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ABSTRACT

A series of b-D-Gal-(1! 4)-b-D-GlcNAc-octyl, NeuAca-(2! 3)-b-D-Gal-(1! 4)-

b-D-GlcNAc-octyl, and their 6-O-sulfated and 60-O-sulfated analogs (1–6) were

synthesized in a concise manner starting from readily accessible monosaccharide inter-

mediates. The syntheses involved formation of an orthogonally protected disaccharide

and a trisaccharide from which all six compounds were derived.

Key Words: Sulfated lactosamine; Sialylated lactosamine; Sulfation.

INTRODUCTION

N-Acetyl lactosamine [Gal-b-(1! 4)-GlcNAc] and its sialylated (a2,3 or a2,6)

extention are quite common in cell surface glycans and glycolipids.[1] They are often

modified to express differentiation antigens and functional oligosaccharides, such as

Lewis X, sialyl Lewis X, which are found in human granulocytes and monocytes and

acts as ligands for E-, P-, and L-selectins.[2] Sulfate groups in carbohydrates play import-

ant roles in conferring highly specific functions like cell–cell interactions, signal transduc-

tion, immunogenic recognition, and embryonic development in glycoproteins, glycolipids,

and proteoglycans.[3] Keratan sulfate proteoglycan is a major component of the corneal

stroma, which is composed of N-acetylated lactosamine repeating unit with sulfate resi-

dues at 6-O position of GlcNAc or Gal or in both, plays an important role in maintaining

corneal transparency by organizing and providing proper hydration of the extracellular

matrix.[4] The biosynthesis of keratan sulfate takes place by involvement of four recently

cloned enzymes: b-N-acetylglucosaminyltransferase, b-galactosyltransferase, GlcNAc

6-O-sulfotransferase, and Gal 6-O-sulfotransferase.[5] All of them use N-acetyl lacto-

samine disaccharide as an acceptor to elongate the target glycosaminoglycans. Besides

these, N-acetylated lactosamine acts as acceptors to a number of glycosyltransferases in

the production of a number of glycoconjugates such as sialyl Lewis X, tumor related fuco-

sylated poly-N-acetyl lactosamines, blood group antigens, etc., for example, a-fucosyl-

transferases (FucT IV and VII) require sialylated N-acetyl lactosamine and its sulfated

analogs as acceptors to biosynthesize sialyl Lewis X and its sulfated analogs, ligands

for selectins.[6]

For a detailed mechanistic study of the above mentioned biosynthetic pathways to

make a variety of glyconjugates involving recently cloned several glycosyltransferases

and sulfotransferases enzymes, a large quantity of N-acetyl lactosamine and sialylated

N-acetyl lactosamine and their sulfated analogs are required, although the synthesis of a

reasonable quantities of complex oligosaccharides remains one of the most challenging

areas of chemistry. Therefore, a concise, efficient synthetic methodology for the synthesis

of N-acetyl lactosamine and sialylated N-acetyl lactosamine and their sulfated analogs

would extend the scope to get a large access of these compounds. A few reports have

been appeared in the literature regarding the synthesis of these classes of compounds

and most of them required lengthy multi-step sequences.[7] Chemo-enzymatic synthesis

shows great promise but requires access to a panel of glycosyltransferases and sulfotrans-

ferases.[8]
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We report herein a practical, high yielding chemical synthesis of the octyl glycosides

of N-acetyl lactosamine, sialylated N-acetyl lactosamine, and their 6-O-sulfated and 60-O-

sulfated analogs from the readily accessible protected monosaccharide precursors (8–16).

The key feature in this synthetic protocol is the use of common intermediate (10 and 17) to

get access to all target molecules (1–6) (Fig. 1).

RESULTS AND DISCUSSION

Glycosylation of octyl 2-acetamido-3-O-acetyl-2-deoxy-6-O-tert-butyldimethylsilyl-

b-D-glucopyranoside (8), prepared from N-acetyl-D-glucosamine in six steps and 2,3,4,6-

tetra-O-benzoyl-b-D-galactopyranosyl trichloroacetimidate (9)[9] using trimethylsilyl

trifluoromethanesulfonate (TMSOTf) in methylene chloride afforded the b-(1! 4)

linked disaccharide (10) in 78% yield which on treatment with sodium methoxide in

methanol furnished b-D-octyl lactosamine disaccharide (1) in 93% yield. De-silylation

of compound 10 using HF–pyridine[10] yielded disaccharide 11 in 78% that on

Figure 1. Synthesis of octyl glycosides of N-acetyl lactosamine, sialylated N-acetyl lactosamine,

and their 6-O-sulfated and 60-O-sulfated analogs from monosaccharide precursors (8–16).
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sulfation[11] (sulfur trioxide–pyridine complex; SO3
. Pyr) followed by saponification

gave the 6-O-sulfate 3 in 74% yield. Treatment of compound 1 with benzaldehyde

dimethylacetal in presence of p-toluenesulfonic acid furnished octyl 4,6-O-benzylidene-

b-D-galactopyranosyl-(1! 4)-2-acetamido-2-deoxy-b-D-glucopyranoside (13) which

gave compound 14 after conventional acetylation using acetic anhydride–pyridine in

78% yield in two steps. Removal of the benzylidene acetal from compound 14 through

catalytic hydrogenolysis under neutral condition[11] followed by selective sulfation of

the 60-hydroxyl group (SO3
. Pyr) and saponification afforded 60-O-sulfate derivative 2

in 72% overall yield in three steps (Sch. 1).

Sialylation of the disaccharide triol acceptor 15, obtained from compound 13 by

selective silylation of 6-hydroxyl group (TBDMSCl/imidazole),[12] using the N-acetyl-

neuraminic acid donor[13] 16 and NIS/TfOH as promoter[14] afforded trisaccharide 17

in 56% yield. Characteristic proton and carbon signals in the 1H and 13C NMR spectra

[d 5.43 (s, PhCH ), 5.05 (d, J ¼ 8.0 Hz, H-10), 4.60 (dd, J ¼ 7.8 Hz, H 2 1), 2.76 (dd,

J ¼ 12.0 Hz and 4.5 Hz, H-300e), and 1.75 (t, J ¼ 12.0 Hz, H-300a)] confirmed the structure

of 17. In order to improve the yield of the glycosylation, several other sialyl donors and

various promoters were examined but the yields were found to be similar. Trisaccharide

derivative 17 has been used as a common scaffold for the preparation of two sulfated

analogs 5 and 6. De-benzylidenation under catalytic hydrogenolysis followed by

removal of tert-butyldimethylsilyl group and acetyl groups together by using sodium

methoxide afforded sialylated lactosamine trisaccharide 4 in 82% yield. Use of acidic con-

dition to remove the benzylidene acetal resulted in some removal of acid sensitive sialic

acid residue.

Trisaccharide 17 was converted to 6-hydroxylated trisaccharide 19 in 77% overall

yield after a sequence of transformation, which involves removal of benzylidene acetal

Scheme 1. Reagents: (a) TBDMS–Cl, imidazole, DMF, rt, 7 hr, 72%; (b) TMSOTf, CH2Cl2,

MS-4Å, 2108C to rt, 3 hr, 78%; (c) HF–pyridine, THF, 0–58C, 4 hr, 78%; (d) SO3
. Pyr complex,

pyridine, 6 hr, then Dowex 50W X8 (Naþ), 74%; (e) PhCH(OMe)2, p-TsOH, CH3CN, rt, 3 hr; (f)

Ac2O, pyridine, rt, 12 hr, 78% in two steps; (g) H2, Pd(OH)2–C (20%), MeOH, rt, 24 hr; (h)

SO3
. Pyr complex, pyridine, 6 hr, then Dowex 50W X8 (Naþ), 72% in two steps; (i) 0.1 M

MeONa, MeOH, rt, 12 hr, 93%.
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under hydrogenolytic condition, conventional acetylation followed by removal of silyl

protection using HF–pyridine. Sulfation of 6-hydroxyl group of compound 19

followed by deacetylation furnished target 6-O-sulfated trisaccharide 5 in 78% yield.

In another approach, trisaccharide 17 was converted to 40,60-dihydroxylated trisacchar-

ide 18 by conventional acetylation followed by removal of benzylidene acetal using

10% Pd–C/H2 in 82% yield. Selective sulfation of 60-hydroxyl group of 18 using

SO3
. Pyr followed by removal of silyl protection and acetyl group in one step

under saponification condition furnished 60-O-sulfated trisaccharide 6 in 74% yield

(Sch. 2).

Six target compounds (1–6) were prepared in 4 g scale following the above

mentioned reaction sequences. Selected 1H and 13C NMR and MS data for key com-

pounds are presented below.a Compounds 1–6 have been evaluated as acceptors

for several enzymes including various sulfotransferase and fucosyl transferase

acceptors.[2,3]

aPartial 1H NMR (300 MHz, D2O): the following common signals for the octyl aglycon were

observed in D2O solution: d 1.60–1.40 (m, 2H, OCH2CH2), 1.30–1.10 [m, 10 H, OCH2CH2(CH2)5-

CH3], 0.85 (t, 3H, octyl CH3). H-1 indicates the anomeric proton of the GlcNAc residue, H-10 the

anomeric proton of the Gal residue and onwards. 1: d 4.40 (d, J1,2 ¼ 8.1 Hz, 1H, H-1), 4.38

(d, J10,20 ¼ 7.0 Hz, 1H, H-10), 4.16 (m, 2H, H-2 and H-20), 1.96 (s, 3H, NHAc); 13C NMR: d

173.6, 105.2, 102.8, 81.0, 77.2, 76.6, 74.9, 74.4, 72.7, 70.8, 70.5, 62.6, 62.0, 56.8, 55.3, 39.1,

30.8, 30.6, 27.2, 23.8, 23.1, 14.5; TOFMS: calcd. for C22H41O11N (Mþ Naþ) 518.5; found

518.5. 2: d 4.48 (d, J1,2 ¼ 8.4 Hz, 1H, H-1), 4.40 (d, J10,20 ¼ 7.5 Hz, 1H, H-10), 4.18 (dd, 2H,

H-60a,b), 2.07 (s, 3H, NHAc); 13C NMR: d 175.0, 103.3, 101.6, 79.7, 75.2, 73.3, 72.9, 72.8, 72.6,

71.3, 71.1, 68.8, 67.7, 60.8, 55.7, 31.7, 29.1, 28.9, 25.6, 22.8, 22.6, 14.0; TOFMS: calcd. for

C22H40O14NSNa (MþNaþ) 620.2; found 620.2. 3: 4.50 (d, J1,2 ¼ 7.5 Hz, 1H, H-1), 4.44

(d, J10,20 ¼ 8.1 Hz, 1H, H-10), 4.34 (bs, 2H, H-6a,b), 1.99 (s, 3H, NHAc); 13C NMR: d 175.5,

103.1, 101.7, 77.9, 75.8, 73.1, 73.0, 72.9, 72.8, 71.5, 71.2, 69.2, 66.9, 61.6, 55.7, 31.7, 29.1, 28.9,

25.6, 22.8, 22.6, 14.0; TOFMS: calcd. for C22H40O14NSNa (MþNaþ) 620.2; found 620.2. 4: d

4.55 (d, J1,2 ¼ 7.8 Hz, 1H, H-1), 4.46 (d, J10,20 ¼ 7.2 Hz, 1H, H-1), 4.06 (dd, J ¼ 3.0 Hz and

9.9 Hz, 1H, H-3), 2.70 (dd, J ¼ 4.5 Hz and 12.3 Hz, 1H, H-300e), 1.98 (s, 6H, 2NHAc), 1.75

(t, J ¼ 12.0 Hz, 1H, H-300a);
13C NMR: d 175.6, 174.9, 174.5, 103.1, 101.6, 100.4, 78.8, 76.0, 75.7,

75.3, 73.4, 73.0, 72.8, 71.1, 69.9, 68.9, 68.6. 68.0, 63.1, 61.6, 60.6, 55.7, 52.2, 40.2, 31.7, 29.1

(2C), 28.9, 25.6, 22.8, 22.6 (2C), 14.0; TOFMS: calcd. for C33H57O19N2Na (MþNaþ) 831.8;

found 831.8. 5: d 4.61 (d, J1,2 ¼ 7.8 Hz, 1H, H-1), 4.53 (d, J10,20 ¼ 7.8 Hz, 1H, H-10), 4.36 (q, 2H,

H-6a,b), 4.11 (dd, J ¼ 3.3 Hz and 9.1 Hz, 1H, H-2), 2.74 (dd, J ¼ 4.8 and 12.0 Hz, 1H, H-300e),

2.01, 2.00 (2s, 6H, 2NHAc), 1.78 (t, J ¼ 12.0 Hz, 1H, H-300a);
13C NMR: d 175.5, 175.0, 174.6,

102.6, 101.7, 100.3, 77.7, 75.9, 75.6, 73.4, 73.1, 72.9, 72.0, 71.2, 70.0, 69.0, 68.6, 68.0, 66.9,

63.0, 61.6, 55.8, 52.3, 40.1, 31.7, 29.1 (2C), 28.9, 25.6, 22.8, 22.6 (2C), 14.0; TOFMS: calcd. for

C33H56O22N2SNa2 (MþNaþ) 933.8; found 933.8. 6: d 4.56 (d, J1,2 ¼ 7.8 Hz, 1H, H-1), 4.48

(d, J10,20 ¼ 7.8 Hz, 1H, H-10), 2.71 (dd, J ¼ 4.5 Hz and 12.0 Hz, 1H, H-300e), 1.88 (s, 6H, 2NHAc),

1.76 (t, J ¼ 12 Hz, 1H, H-300a);
13C NMR: d 175.5, 175.0, 174.4, 102.9, 101.6, 100.5, 79.7, 75.8,

75.2, 73.4, 73.2, 72.7, 72.3, 71.1, 69.8, 68.9, 68.7, 68.1, 68.0, 63.1, 60.8, 55.7, 52.2, 40.0, 31.7,

29.1 (2C), 28.9, 25.6, 22.8, 22.6 (2C), 14.0; TOFMS: calcd. for C33H56O22N2SNa2 (MþNaþ)

933.8; found 933.8.
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CONCLUSION

In conclusion, the 6- and 60-O-sulfated analogs of lactosamine and sialyllactosamine

were synthesized following a practical high yielding procedure utilizing a common

disaccharide scaffold. Most of the methodologies used in this synthetic scheme are very

convenient and high yielding thus providing this report a potential alternative to

the existing methods. This high yielding practical synthetic protocol for the synthesis

of these classes of molecules will certainly add value to the glycobiology.

ACKNOWLEDGMENTS

The authors thank the Director, Central Drug Research Institute (C.D.R.I.) for

his encouragement and support. R.S.I.C., C.D.R.I. is gratefully acknowledged for the

Scheme 2. Reagents: (a) TBDMS–Cl, imidazole, DMF, rt, 5 hr, 72%; (b) NIS, TfOH, CH3CN–
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