was slowly added a solution of aldehyde 4 (2.95 g, 6.38 mmol) in THF (30 mL). The stirring was continued at the same temperature for 1 h before increasing to room temperature and stirring for additional 5 min followed by quenching by slowly adding saturated aqueous NH₄Cl (30 mL) at 0 °C. The phases were separated and the water phase was extracted with EtOAc (2×30 mL). The combined organic layers were dried (MgSO₄) and concentrated in vacuo. The concentrate was purified by chromatography (Et₂O/n-pentane: 1/5) affording a mixture if diastereoisomers. Then the mixture was dissolved in DCM (120 mL) under nitrogen atmosphere and Dess-Martin periodinane (2.7 g, 6.38 mmol) was added, followed by stirring overnight at room temperature. The reaction was quenched by adding Et₂O

(150 mL) and saturated aqueous NaHCO₃ (250 mL) containing $Na_2S_2O_3$ (12 g) followed by stirring for 1 h. The phases were separated and the organic layer was washed with NaHCO₃ $(2 \times 150 \text{ mL})$ and H₂O (150 mL). The organic layer was dried (MgSO₄) and concentrated under reduced pressure. Purification of the residue by chromatography (Et₂O/n-pentane: 1/5) afforded ketone 12 (57%, 2.05 g) as a light yellow syrup; $R_f = 0.59$ (EtOAc/ *n*-pentane: 2/3; $[a]_D = +3.6$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.51–7.41 (m, 4 H, H arom.), 7.39–7.29 (m, 11 H, H arom.), 7.27–7.19 (m, 5 H, H arom.), 4.99 (d, ${}^{2}J = 11$ Hz, 1 H, CHPh), 4.85 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 4.84 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 4.82 (d, ${}^{2}J$ = 12 Hz, 1 H, CHPh), 4.72–4.65 (m, 3 H, 1-H, 2CHPh), 4.35 (d, ${}^{3}J_{5,4} = 10$ Hz, 1 H, 5-H), 4.11–4.05 (m, 1 H, 3-H), 3.83 (dd, ${}^{3}J_{4,3} = 9$, ${}^{3}J_{4,5} = 10$ Hz, 1 H, 4-H), 3.62 (dd, ${}^{3}J_{2,1} = 4$, ${}^{3}J_{2,3} = 10$ Hz, 1 H, 2-H), 3.54 (s, 3 H, OCH₃) ppm. ${}^{13}C$ NMR (75 MHz, CDCl₃): *δ* = 183.2 (C=O), 138.6, 138.0, 137.8 (C arom. quat.), 133.4, 131.1 (C arom. tert.), 128.7-127.8 (C arom. tert.), 119.6 (C arom. quat.), 98.8 (C-1), 94.2, 87.3 (Csp), 81.7, 79.5, 79.1 (CH), 76.1 (CH₂), 75.6 (CH), 75.3, 73.7 (CH₂), 55.7 (OCH₃) ppm. HRMS (ES) m/z calcd. for C₃₆H₃₄O₆Na 585.2253 found 585.2286.

(R)-1-(4-Fluorophenyl)-3-phenyl-[(2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxy-tetrahydro-2H-pyran-2-yl]prop-2-yn-ol (13R): A solution of ketone 12 (866 mg, 1.54 mmol) in THF (9 mL) under nitrogen at -10 °C was slowly added (4-fluorophenyl)magnesium bromide (6.2 mL in THF). The reaction mixture was left stirring at this temperature for 30 min before increasing to room temperature followed by stirring for 30 min more. The reaction was quenched by adjusting adding saturated aqueous NH₄Cl (20 mL) at 0 °C. Then the phases were separated and the water phase was extracted with DCM $(3 \times 20 \text{ mL})$. The combined organic layers were dried (MgSO₄) and concentrated in vacuo. The concentrate was purified on a silica column (Et₂O/n-pentane: 1/3) affording compound 13R (85%, 862.3 mg) as a light yellow syrup; $R_f = 0.55$ (EtOAc/n-pentane: 2/3); $[a]_D = +50.2$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.66 (dd, ${}^{4}J_{H,F}$ = 5, ${}^{3}J_{H,H}$ = 9 Hz, 2 H, H arom.), 7.4– 7.21 (m, 18 H, H arom.), 7.00–6.91 (m, 4 H, H arom.), 4.96 (d, ²J = 11 Hz, 1 H, CHPh), 4.90 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 4.77 (d, ${}^{2}J$ = 12 Hz, 1 H, CHPh), 4.70–4.66 (m, 2 H, 1-H, CHPh), 4.62 (d, ${}^{2}J$ = 12 Hz, 1 H, CHPh), 4.49 (s, 1 H, OH), 4.43 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 4.18 (d, ${}^{3}J_{4,5}$ = 10 Hz, 1 H, 5-H), 4.10–4.04 (m, 1 H, 3-H), 3.56-4.47 (m, 2 H, 2-H, 4-H) 3.47 (s, 3 H, OCH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 162.5 (d, ¹J_{C,F} = 245 Hz, C arom. quat.), 138.2, 138.0, 137.6 (C arom. quat.), 136.9 (d, ${}^{4}J_{C,F}$ = 3 Hz, C arom. quat.), 131.7 (C arom. tert.), 128.6-127.9 (C arom. tert.), 127.6 (d, ${}^{3}J_{C,F}$ = 8 Hz, C arom. tert.), 127.1 (C arom. tert.), 122.3 (C arom. quat.), 114.7 (d, ${}^{2}J_{C,F}$ = 21 Hz, C arom. tert.), 97.9 (C-1), 89.7, 86. 4 (Csp), 82.4, 80.1 79.3 (CH), 75.8 (CH2), 74.4 (CH), 74.3 (C-6), 74.2, 73.3 (CH₂), 55.4 (OCH₃) ppm. ¹⁹F NMR (300 MHz, CDCl₃): $\delta = -115.05$ ppm. HRMS (ES) *m/z* calcd. for C₄₂H₃₉FO₆Na 681.2628 found 681.2646.

(S)-1-(4-Fluorophenyl)-3-phenyl-](2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxy-tetrahydro-2*H*-pyran-2-yl]prop-2-yn-ol (13*S*): A solution of phenylacetylene (0.27 mL, 2.37 mmol) in THF (0.6 mL) under nitrogen was cooled to 0 °C. To the solution was slowly added EtMgBr (2.30 mL, 1 mol L⁻¹ in THF) and the temperature was adjusted to room temperature. The reaction mixture was stirred at this temperature for 30 min before cooling it down to -10 °C and slowly adding a solution of ketone 11 (426 mg, 0.765 mmol) in THF (8 mL). Then the reaction mixture was left stirring for 1 h before increasing to 0 °C and slowly adding saturated aqueous NH₄Cl (10 mL). The phases were separated and the aqueous layer was extracted with DCM (3 × 10 mL). The combined

organic phases were dried (MgSO₄) and concentrated in vacuo. Purification of the concentrate by chromatography (EtOAc/n-pentane: 1/25) afforded compound 13S (85%, 430.5 mg) as a light yellow syrup; $R_{\rm f} = 0.36$ (EtOAc/*n*-pentane: 1/3); $[a]_{\rm D} = +57.3$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = (dd, {}^{4}J_{H,F} = 6, {}^{3}J_{H,H} =$ 9 Hz, 2 H, H arom.), 7.55-7.52 (m, 2 H, H arom.), 7.39-7.24 (m, 18 H, H arom.), 7.03-6.97 (m, 2 H, H arom.), 5.39 (s, 1 H, OH), 5.18 (d, ${}^{2}J$ = 10 Hz, 1 H, CHPh), 5.06 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 4.93 (d, ${}^{2}J$ = 10 Hz, 1 H, CHPh), 4.85 (d, ${}^{2}J$ = 11 Hz, 1 H, CHPh), 4.74 (d, ${}^{2}J$ = 12 Hz, 1 H, CHPh), 4.60 (d, ${}^{2}J$ = 12 Hz, 1 H, CHPh), 4.40 (d, ${}^{3}J_{1,2}$ = 4 Hz, 1 H, 1-H), 4.24–4.18 (m, 1 H, 4-H), 4.12–4.06 (m, 1 H, 3-H), 3.71 (d, ${}^{3}J_{5,4} = 9$ Hz, 1 H, 5-H), 3.60 (dd, ${}^{3}J_{2,1} = 4$, ${}^{3}J_{2,3} = 9$ Hz, 1 H, 2-H), 2.70 (s, 3 H, OCH₃) ppm. ${}^{13}C$ NMR (75 MHz, CDCl₃): δ = 162.5 (d, ¹J_{C,F} = 245 Hz, C arom. quat.), 138.3, 137.93 (C arom. quat.), 137.3 (d, ${}^{4}J_{C,F}$ = 3 Hz, C arom. quat.), 136.9 (C arom. quat.), 131.9 (C arom. tert.) 128.8-127.9 (C arom. tert.), 122.9 (C arom. quat.), 114.4 (d, ${}^{2}J_{C,F}$ = 21 Hz, C arom. tert.), 97.9 (C-1), 89.2, 87.9 (C_{sp}), 82.5, 82.1, 80.5 (CH), 76.31, 75.9 (CH₂), 75.2 (C-6), 73.8 (CH), 73.6 (CH₂), 54.8 (OCH₃) ppm. HRMS (ES) m/z calcd. for C₄₂H₃₉FO₆Na 681.2628 found 681.2571. Further elution afforded compound other isomer (1%, 5 mg).

(2S,3S,4S,5R,6S)-2-[(R)-1-(4-Fluorophenyl)-1-hydroxy-3-phenylpropyl]-6-methoxy-tetrahydro-2H-pyran-3,4,5-triol: To a solution of 13R (425 mg, 0.647 mmol) and TFA (cat) in EtOH/EtOAc (2/1, 60 mL) under nitrogen at room temperature was added Pd/C (10%, 260 mg). The mixture was degassed and a hydrogen atmosphere (1 atm) was introduced. Then the reaction mixture was left stirring for 48 h before filtering it through Celite. Concentration of the filtrate afforded the product (90%, 228 mg) as a white solid; $R_{\rm f} = 0.49$ (EtOAc/MeOH: 12/1); $[a]_D$ = +9.3 (c = 0.25, MeOH). ¹H NMR (300 MHz, CD₃OD): δ = 7.65–7.60 (m, 2 H, H arom.), 7.27–7.22 (m, 2 H, H arom.), 7.15–7.05 (m, 5 H, H arom.), 4.57 (d, ${}^{3}J_{1,2}$ = 4 Hz, 1 H, 1-H), 3.69–3.57 (m, 2 H, 3-H, 4-H), 3.50 (d, ${}^{3}J_{5,4}$ = 9 Hz, 1 H, 5-H), 3.38 (dd, ${}^{3}J_{2,1} = 4$, ${}^{3}J_{2,3} = 9$ Hz, 1 H, 2-H), 2.82 (s, 3 H, OCH₃), 2.77-2.68 (m, 1 H), 2.54-2.45 (m, 1 H), 2.35-2.16 (m, 2 H) ppm. ¹³C NMR (75 MHz, CD₃OD): δ = 163.0 (d, ¹J_{C,F} = 242 Hz, C arom. quat.), 144.1 (C arom. quat.), 141.0 (d, ${}^{4}J_{C,F}$ = 3 Hz, C arom. quat.), 129.9 (d, ${}^{3}J_{C,F}$ = 8 Hz, C arom. tert.), 129.3, 129.2, 126.6 (C arom. tert.), 114.0 (d, ${}^{2}J_{C,F}$ = 21 Hz, C arom. tert.), 100.8 (C-1), 78.6 (C-6), 75,5, 73.2, 73.1 (CH), 55.0 (OCH₃), 38.6, 30.6 (CH₂) ppm. ¹⁹F NMR (300 MHz, CD₃OD): δ = –118.89 ppm. HRMS (ES) m/z calcd. for C₂₁H₂₅FO₆Na 415.1533 found 415.1541.

(2S,3S,4S,5R,6S)-2-[(S)-1-(4-Fluorophenyl)-1-hydroxy-3-phenylpropyl]-6-methoxy-tetrahydro-2H-pyran-3,4,5-triol: To a solution of 13S (496 mg, 0.753 mmol) and TFA (cat) in MeOH/EtOAc (2/1, 60 mL) under nitrogen at room temperature was added Pd/C (10%, 300 mg). The mixture was degassed and a hydrogen atmosphere (1 atm) was introduced. The reaction mixture was left stirring for 48 h before filtering it through a pad of Celite. Concentration of the filtrate afforded the desired product (95%, 281 mg) as a white solid; $R_{\rm f} = 0.56$ (EtOAc/MeOH: 12/1); $[a]_{\rm D} = +80.7$ (c = 0.3, MeOH) ¹H NMR (300 MHz, CD₃OD): δ = 7.67–7.63 (m, 2 H, H arom.), 7.24-7.19 (m, 2 H, H arom.), 7.14-7.06 (m, 5 H, H arom.), 4.72 (d, ${}^{3}J_{1,2}$ = 4 Hz, 1 H, 1-H), 3.80 (d, ${}^{3}J_{5,4}$ = 10 Hz, 1 H, 5-H), 3.69–3.63 (m, 1 H, 3-H), 3.43 (s, 3 H, OCH₃), 3.20 (d, ${}^{3}J_{2,1} = 4$, ${}^{3}J_{2,3} = 10$ Hz, 1 H, 2-H), 3.03–2.97 (m, 1 H, 4-H), 2.79–2.71 (m, 1 H), 2.48–2.39 (m, 1 H), 2.30–2.13 (m, 2 H) ppm. $^{13}\mathrm{C}$ NMR (75 MHz, CD₃OD): δ = 162.2 (d, ¹J_{C,F} = 242 Hz, C arom. quat.), 142.9 (C arom. quat.), 139.3 (d, ${}^{4}J_{C,F}$ = 3 Hz, C arom. quat.), 128.5 (d, ${}^{3}J_{C,F} = 8$ Hz, C arom. tert.), 114.2 (d, ${}^{2}J_{C,F} = 21$ Hz, C arom. tert.), 100.3 (C-1) 78.4 (C-6), 74.2, 73.9, 72.7, 72.0 (CH), 55.2 (OCH₃), 42.2, 29.2 (CH₂) ppm. ¹⁹F NMR (300 MHz, CD₃OD): δ = -119.03 ppm. HRMS (ES) *m*/*z* calcd. for C₂₁H₂₅FO₆Na 415.1533 found 415.1554.

(2S,4S,4aS,6S,7R,8R,8aS)-4-(4-Fluorophenyl)-6-methoxy-4-phenethyl-2-phenyl-hexahydropyrano[3,2-d][1,3]dioxine-7,8-diol (14S): To a solution of the triol (15 mg, 38.2 µmol) and PhCH(OMe)₂ (40 µL, 268 µmol) in DMF (0.3 mL) under nitrogen was added p-toluenesulfonic acid monohydrate (2.23 mg, 11.5 µmol). The obtained reaction mixture was left stirring overnight at room temperature before neutralizing it by adding Et₃N. The solvent was removed and the crude product was purified by column chromatography. (EtOAc/*n*-pentane: $1/2 \rightarrow 3/1$) afforded compound **15**S (50%, 9.1 mg) with minor impurities; $R_{\rm f} = 0.57$ (EtOAc). ¹H NMR (300 MHz, CDCl₃): δ = 7.77 (dd, ${}^{4}J_{H,F}$ = 5, ${}^{3}J_{H,H}$ = 9 Hz, 2 H, H arom.), 7.55-7.72 (m, 2 H, H arom.), 7.43-7.34 (m, 3 H, H arom.), 7.23-7.21 (m, 2 H, H arom.), 7.17-7.05 (m, 5 H, H arom.), 5.75 (s, 1 H, CHPhCO₂), 5.01 (d, ${}^{3}J_{1,2}$ = 4 Hz, 1 H, 1-H), 4.24 (d, ${}^{3}J_{5,4}$ = 10 Hz, 1 H, 5-H), 3.98–3.92 (m, 1 H, 3-H), 3.74 (dd, ${}^{3}J_{4,3} = 9$, ${}^{3}J_{4,5}$ $= 10 \text{ Hz}, 1 \text{ H}, 4\text{-H}), 3.68\text{--}3.64 \text{ (m, 1 H, 2-H)}, 2.58 \text{ (s, 3 H, OCH}_3),$ 2.77-2.56 (m, 2 H), 2.27-2.21 (m, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 162.1$ (d, ${}^{1}J_{C,F} = 246$ Hz, C arom. quat.), 141.9, 137.5 (C arom. tert.), 135.7 (d, ${}^{4}J_{C,F}$ = 3 Hz, C arom. quat.), 129.6 (d, ${}^{3}J_{C,F}$ = 8 Hz, C arom. tert.), 129.2–125.9 (C arom. tert.), 115.4 (d, ${}^{2}J_{C,F}$ = 21 Hz, C arom. tert.), 99.7 (C-1), 96.3 (CHPhCO₂), 80.4 (C-6), 75.8, 72.4, 72.2, 71.7 (CH), 56.2 (OCH₃), 44.7, 29.5 (CH₂) ppm. ¹⁹F NMR (300 MHz, CDCl₃): δ = -115.05 ppm. HRMS (ES) m/z calcd. for C₂₈H₂₉FO₆Na 503.1846 found 503.1866.

(2S,4R,4aS,6S,7R,8R,8aS)-4-(4-Fluorophenyl)-6-methoxy-4-phenethyl-2-phenyl-hexahydropyrano[3,2-d][1,3]dioxine-7,8-diol (14R): The benzylidene 14R was prepared in the same way as benzylidene (14S). (50%, 6.0 mg); $R_{\rm f} = 0.66$ (EtOAc); $[a]_{\rm D} = +4.3$ (c = 0.4, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.71 (dd, ⁴J_{H,F} = 6, ${}^{3}J_{H,H} = 9$ Hz, 2 H, H arom.), 7.64–7.61 (m, 2 H, H arom.), 7.49– 7.42 (m, 3 H, H arom.), 7.29-7.24 (m, 2 H, H arom.), 7.20-7.15 (m, 1 H, H arom.), 7.12-7.05 (m, 4 H, H arom.), 6.01 (s, 1 H, CHPhO₂), 4.78 (d, ${}^{3}J_{1,2}$ = 4 Hz, 1 H, 1-H), 3.93–3.80 (m, 2 H, 3-H, 4-H), 3.63-3.58 (m, 2 H, 2-H, 5-H), 3.01 (s, 3 H, OCH₃), 2.83-2.73 (m, 1 H, 7-H), 2.62-2.38 (m, 2 H, 7-H, 8-H), 2.28-2.19 (m, 1 H, 8-H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 162.2 (d, ¹J_{C,F} = 246 Hz, C arom. quat.), 140.1 (C arom. quat.), 139.1 (d, ${}^{4}J_{C,F}$ = 3 Hz, C arom. quat.), 137.7 (C arom. quat.), 129.5, 128.7, 128.6, 128.4 (C arom. tert.), 127.6 (d, ${}^{3}J_{C,F}$ = 8 Hz, C arom. tert.), 126.6, 126.1 (C arom. tert.), 114.9 (d, ${}^{2}J_{C,F}$ = 21 Hz, C arom. tert.), 99.6 (C-1), 95.5 (CHPhO₂), 79.2 (C-6), 75.7, 72.84, 72.77, 70.8 (CH), 55.4 (OCH₃), 30.2 (C-7), 28.7 (C-8) ppm. ¹⁹F NMR (300 MHz, CDCl₃): δ = -116.07 ppm. HRMS (ES) m/z calcd. for C₂₈H₂₉FO₆Na 503.1846 found 503.1868.

Degradation of 2f: A solution of the debenzylated **9e** (117 mg, 95 μ mol) in H₂O (35 mL) was added Amberlite IR-120 (H⁺) and the mixture was refluxed for 48 h. The resin was removed by filtration and the filtrate was neutralized by adding Amberlite (OH⁻). The resin was removed and the filtrate was concentrated. The filtrate was dissolved in MeOH (35 mL) and was added Amberlite IR-120 (H⁺) followed by reflux for 24 h. Then the resin was removed and the filtrate was concentrated. Purification by chromatography (EtOAc/DCM: 4/1) afforded a mixture (6.5 mg) consisting of **10** as the major component.

Degradation of 8e: The *S*-isomer (**8e**) (300 mg,9.6 μ mol) was debenzylated in the same way as **2f**. The crude product was dissolved in methanolic HCl (0.3 mol L⁻¹ in MeOH, 34 mL) [prepared by mixing MeOH (34 mL) and AcCl (0.74 mL, 10.5 mmol) for 10 min] and refluxed for 10 h. Then the reaction mixture was allowed to

FULL PAPER

reach room temperature and concentrated under reduced pressure. Purification on a silica column (EtOAc/DCM: 4/1) afforded a mixture (14.7 mg) consisting of mainly **10***R*.

Degradation of 9e: Compound **9e** (610 mg, 0.194 mmol) was debenzylated in the same way as **2f** followed by degradation and methyl glycosylation following the same procedure as for **9e**. Affording a mixture (7 mg) consisting of mostly **10***S*.

Supporting Information (see footnote on the first page of this article): Copies of ¹H and ¹³C NMR spectra of all new compounds.

- K. L. Larsen, H. J. Christensen, F. Mathiesen, L. H. Pedersen, W. Zimmermann, *Appl. Microbiol. Biotechnol.* 1998, 50, 314– 317.
- [2] I. Tabushi, Acc. Chem. Res. 1982, 15, 66-72.
- [3] R. Breslow, S. D. Dong, Chem. Rev. 1998, 98, 1997–2011.

- [4] J. Bjerre, C. Rousseau, L. Marinescu, M. Bols, Appl. Microbiol. Biotechnol. 2008, 81, 1–11.
- [5] A. R. Khan, P. Forgo, K. J. Stine, V. T. D'Souza, *Chem. Rev.* 1998, 98, 1977–1996.
- [6] M. Sollogoub, Eur. J. Org. Chem. 2009, 1295-1303.
- [7] A. Pearce, P. Sinaÿ, Angew. Chem. Int. Ed. 2000, 39, 3610– 3612.
- [8] T. Lecourt, A. Herault, A. J. Pearce, M. Sollogoub, P. Sinaÿ, *Chem. Eur. J.* 2004, 10, 2960–2971.
- [9] C. Rousseau, N. Nielsen, M. Bols, *Tetrahedron Lett.* 2004, 45, 8709–8711.
- [10] T. Hardlei, M. Bols, J. Chem. Soc. Perkin Trans. 1 2002, 2880– 2885.
- [11] D. Horton, A. E. Luetzow, O. Theander, *Carbohydr. Res.* 1973, 26,2 1.
- [12] L. I. Zakharkin, V. V. Gavrilenko, B. A. Palei, Zh. Obshch. Khim. 1970, 40, 2669–2676.
- [13] N. T. Anh, O. Eisenstein, Nouv. J. Chim. 1977, 1, 61.

Received: March 3, 2010 Published Online: May 27, 2010