Tetrahydrofurans from Substituted Hex-5-yne-1,4-diols

Carolin Schwehm, Max Wohland, Martin E. Maier*

Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany Fax +49(7071)295135; E-mail: martin.e.maier@uni-tuebingen.de *Received 16 April 2010*

Abstract: It was discovered that substituted hex-5-yne-1,4-diols like **16**, **28**, and **30** undergo a domino sequence of Meyer–Schuster rearrangement followed by Michael addition forming 2,5-disubstituted tetrahydrofurans in presence of PtCl₂.

Key words: alkynes, domino reaction, Michael addition, organometallic reagents, rearrangement

The carbon-carbon triple bond represents an extremely versatile functional group in organic synthesis. In particular it can engage in a number of unique transformations. For example, metallacyclopentenes and metallacyclopentadienes are key intermediates in classical transformations involving alkynes. But alkynes can also be considered dehydrated ketones. The well-known hydration of alkynes is typically performed in presence of Hg(II) salts and strong acids.¹ In recent years the chemistry of alkynes has been extended by employing other soft electrophilic metals, like Au(I) or Pt(II) salts for promoting nucleophilic attack.² Thus, with internal hydroxyl functions, enol ethers and related compounds could be obtained from alkynols.³ Furthermore, such metal-promoted additions of internal oxygen-based nucleophiles have been exploited for some unique domino reactions.⁴ Some groups already reported on the synthesis of spiroacetals⁵ and bridged ketals⁶ from alkynediols. Spiroactals are frequently found in polyketide-based natural products.⁷ They provide a unique shape and curvature for a molecule. In this regard they can also be considered as a natural scaffold.⁸ With a view to the synthesis of the spiroacetal fragment of spirangien A, we conceived the cyclization of substrates containing a non-5-yne-1,4,9-triol subunit $(1 \rightarrow 2,$ Scheme 1). The spirangiens were described in 2005 by Höfle et al.⁹ Spirangien A (3) displays potent antifungal and cytotoxic properties. In addition to the complex highly unsaturated side chain there is a hydroxyl group next to the spiro acetal function. The known routes to the spirangien spiroacetal rely on the classical acetalization of a dihydroxyketone precursor.^{10,11} A related substrate 4 containing also a propargylic alcohol substructure was recently reported to cyclize to spiroacetal 5.^{5c}

A corresponding model substrate **16** could be easily assembled from methyl (3R)-hydroxybutanoate¹² **6** (Scheme 2). Via silylation of the alcohol¹³ and reduction of the ester function alcohol **8** was obtained.¹⁴ The alcohol

Scheme 1 Planned metal-catalyzed cyclization of non-5-yne-1,4,9-triols to spiroacetals. Structure of spirangien A (**3**) and example for a Au(I)-catalyzed spiroacetal formation

could be extended to nitrile 10 via mesylate 9 followed by substitution with cyanide (78%, 2 steps). A substitution of the alcohol under Mitsunobu conditions¹⁵ (DEAD, acetone cyanohydrin toluene) gave nitrile 10 in 67% yield. Treatment of nitrile 10 with DIBAL-H (1.4 equiv) in toluene furnished the key aldehyde 11. Part of this aldehyde was converted to alkyne 13 employing dimethyl 1-diazo-2-oxopropylphosphonate¹⁶ (12) as C-1 building block. In the next step alkyne 13 was added under Carreira conditions to aldehyde 11 using zinc triflate and (-)-N-methylephedrine (14) as additives.¹⁷ This way a 60% yield of alkynol 15 could be realized. Cleavage of the two silicon protecting groups gave rise to undec-6-in-2,5,10-triol (16). The fact that 16 only shows one set of signals in the ¹³C NMR spectrum indicates the high selectivity in the Carreira reaction. Alkynetriol 16, dissolved in toluene, was then subjected to some metal catalysts. While Ph₃PAgCl and Ph₃PAuCl left the substrate unchanged, PtCl₂ (40 mol%) in toluene induced the formation of a new product. Inspection of the ¹³C NMR indicated the lack of an acetal C but the presence of a keto function (209.3 ppm). Acetylation (Ac₂O, pyridine) showed that one of the OH groups was free. These data, the DEPT and COSY spectrum led to the conclusion that tetrahydrofuran

SYNLETT 2010, No. 12, pp 1789–1792 Advanced online publication: 30.06.2010 DOI: 10.1055/s-0030-1258109; Art ID: G09810ST © Georg Thieme Verlag Stuttgart · New York

17 was formed from alkynetriol **16**. Alcohol **17** and acetate **18** showed the presence of diastereomers (62:38).

Scheme 2 Conversion of butanoate 6 to undec-6-in-2,5,10-triol (16) and its PtCl₂-catalyzed formation of tetrahydrofuran 17

The formation of tetrahydrofuran **17** can be explained by an intramolecular oxa-Michael addition to enone **19** (Scheme 3). Due to partial symmetry within substrate **16** it was however not possible to distinguish between a metal-catalyzed redox isomerization¹⁸ or a Meyer–Schuster rearrangement¹⁹ of the central alkynol to the enone.

Therefore some other substrates were prepared that would allow to probe the isomerization mechanism. The general sequence is shown in Scheme 4. Substituted acetaldehydes **20a,b** were subjected to a one-pot proline-catalyzed α -aminoxylation, Wittig–Horner reaction and cleavage of the N–O bond leading to 4-hydroxy enoates **22a,b**.²⁰ A final catalytic hydrogenation furnished the 4-hydroxy esters **23a,b**. For the examples studied, the ee values of **22a,b** were very high. Via silylation of the hydroxyl function, ester reduction and Dess–Martin oxidation, aldehydes **26a,b** could be secured.

Using the two aldehydes **26a**,**b** addition of propynyllithium, generated by metalation of propenyl bromide,²¹ followed be removal of the silyl protecting group led to alkynediols **28** with an inner triple bond. Aldehyde **26a** was also reacted with (phenylethynyl)lithium leading to propargylic alcohol **29** and after deprotection to 1,7diphenylhept-6-yne-2,5-diol (**30**).

Scheme 3 Redox isomerization as well as Meyer–Schuster rearrangement might explain the formation of furanon 17

In order to probe the effect of an inner alkyne versus a terminal one, propargyl alcohol **32** was prepared from aldehyde **26a** by addition of lithium acetylide (THF, -80 °C) followed by cleavage of the silyl ether.

For the Bn series we also prepared the isomer where the triple bond is between the two hydroxyl groups, namely propargyl alcohol **35**. This substrate could be obtained from **26a** via Bestmann–Ohira alkyne formation (82%) yielding alkyne **33**. The corresponding lithium acetylide (LDA, THF, -80 °C) was added to paraformaldehyde to provide ultimately propargyl alcohol **35**.

The five compounds (**32**, **35**, **28a**,**b**, and **30**) were then subjected to a substoichiometric amount of PtCl₂ in toluene at room temperature (Scheme 5). In case of **32** the classical hydration product, hemiacetal **36** was formed as a mixture of diastereomers. From propargylic alcohol **35** the tetrahydrofuran would result if a redox isomerization would be induced by PtCl₂. However, with this substrate a complex mixture of products was formed that was not further analyzed. In contrast, the hexyne diol **28a** furnished a reasonable yield (48%) of 2,5-disubstituted furan **37a**. This shows that PtCl₂ had induced a Meyer–Schuster rearrangement prior to the oxa-Michael addition. Better results were obtained with the combination (Ph₃P)AuCl/ AgBF₄ in toluene. Under these conditions the tetrahydrofuran **37a** was formed in 74% yield.

In the same manner substrate **28b** could be converted to the corresponding tetrahydrofuran **37b**. The diastereomeric ratio was in the range 1:1 (84% yield). The reaction did also work with the phenyl-substituted substrate **30** producing tetrahydrofuran **38** (50% yield, dr = 1:1).

Thus, we could show that metal cations like Pt(II) or Au(I) are able to promote a formal Meyer–Schuster rearrangement of propargylic alcohols. With a suitably positioned hydroxyl function a subsequent oxa-Michael addition

Scheme 4 Synthesis of substrates for probing the alkynol isomerization mechanism

gave 2,5-disubstituted tetrahydrofurans. Possibly, this interesting domino sequence can be extended to other heterocycles or applied in a transannular fashion.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.

Scheme 5 Reactions of alkynediols 32 and 35 with PtCl₂. Cyclization of the alkynediols 28a, 28b, and 30 to the tetrahydrofurans 37a, 37b, and 38, respectively, via metal-induced Meyer–Schuster rearrangement and oxa-Michael addition

Acknowledgment

Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- (1) For a recent review, see: Hintermann, L.; Labonne, A. *Synthesis* **2007**, 1121.
- (2) For some reviews, see: (a) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (b) Fürstner, A.; Davies, P. W. Angew. Chem. Int. Ed. 2007, 46, 3410; Angew. Chem. 2007, 119, 3478. (c) Marion, N.; Nolan, S. P. Angew. Chem. Int. Ed. 2007, 46, 2750; Angew. Chem. 2007, 119, 2806. (d) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Commun. 2007, 333. (e) Arcadi, A. Chem. Rev. 2008, 108, 3266. (f) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (g) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. (h) Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem. Int. Ed. 2008, 47, 6138; Angew. Chem. Int. Ed. 2008, 47, 2178; Angew. Chem. 2008, 120, 2208. (j) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. (k) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208.
- (3) (a) Kang, J.-E.; Shin, S. Synlett 2006, 717. (b) Belting, V.;
 Krause, N. Org. Lett. 2006, 8, 4489. (c) Wilckens, K.;
 Uhlemann, M.; Czekelius, C. Chem. Eur. J. 2009, 15, 13323.
- (4) See, for example: (a) Fürstner, A.; Hannen, P. *Chem. Eur. J.* **2006**, *12*, 3006. (b) Jimenez-Nunez, E.; Molawi, K.;
 Echavarren, A. M. *Chem. Commun.* **2009**, 7327. (c) Kirsch, S. F. *Synthesis* **2008**, 3183.
- (5) (a) Liu, B.; De Brabander, J. K. Org. Lett. 2006, 8, 4907.
 (b) Trost, B. M.; Weiss, A. H. Angew. Chem. Int. Ed. 2007, 46, 7664; Angew. Chem. 2007, 119, 7808. (c) Aponick, A.; Li, C.-Y.; Palmes, J. A. Org. Lett. 2009, 11, 121.

Synlett 2010, No. 12, 1789-1792 © Thieme Stuttgart · New York

- (7) For some recent reviews, covering the synthesis of spiroacetals, see: (a) Perron, F.; Albizati, K. F. *Chem. Rev.* **1989**, *89*, 1617. (b) Yeung, K.-S.; Paterson, I. *Chem. Rev.* **2005**, *105*, 4237. (c) Aho, J. E.; Pihko, P. M.; Rissa, T. K. *Chem. Rev.* **2005**, *105*, 4406. (d) Kiyota, H. *Top. Heterocycl. Chem.* **2006**, *5*, 65. (e) El Sous, M.; Ganame, D.; Zanatta, S.; Rizzacasa, M. A. ARKIVOC **2006**, 105.
- (8) Barun, O.; Kumar, K.; Sommer, S.; Langerak, A.; Mayer, T. U.; Müller, O.; Waldmann, H. *Eur. J. Org. Chem.* 2005, 4773.
- (9) Niggemann, J.; Bedorf, N.; Flörke, U.; Steinmetz, H.; Gerth, K.; Reichenbach, H.; Höfle, G. Eur. J. Org. Chem. 2005, 5013.
- (10) (a) Lorenz, M.; Kalesse, M. *Tetrahedron Lett.* 2007, 48, 2905. (b) Lorenz, M.; Kalesse, M. Org. Lett. 2008, 10, 4371. (c) Lorenz, M.; Bluhm, N.; Kalesse, M. Synthesis 2009, 3061.
- (11) (a) Paterson, I.; Findlay, A. D.; Anderson, E. A. Angew. Chem. Int. Ed. 2007, 46, 6699; Angew. Chem. 2007, 119, 6819. (b) Paterson, I.; Findlay, A. D.; Noti, C. Chem. Commun. 2008, 6408. (c) Paterson, I.; Findlay, A. D.; Noti, C. Chem. Asian J. 2009, 4, 594.
- (12) Kitamura, M.; Tokunaga, M.; Ohkuma, T.; Noyori, R. Org. Synth. 1992, 71, 1; Org. Synth., Coll. Vol. IX; 1998, 589.

- (13) Ono, M.; Nakamura, H.; Konno, F.; Akita, H. *Tetrahedron: Asymmetry* **2000**, *11*, 2753.
- (14) Moore, C. G.; Murphy, P. J.; Williams, H. L.; McGown, A. T.; Smith, N. K. *Tetrahedron* **2007**, *63*, 11771.
- (15) (a) Wilk, B. K. Synth. Commun. 1993, 23, 2481. (b) Aesa, M. C.; Baán, G.; Novák, L.; Szántay, C. Synth. Commun. 1995, 25, 1545.
- (16) Pietruszka, J.; Witt, A. Synthesis 2006, 4266.
- (17) (a) Frantz, D. E.; Fässler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000, 122, 1806. (b) Sasaki, H.; Boyall, D.; Carreira, E. M. Helv. Chim. Acta 2001, 84, 964. (c) Boyall, D.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2002, 4, 2605.
- (18) In this paper a domino redox–isomerization–oxa-Michael reaction was used to prepare pyrans: Trost, B. M.; Gutierrez, A. C.; Livingston, R. C. *Org. Lett.* **2009**, *11*, 2539.
- (19) (a) Engel, D. A.; Dudley, G. B. *Org. Lett.* 2006, *8*, 4027.
 (b) Egi, M.; Yamaguchi, Y.; Fujiwara, N.; Akai, S. *Org. Lett.* 2008, *10*, 1867. (c) Stefanoni, M.; Luparia, M.; Porta, A.; Zanoni, G.; Vidari, G. *Chem. Eur. J.* 2009, *15*, 3940.
 (d) Ramón, R. S.; Marion, N.; Nolan, S. P. *Tetrahedron* 2009, *65*, 1767.
- (20) (a) Mangion, I. K.; MacMillan, D. W. C. J. Am. Chem. Soc.
 2005, 127, 3696. (b) Varseev, G. N.; Maier, M. E. Org. Lett.
 2007, 9, 1461. (c) Kondekar, N. B.; Kumar, P. Org. Lett.
 2009, 11, 2611.
- (21) Suffert, J.; Toussaint, D. J. Org. Chem. 1995, 60, 3550.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.