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ABSTRACT: B-cell lymphoma 6 (BCL6) is a transcriptional factor that expresses in 

lymphocytes and regulates the differentiation and proliferation of lymphocytes. Therefore, BCL6 

is a therapeutic target for auto-immune diseases and cancer treatment. This report presents the 

discovery of BCL6-corepressor interaction inhibitors by using a biophysics-driven fragment-

based approach. Using the surface plasmon resonance (SPR)-based fragment screening, we 

successfully identified fragment 1 (SPR KD = 1200 µM, ligand efficiency (LE) = 0.28), a 

competitive binder to the natural ligand BCoR peptide. Moreover, we elaborated 1 into the more 

potent compound 7 (SPR KD = 0.078 µM, LE = 0.37, cell-free protein-protein interaction (PPI) 
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IC50 = 0.48 µM (ELISA), cellular PPI IC50 = 8.6 µM (M2H)) by a structure-based design and 

structural integration with a second high-throughput screening hit. 

KEYWORDS: B-cell lymphoma 6, surface plasmon resonance, fragment-based drug discovery, 

fragment-assisted drug discovery, protein-protein interaction  

INTRODUCTION 

B-cell lymphoma 6 (BCL6) is a transcriptional factor that belongs to the bric-a-brac, tramtrack, 

broad complex/poxvirus zinc finger (BTB/POZ) family of proteins. It possesses BTB, RD2, and 

zinc finger domains, and interacts with three corepressors, i.e., BCoR, SMRT, and NCoR.
1
 It 

drives germinal center B-cell formation and differentiation of T lymphocytes.
2-5

 It is also 

involved in the differentiation and proliferation of diffuse large B-cell lymphomas.
6, 7

 

Consequently, it is thought to be an effective therapeutic target for the treatment of auto-immune 

diseases and cancer.  

The crystal structure of the BCL6 BTB domain (BCL6
BTB

) complexed with the SMRT 

peptide has already been reported.
8
 The crystal structure of the co-complex with the BCL6 

inhibitor 79-6 has also been solved.
9
 These ligands bind in the lateral groove of the BCL6

BTB
 

homodimer. Parekh et al. have suggested that the lateral groove of the BCL6
BTB

 homodimer 

could be an excellent therapeutic target to develop effective small-molecule inhibitors.
6
 Several 

compounds and peptides, other than 79-6, have been reported as BCL6
BTB

 inhibitors, including 

RI-BPI with a KD of ~10 µM, Rifamycin SV with a KD of ~1 mM, and FX1 with a KD of 7 µM, 

all of which have binding affinities weaker than 1 µM (Figure 1).
10-12

 Recently, we reported the 

peptide F1324, which inhibits the BCL6-BCoR interaction with a KD of 0.57 nM (Figure 1).
13

 

Peptide F1324 also binds to the lateral groove of the BCL6
BTB

 homodimer. These data suggest 
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that the lateral groove of the BCL6
BTB

 homodimer could be a potent site for inhibitors to bind 

with high affinity. 

Fragment-based drug discovery (FBDD) has been widely practiced in both industry and 

academia to identify compounds with good physiological profiles, new scaffolds, and new 

binding sites.
14, 15

 The starting point of this approach is to identify molecule fragments with low 

affinity using high-concentration screening, and then to improve their affinity by linking or 

growing them.
16, 17

 Biophysical assays (surface plasmon resonance (SPR), nuclear magnetic 

resonance (NMR), thermal shift assays, and so on) have been used for the FBDD approach 

because they are more sensitive than biochemical assays.
18, 19

 Of these, SPR biosensing is the 

most cost-effective (low protein consumption and quick assay development) and provides high-

content information on binding affinity and kinetics, and identification of pan-assay interference 

compounds (PAINS).
20, 21

 Thus, SPR biosensing assays are often used for the FBDD approach.
22-

25
 Protein-protein interactions (PPIs) represent a challenging target for the biophysics-driven 

FBDD approach because the targets, like BCL6, do not possess a deep binding pocket.
26-29

 

In this study, SPR-based fragment screening was performed against BCL6 to discover BCL6-

cofactor interaction inhibitors. As a result, we successfully identified triazine fragment 1, which 

binds to the lateral groove of the BCL6
BTB

 homodimer where BCoR also binds. Furthermore, 

fragment 1 was optimized into the more potent inhibitor 7, which exhibits cellular activity and 

two-digit nanomolar binding affinity, by structure-based drug design using X-ray analysis and 

structural integration with a second high-throughput screening (HTS) hit. This process represents 

a highly successful fragment-assisted drug discovery approach (FADD).
30, 31

  

RESULTS AND DISCUSION 
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Protein preparation. To identify BCL6 inhibitors that disrupt the interaction between BCL6 

and cofactors, we attempted to prepare BCL6
BTB

 cofactors that bind to the lateral groove of the 

BCL6
BTB

 homodimer. BCL6
BTB

 is approximately 15 kDa in size, but despite its small size, its 

domain contains five cysteine residues. We speculated that the high proportion of Cys residues 

would cause instability, which was reinforced by the fact that the co-crystal structure of 

BCL6
BTB

 has been obtained using the Cys-mutant (Ala5-Glu129, C8Q, C67R, and C84N) to 

prevent aggregation.
8
 In addition, we needed to consider that the high concentration (mM) 

required for SPR screening can cause false positives. In an attempt to mitigate this tendency for 

false positives, we decided to use the Cys-mutation protein for SPR-based screening. 

SPR assay development. For our SPR-based screening, we used a Biacore 4000 high-

throughput instrument with five detection areas for protein immobilization and four flow cells 

for compound injection. This parallel immobilization enables the evaluation of selectivity and 

nonspecific binding simultaneously.
32-34

 We also screened against both wild type (wt) and 

mutant (mt) BCL6
BTB

 by SPR. Figures 2A and 2B show the layout of the sensor chip used in this 

screening. Avi-tagged wt BCL6
BTB

 and avi-tagged mt BCL6
BTB

 were captured onto spot 1 and 

spot 2, respectively, by NeutrAvidin. In addition, wt BCL6
BTB

 was covalently immobilized onto 

spot 5 by an amine coupling reaction (Figure S1). This configuration enabled us to evaluate 

binding to captured wt BCL6
BTB

, captured mt BCL6
BTB

, coupled wt BCL6
BTB

, and coupled 

NeutrAvidin. 

To verify the activity of each immobilized BCL6
BTB

, we evaluated the binding of the BCoR 

peptide as a positive control (Figures 2C to 2F). The BCoR peptide successfully binds with each 

BCL6
BTB

 in a dose-dependent manner. The KD values for the BCoR peptide with each BCL6
BTB

 

are in the two-digit micromolar range. Since there are no significant differences in the binding 
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affinities among the different BCL6
BTB

s, the mutation of the Cys residues is not thought to affect 

the interaction between BCL6 and BCoR, and we concluded that each BCL6
BTB

 is immobilized 

while retaining its activity. 

For performing high-quality SPR-based screening, maintaining the stability of the 

immobilized protein is important.
35-37

 Therefore, selection of a suitable buffer is critical to retain 

stability. Compared with that used in biochemical assays, the concentration of dimethyl sulfoxide 

(DMSO) required for SPR-based screening is generally higher to solubilize the fragments at high 

concentration. Accordingly, the influence of DMSO on the activities of the immobilized 

BCL6
BTB

s was evaluated (Table 1 and Figure S2). The KD and Rmax values for the BCoR peptide 

are unaffected by the concentration of DMSO. Moreover both wt BCL6
BTB

 and mt BCL6
BTB

 are 

stable for 36 h (500 injections) under buffer conditions of 1% or 5% DMSO. Therefore, we 

decided to perform screening with a 5% DMSO buffer to ensure a 1 mM solubility for the 

fragments.  

Primary fragment screening. In a primary SPR-based screening of our in-house fragment 

library, we were able to obtain the screening data for captured wt BCL6
BTB

, captured mt 

BCL6
BTB

, coupled wt BCL6
BTB

, and NeutrAvidin simultaneously using the Biacore 4000 

apparatus. In the screening with the captured mt BCL6
BTB

, the sensorgrams against most of the 

fragments show a reasonable box-shape, indicating fast binding (Figure 3B). Conversely, 

captured wt BCL6
BTB

 presents many plots that indicate slow binding (Figure 3A). These data 

suggest that many fragments reversibly reacted with the Cys residues on wt BCL6 due to a 

concentration as high as 1 mM. Regarding the immobilization method, the binding responses of 

the positive control (BCoR) to coupled wt BCL6
BTB

 decrease depending on the injection number, 
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while the binding responses of the positive control to each captured BCL6
BTB

 are stable (Figures 

3A to 3C). These results indicate that captured mt BCL6
BTB

 is optimal for stable screening.  

In the primary screening, we identified 266 fragments for captured wt BCL6
BTB

, 256 

fragments for captured mt BCL6
BTB

, 273 fragments for coupled wt BCL6
BTB

, and 50 fragments 

for NeutrAvidin. The Venn diagram in Figure 2E summarizes the results of this fragment 

screening. A total of 64 compounds bind to all the BCL6
BTB

s, hence these fragments were 

selected as the first priority for the follow-up dose-response tests.  

Discovery and characterization of fragment 1. To confirm the reproducibility and dose-

responsivity of the 64 fragments, we performed dose-titration experiments. All the fragments 

show binding responses in a dose-dependent and reversible manner (data not shown). Next, we 

performed saturation transfer difference-nuclear magnetic resonance (STD-NMR) experiments to 

prioritize the 64 fragments. Seven out of the 64 fragments exhibit binding to BCL6 (data not 

shown). Of seven binding fragments, we focused on fragment 1 (Figure 4A), which shows 

binding to BCL6 by STD-NMR (Figure 4B) and furthermore competition with the BCoR peptide 

by SPR competition experiments (Figure 4C). The KD value for 1 was determined to be 1.2 mM 

by SPR, and its ligand efficiency (LE) was calculated to be 0.28 from its KD value. An LE of at 

least 0.29 is necessary to develop an orally available candidate.
38

 Therefore, 1 is a good starting 

point for elaboration into potent BCL6 inhibitors. 

For further optimization of fragment 1, we attempted to determine its binding mode by 

determining the co-crystal structure of 1 with wt BCL6
BTB

. Co-crystals of 1 with BCL6
BTB

 were 

obtained by soaking into unliganded BCL6
BTB

 crystals in which the biological homodimer is 

related by crystallographic 2-fold symmetry. Electron density indicated that 1 binds to the lateral 
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groove at the dimer interface and exhibits alternate conformations of the aminotriazine moiety 

(Figures 4 and S4). The linker nitrogen forms a hydrogen bond with the main-chain oxygen of 

Met51. Comparison with the binding mode of 79-6 shows that 1 occupies the same site with a 

similar interaction pattern (data not shown). Therefore, we evaluated the BCL6 binding affinities 

of several pyrimidine derivatives that are structurally related to 1. 

Structure-activity relationships of compounds related to fragment 1. Table 2 summarizes 

the structure-activity relationships of the pyrimidine derivatives along with the original fragment 

1. Pyrimidine derivative 2 exhibits a weak binding potency (KD = 3000 µM), while the 

introduction of fluorine (3) or chlorine (4) atoms onto the 5-position of compound 2 results in 

significantly improved binding affinities (KD = 180 and 68 µM, respectively). Chloropyrimidine 

4 exhibits good LE (0.38), and may be a promising compound for further optimization with the 

aim to develop more potent BCL6 inhibitors.  

Structural integration with a second HTS hit. Simultaneously, an independent HTS 

campaign for BCL6 inhibitors identified the weak BCL6 inhibitor 5 (KD = 88 µM, LE = 0.16), 

which also has a pyrimidine core structure, as shown in Figure 5; compound 5 was discovered by 

the HTS campaign using the ELISA assay monitoring the interaction between the BCL6
BTB

 and 

the BCoR peptide. The structural resemblance of 5 to 4 prompted us to integrate these two 

structures, forming the “hybrid compounds” shown in Figure 5. Co-crystal structure 

determination of compounds 4 and 5 with BCL6
BTB

 confirmed that these compounds exhibit the 

same binding modes as that of the initial triazine fragment 1 (Figures 6 and S4). As expected, the 

two aromatic rings connected by the amine linker in the two structures significantly overlap. The 

co-crystal structure of 4 reveals that the chlorine atom at the 5-position of the pyrimidine core 

occupies a small lipophilic region of BCL6
BTB

. The binding mode information of the HTS-
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derived pyrimidine derivative 5 shows that the carbonyl oxygen of the right-hand-side cyclic 

amide moiety interacts with Glu115 of BCL6
BTB

. Therefore, based on the structural 

superposition of 5 with 4, the hybrid compounds 6 and 7 were designed and synthesized (Table 

3). We selected a simple unsubstituted pyridinylmethyl substituent for compound 7 while taking 

synthetic tractability into account. 

The pyrimidine derivatives 6 and 7 exhibit significantly improved BCL6 binding affinities 

(KD = 9.3 and 0.078 µM, respectively) compared to those of the fragment derivative 4 and HTS 

hit 5. To confirm the binding modes, the co-crystal structures of compounds 6 and 7 were 

determined, as well as those of the other compounds (Figures 7A and S4). The electron density 

map shows that the pyridine moiety of compound 7 is exposed to solvent and mostly disordered. 

Both compounds bind to BCL6
BTB

 in the same binding mode as those for compounds 1, 4, and 5. 

The linker nitrogen forms a hydrogen bond with the main-chain oxygen of Met51, and the 

carbonyl oxygen of the cyclic amide moiety interacts with Glu115. The reasons for the 

significant improvement in binding affinity by introduction of the pyrimidine ring are unclear 

because no specific structural features are observed.  

As compound 7 exhibits two-digit nanomolar binding affinity along with good LE (0.37), we 

also evaluated the BCL6-BCoR PPI inhibitory activity of 7 in cell-free and cellular assays 

(Figures 7B to 7E). To evaluate the PPI inhibitory activities in cells, previously reported M2H 

assay was used.
13

 Briefly, HEK293T cells were transfected with the GAL4-responsive reporter 

plasmid, the bait expression plasmid (GAL4 DNA-binding domain fused to wt BCL6, Ala5-

Glu129), and the VB expression plasmid (VP16 activation domain fused to BCoR, Leu112-

Ala753). Then, the PPI activities were evaluated by monitoring luciferase activities in the 

transfected HEK293 cell lysates. Compound 7 exhibits potent cell-free PPI inhibitory activity 
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(ELISA IC50 = 0.48 µM) along with moderate cellular potency (M2H IC50 = 8.6 µM). Taken 

together, compound 7 is a promising BCL6 inhibitor candidate for further exploration. The total 

process of the fragment-based approach was summarized in Figure 8. Scaffold hopping of the 

initial triazine fragment yielded the pyrimidine fragment 2, which enabled an introduction of a 

substituent occupying the small lipophilic region of BCL6
BTB

. Structure-based modification of 

the resulting compound 4 along with the consolidation of HTS hit 5 led to the discovery of the 

cell-active compound 7. The HTS hit 5 had a poor ligand efficiency (LE = 0.16), and its complex 

chemical structure made its modification rather difficult. Conversely, the fragment-derived 

compound 4 was a very good step for further modification due to its good ligand efficiency (LE 

= 0.38) and small molecular size. 

CHEMISTRY 

Synthetic methods for pyrimidine derivatives are shown in Scheme 1. The reaction of the 4-

chloropyrimidines 8–11 with anilines 12 and 13 give the corresponding 4-anilinopyrimidines 2, 6, 

14, 15, and 16. Amination of 14–16 with amines 17 and 18 at the 2-position of the pyrimidine 

derivatives gives the di- or tri-substituted pyrimidine derivatives 3, 4, and 7.  

CONCLUSIONS 

To identify novel and promising starting points for the discovery of potent BCL6 inhibitors, 

we adopted an FBDD approach, which represents a challenge given that the target is a PPI. We 

identified 64 novel binding fragments using SPR-based fragment screening, and among them, 

fragment 1 showed moderate LE (0.28) and competition with the BCoR peptide. Moreover, 

BCL6 binding affinities of several structurally related pyrimidine derivatives were also measured, 

and we identified the more potent fragment-like pyrimidine derivative 4 (KD = 68 µM). 
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Consolidation of the structural information of compound 4 with the independently obtained HTS 

hit 5 led to the identification of the potent BCL6 inhibitor 7 (KD = 0.078 µM, LE = 0.37), which 

is >15,000-fold more potent than the initial fragment 1. Compound 7 also exhibited an efficacy 

in cell-free and cellular PPI assays (ELISA IC50 = 480 nM, M2H IC50 = 8.6 µM). These findings 

suggest that the combination of biophysics-driven FBDD, SBDD, and FADD is a promising 

strategy for hit identification and lead generation against challenging targets such as PPIs. 

EXPERIMENTAL SECTION 

Preparation of BCL6. The fragments of His, avi, SUMO (LifeSensors), Flag, Tobacco Etch 

Virus (TEV) protease recognition sequence, and BCL6
BTB

 (human BCL6 from 5 to 129 aa) were 

amplified by the polymerase chain reaction (PCR) and ligated into pET21 vector (Merck). The 

mt BCL6
BTB

 (C8Q, C67R, C84N) was constructed by the overlap PCR method. The proteins 

were expressed in E. coli BL21 (DE3) (NIPPON GENE) and partially biotinylated on avi-tag by 

endogenous BirA. The proteins were purified using Ni-NTA (QIAGEN) and Superdex200 (GE 

healthcare) columns. For Flag-tagged wt BCL6
BTB

, SUMO was digested by ULP1 (LifeSensors). 

To remove ULP1, His-avi-SUMO, and uncleaved protein, the digested solution was passed 

through an Ni-NTA column in 50 mM Tris-HCl pH 8.0, 300 mM NaCl, 5% glycerol, and 1 mM 

DTT. To increase the purity, ion-exchange chromatography (monoQ, GE Healthcare) was 

conducted. The purified proteins were concentrated to 2 mg/ml for storage at −80°C. 

Fragment library. The library contained 1494 fragments. All fragments in the library had a 

clogP <3.5, the number of H-bond acceptors and donors were <6 and <3 respectively, and 

rotatable bonds were <3. Heavy atom count ranged between 8 and 15. The molecular weight of 
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the fragments were <350 Da (average 180 Da), and the average of the aromatic rings was 1.5. 

Fragments were dissolved at 200 mM in 100% DMSO and stored at −30 °C. 

SPR. SPR biosensing experiments were performed at 22°C on Biacore 4000 and Biacore 

S200 instruments equipped with SeriesS CM5 and SA sensor chips (GE healthcare).  

HBS-P+ (10 mM Hepes pH 7.4, 150 mM NaCl, 0.05% Surfactant P20, GE healthcare) 

supplemented with 1 mM DTT was used as the running buffer for immobilization. NeutrAvidin 

(Thermo Fisher Scientific Inc.) was covalently coupled onto spots 1, 2, and 3 of a CM5 sensor 

chip following the standard amine coupling procedure according to the manufacturer's 

instructions. Typical immobilization levels of NeutrAvidin ranged from 10,000 to 13,000 

resonance units (RUs). Subsequently, avi-tagged wt BCL6
BTB

 and avi-tagged mt BCL6
BTB

 were 

injected to spots 1 and 2, respectively. The surfaces were blocked by injecting biocytin 

(Thermofisher) to spots 1, 2, and 3. Approximately 13,000 RUs of each BCL6
BTB

 were captured 

by NeutrAvidin. Furthermore, wt BCL6
BTB

 was immobilized on spot 5 via the standard amine 

coupling procedure, resulting in immobilization levels of around 4,000 RUs.  

For the interaction studies, binding experiments were performed in 20 mM Tris, pH 8.0, 150 

mM NaCl, 0.01% Surfactant P20, 1 mM DTT, and 5% DMSO. Different concentration sample 

solutions were injected for 30 or 60 s at a flow rate of 30 or 50 µL/min and the dissociation was 

thereafter followed for up to 30, 60, or 150 s. Data processing and analysis were performed using 

the Biacore 4000 and Biacore S200 evaluation software (GE healthcare). Solvent correction was 

included as described in the Biacore software handbook. Sensorgrams were double referenced 

prior to fitting the concentration series to a steady-state affinity model. The dissociation constant 

KD was calculated using the equation below. 
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KD = Rmax × C/R - C 

where Rmax, R, and C correspond to the sample binding capacity of the surface (RU), the 

normalized response of test sample (RU), and the concentration of the test solution (M), 

respectively. LE was calculated using the equation below. 

LE = ∆G/HA = (−2.303 × R × T) × log (KD)/HA 

where ∆G, HA, R, and T correspond to the Gibbs free energy (kcal/mol), heavy atom count, the 

ideal gas constant (1.987 × 10
−3

 kcal/K/mol) and the temperature in Kelvin (K).
39

 

For the primary screen, Takeda's fragment library were diluted to 1 mM in the running buffer 

and injected for 30 s. Then, the dissociation was followed for 30 s. Every 33
rd

 cycle, a positive 

control containing 100 µM BCoR peptide ((Arg498-Pro514)-Lys, Acetyl-

RSEIISTAPSSWVVPPK-OH, chemically synthesized by Toray Research Center) and running 

buffer as a blank were injected. Data processing and analysis were performed using the Biacore 

4000 evaluation software. Solvent correction was included as described in the Biacore 4000 

software handbook. The binding responses were normalized by the positive control and the 

molecular weight of each sample. Fragments with a normalized binding response that exceeded 

median + median absolute deviation were selected as primary hits. As for NeutrAvidin, 

fragments with a normalized response that was more than 90% against their theoretical Rmax 

were selected.  

For competition studies, data were acquired for test compounds binding to BCL6 in the 

presence of 100 µM BCoR peptide in the running buffer and samples. When a compound binds 

to the same site as the BCoR peptide, the response for the compound decreases.
40
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X-ray Crystallography. Crystals of unliganded BCL6
BTB

 for soaking experiments were 

obtained as described previously.
13

 Crystallization was by vapor-diffusion using the sitting-drop 

method from 0.1 M Bis-Tris pH 6.5, 0.7 M potassium/sodium tartrate at 20°C. To generate 

protein-ligand complexes, crystals were typically soaked for 2 h in a reservoir solution 

containing 1 mM ligand(s). Prior to data collection, crystals were immersed in the reservoir 

solution with the addition of 30% glycerol as a cryoprotectant, and were flash-frozen in liquid 

nitrogen. Diffraction data were collected from a single crystal using the CCD detector Quantum 

315 (ADSC) at beamlines 5.0.2 and 5.0.3 of the Advanced Light Source (Berkeley) under a 100 

K nitrogen cryostream. The data were reduced and scaled with HKL2000.
41

 The structures were 

solved by the molecular replacement method with Molrep
42

 of the CCP4 software suite
43

 using 

the BCL6
BTB

 structure (PDB code: 1R28) as a search model. The structures were refined through 

an iterative procedure utilizing REFMAC
44

 followed by model building in COOT.
45

 The final 

models were validated using Molprobity.
46

 Crystallographic processing and refinement statistics 

are summarized in Table S1. All structural figures were generated using PyMOL (Schrödinger).  

STD-NMR. 
1
H NMR spectra were recorded using a 3 mm NMR tube on a 600 MHz Avance 

spectrometer (Bruker Biospin) equipped with a 5 mm TCI cryoprobe. All NMR samples were 

prepared in 50 mM phosphate D2O buffer at pH 7.4 containing 150 mM NaCl, 1 mM DTT-d10, 

and 0.2% DMSO-d6 in D2O solvent. The STD spectrum was acquired from a sample containing 

400 µM fragment 1 and 20 µM BCL6
BTB

 at 15°C with 32 scans with on- and off-resonance 

saturation frequencies of 0.4 ppm and 30 ppm, respectively, and a total saturation time of 2.0 s. 

The decrease in signal intensity for on-resonance irradiation results from the transfer of 

saturation from BCL6
BTB

 to fragment 1. The STD spectrum of fragment 1 was obtained by 

Page 13 of 40

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

subtracting the on-resonance spectrum from the off-resonance spectrum. A positive signal in the 

STD spectrum indicates binding of fragment 1 to BCL6
BTB

. 

ELISA. Biotinylation of the ε-amino group of the C-terminus Lys on the BCoR peptide was 

carried out with the Biotin-(AC5)2 Sulfo-OSu (DOJINDO) according to the protocol 

recommended by the manufacturer. The wells of a Nunc Maxisorp microplate (460-518) were 

coated with streptavidin (SA) (Wako) and were blocked with phosphate-buffered saline (PBS) 

that contained 1.0% Casein. The biotinylated BCoR peptide was captured by the SA, and a wt 

BCL6
BTB

 (0.5 nM) solution in PBS that contained 0.05% Tween20 and 1 mM DTT (PBST) was 

added to the wells. After washing with PBST, bound BCL6
BTB

 was detected using horseradish 

peroxidase (HRP)-conjugated anti-FLAG antibody (Sigma). The amounts of HRP in the wells 

were measured using a chemical luminescent regent (Thermo Fisher Scientific Inc.).
13

 Percent 

inhibition was calculated based on wells without BCL6
BTB

 as a high control and without 

compound as a low control. 

 M2H. The assay was performed according to a procedure described previously.
1
 The vectors 

pGL4.35, pBind, and pACT were obtained from Promega Corp. As template DNA, human BCL6 

cDNA was isolated by PCR from a human skeletal muscle cDNA library (TAKARA Bio) and 

human BCoR cDNA was purchased from GeneCopoeia Inc. Each cDNA fragment was granted a 

restriction site by PCR and digested with restriction enzymes to insert into pBIND or pACT, 

respectively. M2H was performed in HEK293T cells that were transfected with the reporter 

constructs pGL4.35 containing GAL4 special response element of firefly luciferase 

(9×GAL4UAS); pBIND/GAL4-BCL6 (Ala5–Glu129); and pACT/VP16-BCoR (Leu112–

Ala753) by Fugene HD (Promega). The transfected cells were seeded at 1 × 10
4
 cells/15 µL/well 

on 384-well plates (CORNNING) in Dulbecco’s modified Eagle’s medium that contained 10% 
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fetal bovine serum. After incubation for 20 h at 37°C under 5% CO2, cells were lysed to measure 

luciferase activity using the Bright-Glo luciferase assay system (Promega).
13

 Percent inhibition 

was calculated based on the well without transfection of pBIND/GAL-BCL6 (Ala5–Glu129) as 

the high control and the well without the compound as a low control. 

Chemistry. 
1
H NMR spectra were obtained on a Bruker AVANCE II (300 MHz) 

spectrometer. Chemical shifts for 
1
H NMR are reported in parts per million (ppm) downfield 

from tetramethylsilane (δ) as an internal standard in deuterated solvent, and the coupling 

constants (J) are given in hertz (Hz). The following abbreviations are used for spin multiplicity: s 

= singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, m 

= multiplet, and brs = broad singlet. Reaction progress was monitored by thin-layer 

chromatography (TLC) analysis on silica gel 60 F254 plates (Merck) or an NH TLC plate (Fuji 

Silysia Chemical Ltd.). Column chromatography was carried out on a silica gel column 

(Chromatorex
®

 NH-DM1020, 100–200 mesh; Fuji Silysia Chemical, Ltd.) or on Purif-Pack (SI ϕ 

60 µM or NH ϕ 60 µM; Fuji Silysia Chemical, Ltd.). Preparative HPLC (prep-HPLC) 

purification was performed on a Waters 2525 equipped with a L-column2 ODS (20 × 150 mm 

i.d., 5 µm particle size, CERI, Japan), eluting with 0.1% TFA in distilled water (Mobile phase A) 

and 0.1% TFA in acetonitrile (Mobile phase B) using the following elution gradient: 20% B to 

55% B over 7 min followed by 100% B isocratic over 4 min at a flow rate of 20 mL/min. The 

products were detected by monitoring the mass spectra recorded using a Waters ZQ2000 with 

electrospray ionization. The purity of all compounds used in biological studies was determined to 

be ≥95% by elemental analysis or HPLC-MS analysis. Low-resolution mass spectra were 

acquired using a Shimadzu UFLC/MS (Shimazu LC-20AD/LCMS-2020) in electron spray 

ionization mode (ESI+). The column used was an L-column 2 ODS (3.0 × 50 mm i.d., 3 µm; 
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CERI, Japan) at a temperature of 40°C and a flow rate of 1.2 or 1.5 mL/min. Condition 1: 

Mobile phases A and B under acidic conditions were 0.05% TFA in water and 0.05% TFA in 

MeCN, respectively. The proportion of mobile phase B was increased linearly from 5% to 90% 

over 0.9 min, and maintained at 90% over the next 1.1 min. Condition 2: Mobile phases A and B 

under neutral conditions were a mixture of 5 mmol/L AcONH4 and MeCN (9:1, v/v) and a 

mixture of 5 mmol/L AcONH4 and MeCN (1:9, v/v), respectively. The proportion of mobile 

phase B was increased linearly from 5% to 90% over 0.9 min, and maintained at 90% over the 

next 1.1 min. Elemental analyzes were carried out by Sumika Chemical Analysis Service, Ltd. 

All commercially available solvents and reagents were used without further purification. Yields 

were not optimized. Compounds 1 and 5 are commercially available. 

N
4
-Phenylpyrimidine-2,4-diamine (2). A mixture of 4-chloropyrimidin-2-amine (100 mg, 

0.77 mmol), aniline (108 mg, 1.16 mmol), and conc. HCl (1 drop) in i-PrOH (1.0 mL) was 

heated at 80°C for 2 h. The reaction mixture was diluted with saturated aqueous NaHCO3 

solution and extracted with EtOAc. The organic layer was concentrated, and the residue was 

purified by column chromatography (NH silica gel, eluted with 50% to 100% EtOAc in hexane). 

The desired fractions were concentrated, and the residue was triturated with hexane-EtOAc to 

give compound 2 (98 mg, 69%) as an off-white solid. 
1
H NMR (DMSO-d6) δ 6.00 (1H, brs), 

6.20 (2H, brs), 6.94 (1H, brs), 7.27 (2H, brs), 7.53–8.00 (3H, m), 9.08 (1H, brs). MS m/z 187.1 

(M+H)
+
. Anal. Calcd for C10H10N4: C, 64.50; H, 5.41; N, 30.09. Found: C, 64.30; H, 5.56; N, 

30.21. 

5-Fluoro-N
4
-phenylpyrimidine-2,4-diamine (3). A mixture of compound 14 (63 mg, 0.28 

mmol) and 28% aqueous ammonia solution (2.5 mL, 37.2 mmol) in i-PrOH (2.5 mL) was heated 

at 150°C under microwave irradiation for 4 h. The reaction mixture was concentrated, and the 
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residue was purified by prep-HPLC. The desired fraction was concentrated and neutralized with 

saturated aqueous NaHCO3 solution. The precipitated solid was collected, washed with H2O and 

IPE, air-dried, and dried in vacuo to give 3 (9.1 mg, 16%) as a colorless solid. 
1
H NMR (DMSO-

d6) δ 6.18 (2H, s), 7.01 (1H, t, J = 7.1 Hz), 7.28 (2H, t, J = 7.7 Hz), 7.80–7.89 (3H, m), 9.04 (1H, 

s). MS m/z 205.1 (M+H)
+
. Anal. Calcd for C10H9FN4·0.1 H2O: C, 58.30; H, 4.50; N, 27.20. 

Found: C, 58.33; H, 4.67; N, 27.32. 

5-Chloro-N
4
-phenylpyrimidine-2,4-diamine (4). A mixture of 15 (100 mg, 0.42 mmol) and 

2 M ammonia i-PrOH solution (5.0 mL, 10 mmol) was heated at 150°C under microwave 

irradiation for 4 h. The reaction mixture was concentrated, and the residue was purified by prep-

HPLC. The desired fraction was concentrated and neutralized with saturated aqueous NaHCO3 

solution. The precipitated solids were collected, washed with H2O and IPE, and dried in vacuo to 

give 4 (23 mg, 25%) as an off-white solid. 
1
H NMR (DMSO-d6) δ 6.41 (2H, s), 7.01–7.08 (1H, 

m), 7.26–7.33 (2H, m), 7.74 (2H, d, J = 8.1 Hz), 7.91 (1H, s), 8.45 (1H, s); MS m/z 221.1 

(M+H)
+
. HPLC analysis conditions 1: Rt = 0.65 min (100% purity); 2: Rt = 0.89 min (100% 

purity). 

5-((5-Chloropyrimidin-4-yl)amino)-1,3-dihydro-2H-indol-2-one (6). A mixture of 4,5-

dichloropyrimidine (119 mg, 0.80 mmol), 5-aminoindolin-2-one (119 mg, 0.80 mmol), and TEA 

(0.133 ml, 0.96 mmol) in DMSO (1.0 mL) was stirred at room temperature for 14 h. The reaction 

mixture was diluted with a 9:1 mixture of H2O and EtOH (10 mL). The precipitated solid was 

collected, washed with H2O, and dried in vacuo to give 6 (95 mg, 46%) as a pale brown solid. 
1
H 

NMR (DMSO-d6) δ 3.49 (2H, s), 6.80 (1H, d, J = 8.2 Hz), 7.25–7.36 (1H, m), 7.40–7.49 (1H, 

m), 8.39 (1H, s), 8.42 (1H, s), 9.02 (1H, s), 10.36 (1H, s). MS m/z 261.2 (M+H)
+
. Anal. Calcd for 

C12H9ClN4O·0.8 H2O: C, 52.39; H, 3.88; N, 20.37. Found: C, 52.32; H, 4.12; N, 20.30. 
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5-((5-Chloro-2-((pyridin-3-ylmethyl)amino)pyrimidin-4-yl)amino)-1,3-dihydro-2H-

indol-2-one (7). A mixture of 16 (120 mg, 0.41 mmol), pyridin-3-ylmethanamine (132 mg, 1.22 

mmol), and TEA (49 mg, 0.49 mmol) in DMSO (1.0 mL) was heated at 95 °C for 3 h. The 

reaction mixture was directly purified by column chromatography (silica gel, eluted with 50% to 

100% EtOAc in hexane, followed by 0% to 20% MeOH in EtOAc) to give 7 (34 mg, 22%) as a 

yellow solid. 
1
H NMR (DMSO-d6) δ 3.40 (2H, brs), 4.37 (2H, brs), 6.62–6.77 (1H, m), 7.13–

7.71 (5H, m), 7.92 (1H, s), 8.37–8.52 (3H, m), 10.30 (1H, s). MS m/z 367.0 (M+H)
+
. Anal. Calcd 

for C18H15ClN6O·0.1–H2O·0.1–EtOAc: C, 58.56; H, 4.27; N, 22.27. Found: C, 58.40; H, 4.52; 

N, 22.12. HPLC analysis conditions 1: Rt = 0.54 min (100% purity); conditions 2: Rt = 0.80 min 

(97.3% purity). 

2-Chloro-5-fluoro-N-phenylpyrimidin-4-amine (14). A mixture of 2,4-dichloro-5-

fluoropyrimidine (500 mg, 2.99 mmol), aniline (0.287 ml, 3.14 mmol), and TEA (333 mg, 3.29 

mmol) in i-PrOH (10 mL) was stirred at room temperature for 3 h. The reaction mixture was 

diluted with hexane, and the insoluble materials were removed by filtration. The filtrate was 

concentrated, and the resulting solid was washed with water and dried in vacuo to give 14 (530 

mg, 79%) as a colorless solid.
 1

H NMR (DMSO-d6) δ 7.15 (1H, t, J = 7.2 Hz), 7.69 (2H, d, J = 

8.2 Hz), 8.32 (1H, d, J = 3.5 Hz), 9.99 (1H, s). MS m/z 224.0 (M+H)
+
. 

2,5-Dichloro-N-phenylpyrimidin-4-amine (15). A mixture of 2,4,5-trichloropyrimidine 

(1025 mg, 5.59 mmol), aniline (520 mg, 5.59 mmol), and TEA (565 mg, 5.59 mmol) in i-PrOH 

(20 mL) was heated at reflux for 14 h. The mixture was poured into H2O and extracted with 

EtOAc. The organic layer was washed with H2O and brine, dried over MgSO4, and concentrated 

in vacuo. The residue was purified by column chromatography (silica gel, eluted with 5% to 50% 
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EtOAc in hexane) to give 15 (900 mg, 67%) as a colorless oil. 
1
H NMR (DMSO-d6) δ 7.20 (1H, 

s), 7.40 (2H, s), 7.58 (2H, d, J = 8.2 Hz), 8.38 (1H, s), 9.52 (1H, s). MS m/z 240.0 (M+H)
+
. 

5-((2,5-Dichloropyrimidin-4-yl)amino)indolin-2-one (16). A mixture of 2,4,5-

trichloropyrimidine (0.50 g, 2.73 mmol) and 5-aminoindolin-2-one (0.40 g, 2.73 mmol) in 

DMSO (1.0 mL) was added with TEA (0.379 ml, 2.73 mmol) at room temperature, and the 

resultant mixture was stirred at room temperature for 2 h. The resulting solution was diluted with 

H2O/EtOH (5:1, 10 mL), and the precipitated solid was collected by filtration. The obtained solid 

was washed with H2O and dried in vacuo to give 16 (634 mg, 79%) as a pale brown solid. 
1
H 

NMR (DMSO-d6) δ 3.51 (2H, s), 6.82 (1H, d, J = 8.2 Hz), 7.24–7.30 (1H, m), 7.34 (1H, s), 8.31 

(1H, s), 9.37–9.49 (1H, m), 10.33–10.51 (1H, m). MS m/z 295.1 (M+H)
+
. 
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Atom coordinates and structure factors have been deposited in the Protein Data Bank with 
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5X4Q (BCL6/7). Authors will release the atomic coordinates and experimental data upon article 

publication. 
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Figure 1. Known BCL6 inhibitors. 
a 

Determined by microscale thermophoresis.
10 b 

Determined 

by Fluorescence polarization assay.
12 c 

Determined by SPR.
13  d 

all D-amino acids, TAT means 

cell penetrating peptide sequence, Fu means fusogenic peptide sequence.
11 e 

Determined by 

DLBCL cell growth inhibition.
11 
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Figure 2. Layout of the sensor chip. (A) Four independent flow cells (Fc), each with five 

detection spots. (B) Protein immobilized in each flow cell. Binding responses of captured wt 

BCL6
BTB

, captured mt BCL6
BTB

, coupled wt BCL6
BTB

, and NeutrAvidin are detected on spots 1–

3, spots 2–3, spots 5–4, and spots 3–4, respectively. Sensorgrams of BCoR peptide binding to 

(C) captured wt BCL6
BTB

, (D) captured mt BCL6
BTB

, (E) coupled wt BCL6
BTB

, and (F) 

NeutrAvidin. Lower graphs indicate the fit plots of the response measured at equilibrium plotted 

against BCoR peptide concentration. Top concentration is 100 µM; dilution step is two-fold. 
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Figure 3. SPR-based screening of 1494 fragments tested against (A) captured wt BCL6
BTB

, (B) 

captured mt BCL6
BTB

, (C) coupled wt BCL6
BTB

, and (D) NeutrAvidin. The color of each plot 

indicates fast binding (blue-circle), slow binding (red-circle), and 100 µM BCoR peptide as a 

positive control (gray-square). (E) Venn diagram showing the number of fragments selected at 

each BCL6
BTB

 screening and the overlap of fragments found by each screening. 
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Figure 4. Characterization of fragment 1. (A) Chemical structure of fragment 1. (B) STD-NMR 

experiments. 
1
H spectra of fragment 1 for off-resonance (black line) and on-resonance (red line), 

and the STD spectrum of fragment 1 (difference). (C) SPR competition experiments. 

Sensorgrams of fragment 1 to mt BCL6
BTB

 in the absence or presence of 100 µM BCoR peptide. 

Top concentration is 1 mM; dilution step is two-fold. (D) Co-crystal structure of fragment 1 in 

complex with BCL6
BTB
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Figure 5. Consolidation of the fragment-based inhibitor 4 with hit compound 5. 
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Figure 6. Structural superposition of the complex structures with compounds 4 (orange) and 5 

(yellow). 

 

Figure 7. (A) Co-crystal structure of compound 7 in complex with BCL6
BTB

. (B) Chemical 

structure of 7. (C) Equilibrium plot and sensorgrams (insert) of 7 binding to BCL6. (D, E) PPI 

inhibitory activities in cell-free (ELISA) and cellular (M2H) assays.   
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Figure 8. Summary of the FBDD approach for identification of the compound 7.
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Table 1. Binding affinities between BCoR peptide and BCL6
BTB

s  

 

DMSO 

 
 wt BCL6

BTB
  

 
 mt BCL6

BTB
  

 

  KD  

(µM) 

Rmax 

 (RU) 

 KD  

(µM) 

Rmax  

(RU) 

 

 
1% 

 
7.5 245 

 
17 311 

 

 
3% 

 
9.3 242 

 
21 302 

 

 
5% 

 
12 243 

 
25 304 

 

 

Table 2. Structure-activity relationships of the pyrimidine derivatives 

 

 compd X Y Z 
KD

 a
 

(µM) 
LE  

 1 - NH2 N 1200 0.28  

 2 H NH2 C 3000 0.25  

 3 F NH2 C 180 0.34  

 4 Cl NH2 C 68 0.38  

a
KD values are reported as the arithmetic mean of at least  

two separate runs (n = 2). 
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Table 3. BCL6 binding affinities of the hybrid-type compounds 

 

 
compd Y 

KD
 a
 

(µM) 
LE 

 

 
6 H 9.3 0.38 

 

 
7 

 
0.078 0.37 

 

a
KD values are reported as the arithmetic mean of at least  

two separate runs (n = 2). 
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Scheme 1. General synthetic procedure for the pyrimidine derivatives 
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