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Abstract: The asymmetric 1,3-dipolar cycloaddition of nitrones to
nitroolefins was investigated by employing novel thiourea-contain-
ing organocatalysts. This transformation exhibited excellent diaste-
reoselectivities (generally >99:1 dr) and moderate to high
enantioselectivities (up to 88% ee). A 2,3-diaminopropanol deriva-
tive with three contiguous chiral centers was efficiently prepared
from one cycloaddition adduct.
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The asymmetric 1,3-dipolar cycloaddition reaction is one
of the most important pericyclic reactions to generate op-
tically pure heterocycles in a very straightforward man-
ner.1 A number of 1,3-dipoles, such as azomethine ylides,2

azomethine imines,3 nitrile oxides,4 and others5 have been
widely applied in the cycloaddition with various alkenes
and alkynes. In particular, nitrones6 as 1,3-dipoles have
received special interest, because not only they are easily
handled compounds and readily available, but also be-
cause the resulting isoxazolidines can be smoothly con-
verted to 1,3-amino alcohols. These amino alcohols find
wide applications in the synthesis of natural products and
pharmaceutical compounds. An array of dipolarophiles,
including vinyl ether7 and various a,b-unsaturated car-
bonyl compounds,8 have been well represented in the
asymmetric 1,3-dipolar cycloaddition of nitrones. Never-
theless, the reaction of nitrones and nitroolefins has been
rarely explored,9 although nitroolefins have been identi-
fied as one of the most versatile electrophiles in organic
synthesis.10 To the best of our knowledge, its catalytic
asymmetric variant has not been provided to date. Here
we would like to report the first organocatalytic 1,3-dipo-
lar cycloaddition of nitrones to nitroolefins promoted by
thiourea-containing compounds. This reaction can be con-
ducted enantioselectively in the presence of new chiral
thiourea-pyrrole catalysts.

Recently, chiral thioureas have performed as powerful
Brønsted acid catalysts for a large number of asymmetric
reactions through hydrogen-bonding interaction.11 Nitro-
olefins have proved to be a suitable type of substrates with
thiourea catalysis since the pioneering work of Takemoto
in 2003.12 In our continuing catalytic studies based on

thiourea compounds,13 we expected that the stereoselec-
tivity of 1,3-dipolar cycloaddition between nitrones and
nitroolefins could be controlled by the use of chiral thio-
ureas.

A number of diversely structured thiourea catalysts
(Figure 1) were screened in the asymmetric 1,3-dipolar
cycloaddition of C,N-diphenyl nitrone (2a) and alkyl ni-
troolefin 3a (10 mol% catalyst, toluene, r.t., 4 Å MS).9,14

As outlined in Table 1, almost no reaction occurred with-
out the thiourea catalyst (entry 1). To our gratification,
thiourea 1a12a smoothly promoted this transformation.
The desired cycloaddition product 4a was obtained in
moderate yield with excellent diastereoselectivity after 3
days (dr >99:1). However, the ee value was very disap-
pointing (entry 2). Poor results were attained when differ-
ent functionalized thioureas 1b,12e 1c,13e and 1d13e were
utilized (entries 3–5). Racemic 4a was obtained in the
presence of Jacobsen’s thiourea-pyrrole catalyst 1e (entry
6).15 While newly designed thiourea-pyrrole 1f from
chiral 1,2-diphenylethylenediamine still delivered an un-
acceptable ee value (entry 7),16 we were pleased to find
that the enantioselectivity could be dramatically improved
with thiourea-pyrrole 1g derived from (R,R)-1,2-diamino-
hexane (entry 8). Consequently, more modifications were
made on the pyrrole moiety. While the same ee was

Figure 1 Structures of various thiourea catalysts
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gained for catalyst 1h with a p-fluorophenyl substitution
(entry 9), the enantioselectivity was significantly de-
creased for 1i bearing an electron-donating group (entry
10). As a result, thiourea 1j and 1k possessing stronger
electron-withdrawing groups were prepared, which gave
rise to slightly better enantioselectivities as expected (en-
tries 11 and 12). The results could be further improved

when the reaction was conducted at 0 °C, but the time had
to be extended to obtain good yields (entries 13 and 14).
A decreased yield was isolated in the presence of 5 mol%
of 1j (entry 15). Unfortunately, the results could not be
improved by increasing the catalytic loading to 15 mol%
(entry 16). Subsequently, several solvents were investi-
gated with the superior catalyst 1j at 0 °C. While reduced
enantioselectivities were observed in some solvents (en-
tries 17–20), satisfactory data were afforded in less com-
mon solvents such as m-mesitylene and methyl tert-butyl
ether (MTBE) (entries 21 and 22). A simple recrystalliza-
tion from 2-PrOH–n-hexane provided isoxazolidine 4a in
an enantiopure form (entry 22, 99% ee).

We then examined a spectrum of nitrones and nitroolefins
to explore the reaction generality.17 The reactions were
conducted with 10 mol% of catalyst 1j in MTBE at 0 °C
for 6 days. In general, excellent diastereoselectivities (dr
>99:1) were observed in the tested reactions. As summa-
rized in Table 2, for C,N-diphenyl nitrone (2a), good
enantioselectivities and isolated yields were obtained for
various aliphatic nitroolefins bearing a branched, linear,
or functionalized side chain (entries 1–7). On the other
hand, the reaction of diversely substituted nitrones with
b-ethyl nitroethene was investigated. Nitrones bearing
electron-donating substitutions afforded good results (en-
tries 8–10). Nitrones possessing electron-withdrawing
groups exhibited slightly poorer solubility in MTBE.
Modest yields were attained in the specific time, while the
enantioselectivities remained high (entries 11–14). A
good ee with modest yield was attained for a nitrone pos-
sessing a 2-furyl group (entry 15). In addition, a nitrone
with an N-o-anisyl substitution, which could be easily re-
moved through mild oxidative conditions, afforded a sat-
isfactory yield (entry 16). Moreover, good results were
also gained for the nitrone bearing an N-p-fluorophenyl
group (entry 17). The nitrone in situ formed from
PhNHOH and propionaldehyde showed high reactivity in
the 1,3-dipolar cycloaddition, but only moderate enantio-
selectivity could be achieved (entry 18).

As illustrated in Scheme 1, enantiomerically pure isox-
azolidine 4a (99% ee, after recrystallization) could be di-
rectly converted to its 2,3-diaminopropanol derivative,
which was easily isolated as N-Boc-protected compound
5, without any racemization.18 Moreover, single crystals
suitable for X-ray crystallographic analysis were obtained
from an N-methanesulfonyl derivative 6 (Figure 2).19 In
this way, the absolute stereochemistry of cycloadduct 4a
was determined and the regioselectivity of the cycloaddi-
tion confirmed.

In conclusion, we have presented the first stereoselective
1,3-dipolar cycloaddition reaction of nitrones to b-alkyl
nitroolefins promoted by newly designed thiourea-pyrrole
catalysts. In general excellent diastereo- (dr >99:1) and
moderate to high enantioselectivities (up to 88% ee) could
be obtained for an array of substrates. Enantiopure 2,3-di-
aminopropanol derivatives with three contiguous chiral
centers could be efficiently prepared from the cycloaddi-
tion adducts obtained. Current studies are under way to in-

Table 1 Screening Studies of Organocatalytic 1,3-Dipolar Cycload-
dition of Nitrone 2a and Nitroolefin 3aa

Entry Catalyst 1 Solvent Yield (%)b ee (%)c

1 – Toluene – –

2 1a Toluene 56 9

3 1b Toluene 69 8

4 1c Toluene 39 24

5 1d Toluene 79 23

6 1e Toluene 45 0

7 1f Toluene 67 11

8 1g Toluene 71 60

9 1h Toluene 84 60

10 1i Toluene 42 37

11 1j Toluene 77 66

12 1k Toluene 78 64

13d 1j Toluene 76 74

14d 1k Toluene 73 70

15d,e 1j Toluene 67 73

16d,f 1j Toluene 74 72

17d 1j CH2Cl2 23 32

18d 1j FPh 71 63

19d 1j CF3Ph 52 67

20d 1j m-Xylene 69 72

21d 1j m-Mesitylene 76 80

22d 1j MTBE 79 (58) 82 (99)

a Unless otherwise noted, reactions were performed with 0.1 mmol of 
2a, 0.12 mmol of 3a, 10 mol% of 1, 50 mg 4 Å MS in 0.5 mL of sol-
vent at r.t. for 3 d.
b Isolated yields.
c Determined by chiral HPLC analysis, dr >99:1 in all cases. The ab-
solute configuration of 4a was determined by X-ray analysis after 
some derivation (see Figure 2).
d At 0 °C for 6 d.
e With 5 mol% of 1j.
f With 15 mol% of 1j.
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vestigate the catalytic mechanism and expand the
synthetic utility of this catalytic system.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.

Figure 2 X-ray crystallographic structure of enantiopure 6
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13C NMR (50 MHz, CDCl3): d = 155.4, 147.0, 140.6, 129.1, 
128.5, 127.1, 126.9, 118.3, 114.8, 79.6, 78.8, 58.6, 56.1, 
29.9, 28.2, 19.4, 18.2 ppm. ESI-HRMS: m/z calcd for 
C23H32N2O3 + H: 385.2491; found: 385.2453.

(19) CCDC-700901 (6) contains the supplementary 
crystallographic data for this paper. These data can be 
obtained free of charge from the Cambridge 
Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
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