

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 46 (2005) 5983-5985

Facile cyclization of amidyl radicals generated from N-acyltriazenes

Hongjian Lu and Chaozhong Li*

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China

Received 20 June 2005; revised 7 July 2005; accepted 8 July 2005 Available online 25 July 2005

Abstract—N-Acyltriazenes serve as a tin-free and initiator-free source for amidyl radicals. Thermal decomposition of N,N'-diaryl-N-(4-pentenoyl)triazenes in refluxing toluene led to the formation of monocyclic and tricyclic lactams in satisfactory yields via 5-exo amidyl radical cyclization.

© 2005 Elsevier Ltd. All rights reserved.

Amidyl radicals are highly reactive and electrophilic radicals.¹ This Umpolung reactivity offers a great potential in organic synthesis via intramolecular cyclization to afford lactams or cyclic amines. However, amidyl radical-based synthetic methodologies have drawn much less attention than they deserve.² This is, in part, because most of the amidyl radical precursors are either very unstable or difficult to prepare. For example, precursors such as N-halo amides³ and N-hydroxypyridine-2-thione imidate esters^{4,5} are very unstable. Other precursors such as N-(phenylthio)amides⁶ or N-(O-ethyl thiocarbonylsulfanyl)amides^{2b} suffer from the low yields of preparation in many cases. Recently, Nicolaou et al. reported the o-iodoxybenzoic acid (IBX)-initiated amidyl radical cyclization with the direct use of amides as the substrates.^{2a} However, only the 5-exo cyclization reactions of N-aryl-substituted amides could proceed under the IBX-mediated conditions. It is therefore desirable to develop novel methods to conduct amidyl radical reactions. We report here, that N-acyltriazenes serve as a convenient precursor for unsaturated amidyl radicals under tin-free and initiator-free conditions.

N-Acyltriazenes have been known for a long time.⁷ They can be easily prepared from the reaction of an amide with an arenediazonium ion with NaH as the base,⁸ or from the reaction of an amine with an arenediazonium salt followed by the treatment with an acyl chloride and triethylamine in a one-pot, two-stage manner.⁹ Thermal decomposition of *N*-acytriazenes (**1**) in aro-

matic solvents leads to a free radical arylation reaction, as shown in Scheme 1.⁸ We envisioned that, if the R group in 1 bears a C=C double bond, the amidyl radical 2a might undergo cyclization (to give the cyclized carbon-centered radical 5) rather than H-abstraction (to give the amide 4). The cyclized radical 5 then might abstract a hydrogen presumably from radical 3 to afford the corresponding lactam 6a as the final product (Scheme 2). This would provide a facile entry to the generation and cyclization of amidyl radicals under tin-free and initiator-free conditions. However, to our surprise, such a process was never examined in the literature. Based on the above discussion, we carried out the following investigation.

Thus, N,N'-diphenyl-N-(4-pentenoyl)triazene **1a** was prepared from aniline, benzenediazonium fluoroborate and 4-pentenoyl chloride in 85% yield according to the literature method.⁹ Compound **1a** turned out to be very stable and no decomposition was observed in benzene at

Scheme 1.

^{*}Corresponding author. Tel.: +86 21 5492 5160; fax: +86 21 6416 6128; e-mail: clig@mail.sioc.ac.cn

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.07.023

refluxing temperature. Direct photolysis of **1a** in benzene at room temperature with the aid of a 125 W highpressure mercury lamp gave a complicated mixture in which *N*-phenyl-4-pentenamide (**4a**) was isolated in 24% yield and the desired cyclized product γ -lactam **6a** was obtained in 14% yield. However, to our delight, when **1a** was heated up in toluene at reflux (110 °C) for 6 h, the expected cyclization product **6a** was achieved in 78% isolated yield (Eq. 1).

We then synthesized a number of N-acyltriazenes **1a**–g to explore the scope and limitation of the above method. The results are summarized in Table 1.

As can be seen in Table 1, the 5-exo cyclization products 6a and b were obtained in high yields in the thermal decomposition of triazenes **1a** and **b** with a mono-substituted terminal double bond (Table 1, entries 1 and 2). With substrate 1c having an internal double bond, the corresponding 5-exo cyclization product 6c was isolated in 35% yield along with the formation of tetracyclic compound 7c as a single stereoisomer in 29% yield (Table 1, entry 3). Apparently, product 7c resulted from the further addition of the cyclized radical similar to 5 to the phenyl ring. For triazene 1d with a dimethyl-substitution at the C=C double bond, the 5-exo cyclization product 6d was obtained in 20% yield while the tricyclic product 7d was achieved in 65% yield (Table 1, entry 4). These results indicate that the formation of tricyclic products such as 7d is encouraged by the terminal substitution at the C=C double bond. This trend might be rationalized by the enhanced stability of the corresponding cyclized radical 5 from a primary carbon radical (such as in the case of 1a) to a tertiary carbon radical (in the case of 1d), which allows the addition of 5 to the phenyl ring to become a competitive process to the direct H-abstraction of 5. It is worth mentioning that the formation of tricyclic products 7 was not observed in the IBX-mediated reactions of unsaturated N-arylamides.

Table 1. Thermal decomposition of triazenes I at 110
--

^a Ar¹: *p*-methoxyphenyl, Ar²: *p*-nitrophenyl.

^b Isolated yield based on 1.

We next, tested the effect of *N*-aryl groups on the cyclization. With N,N'-di(*p*-methoxyphenyl)-substituted substrate **1e** and **f**, both the expected monocyclization products **6** and the tricyclic products **7** were achieved in satisfactory overall yields (Table 1, entries 5 and 6). On the other hand, the N,N'-di(*p*-nitrophenyl)-substituted triazene **1g** gave the mixture of **6g** and **7g** in low yield. The comparison between **1a** and **e** showed that the *p*-methoxy-substitution at the phenyl group encourages the formation of the tricyclic products **7**. However, the reason remains unclear.

The formation of tricyclic products 7 is certainly of great interest in organic synthesis as this tricyclic skeleton is widely embedded in a number of biologically active natural products such as mitomycins.¹⁰ In order to increase the yield of 7, we carried out the thermal decomposition of 1 at higher temperature. Indeed, when 1a was added into chlorobenzene at reflux (~132 °C), the corresponding tricyclic product 7a was obtained in 36% yield while

no **6a** could be isolated (Eq. 2). However, the thermolysis of **1e** in refluxing chlorobenzene gave **7e** in only 19% yield along with a significant amount of unidentified byproducts. Nevertheless, the results in Eqs. 1 and 2 clearly indicate that, under certain experimental conditions, the reaction of **1** could be pushed towards the formation of tricyclic products **7**, thus of more synthetic value. This is now actively pursued in our laboratory.

In summary, the above preliminary results clearly demonstrate that the thermal decomposition of unsaturated *N*-acyltriazenes provides a convenient entry to the generation and cyclization of amidyl radicals.¹¹ Tandem radical cyclization leading to the formation of tricyclic lactams could also be achieved via this method, which should be of important application in organic synthesis.

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Nos. 20325207 and 20472109) and by the Shanghai Municipal Committee of Science and Technology (No. 04QMH1418).

References and notes

 For reviews, see: (a) Esker, J.; Newcomb, M. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic Press: New York, 1993; Vol. 58, p 1; (b) Fallis, A. G.; Brinza, I. M. Tetrahedron 1997, 53, 17543; (c) Stella, L. In Radicals in Organic Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, Germany, 2001; Vol. 2, p 407.

- For recent examples, see: (a) Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Barluenga, S.; Hunt, K. W.; Kranich, R.; Vega, J. A. J. Am. Chem. Soc. 2002, 124, 2233; (b) Gagosz, F.; Moutrille, C.; Zard, S. Z. Org. Lett. 2002, 4, 2707; (c) Tang, Y.; Li, C. Org. Lett. 2004, 6, 3229; (d) Chen, Q.; Shen, M.; Tang, Y.; Li, C. Org. Lett. 2005, 7, 1625.
- (a) Barton, D. H. R.; Beckwith, A. L. J.; Goosen, A. J. Chem. Soc. 1965, 181; (b) Neale, R. S. Synthesis 1971, 1.
- 4. Newcomb, M.; Esker, J. L. Tetrahedron Lett. 1991, 32, 1035.
- (a) Esker, J. L.; Newcomb, M. *Tetrahedron Lett.* **1992**, *33*, 5913;
 (b) Boivin, J.; Callier-Dublanchet, A.-C.; Quiclet-Sire, B.; Schiano, A.-M.; Zard, S. Z. *Tetrahedron* **1995**, *51*, 6517.
- 6. Esker, J. L.; Newcomb, M. Tetrahedron Lett. 1993, 34, 6877.
- 7. Campbell, T. W.; Day, B. F. Chem. Rev. 1951, 48, 299.
- 8. Curtin, D. Y.; Druliner, J. D. J. Org. Chem. 1967, 32, 1552.
- 9. Klages, F.; Mesch, W. Chem. Ber. 1955, 88, 388.
- (a) Webbs, J. S.; Cosulich, D. B.; Mowat, J. H.; Patrick, J. B.; Broschard, R. W.; Meyer, W. E.; Williams, R. P.; Wolf, C. F.; Fulmor, W.; Pidacks, C.; Lancaster, J. E. J. Am. Chem. Soc. 1962, 84, 3185; (b) Webbs, J. S.; Cosulich, D. B.; Mowat, J. H.; Patrick, J. B.; Broschard, R. W.; Meyer, W. E.; Williams, R. P.; Wolf, C. F.; Fulmor, W.; Pidacks, C.; Lancaster, J. E. J. Am. Chem. Soc. 1962, 84, 3187.
- 11. Typical procedure for the thermal decomposition of Nacyltriazenes 1. The solution of triazene 1e (102 mg, 0.3 mmol) in toluene (10 mL) was refluxed for 6 h. The resulting mixture was then concentrated under reduced pressure and the residue was subjected to column chromatography on silica gel with ethyl acetate-hexane (1:4, v/v)as the eluent. The amide 6e (38.7 mg, 63% yield) was isolated as a white solid, whose spectra were identical with those reported in the literature (Koebel, R. F.; Needham, L. L.; Blantom, C. D. J. Med. Chem. 1975, 18, 192). Compound 7e (13.4 mg, 22% yield) was isolated as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 1.92–2.05 (1H, m), 2.42–2.51 (1H, m), 2.58 (1H, dd, J = 8.1, 16.5 Hz), 2.78– 2.92 (2H, m), 3.14 (1H, dd, J = 8.4, 15.6 Hz), 3.78 (3H, s), 4.59-4.70 (1H, m), 6.73-6.76 (2H, m), 7.52 (1H, d, J = 8.4 Hz; ¹³C NMR (CDCl₃) δ 29.2, 29.7, 36.2, 55.7, 63.4, 111.3, 112.1, 115.2, 133.0, 135.8, 156.9, 171.2; EIMS: m/z (rel intensity) 203 (M⁺, 74), 188 (16), 148 (100), 117 (14), 104 (14), 89 (5), 77 (9), 63 (4), 55 (8); HRMS calcd for C₁₂H₁₃NO₂: 203.0946. Found: 203.0948.