SUPPORTING INFORMATION

HIGHLY CONVERGENT, STEREOSPECIFIC SYNTHESIS OF 11-*CIS*-RETINOIDS BY METAL-CATALYZED CROSS-COUPLING REACTIONS OF *Z*-ALKENYLMETALS

Susana López,* Javier Montenegro and Carlos Saá

Departamento de Química Orgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, SPAIN

<u>qosuslop@usc.es</u>

Table of Contents.

General Methods	S2
Experimental Procedures for Significant Intermediates	S2-S4
Tables of Spectroscopic Data	S5-S7
NMR Spectra of All Compounds	

General Methods. Solvents were dried according to published methods and distilled before use.¹ All other reagents were commercial compounds of the highest purity available. Reactions were carried out under atmosphere of argon in flame-dried glassware with magnetic stirring. Visualization of analytical thin-layer chromatography (TLC) was accomplished with phosphomolybdic acid ethanolic solution (10%) stain followed by heating. Proton (¹H) and carbon (¹³C) magnetic resonance spectra (NMR) were recorded using CDCl₃ as solvent. Chemical shifts (δ) are expressed in parts per million (ppm) relative to tetramethylsilane as internal reference. ¹³C multiplicities were assigned with the aid of the DEPT pulse sequence.

Experimental Procedures.

All the solutions employed were degassed by argon bubbling during 15 min. Reactions and purification of the final products were carried out in the absence of light.

(7E,9E,11Z,13E)-9,13-Bis-demethyl-*tert*-butyldiphenylsilyl retinyl ether (**12**). *Suzuki reaction:* To a suspension of Pd(PPh₃)₄) (30 mg, 0.026 mmol) and pinacol dienylboronate **4a** (174 mg, 0.39 mmol) in THF (4 mL) was added, *via* cannula, a solution of trienyl iodide **2a** (50 mg, 0.16 mmol) in THF (2 mL). A solution of TIOH (10 % in water, 1.7 mL, 0.81 mmol) was added dropwise, and the stirring was continued for 5 h. The mixture was filtered through a short pad of neutral alumina and concentrated. Flash chromatography of the crude (Al₂O₃, hexane) yielded 58 mg (74%) of **12** as an unstable pale yellow oil. *Stille reaction:* To a solution trienyl iodide **2a** (50 mg, 0.17 mmol) and tributyldienylstannane **5a** (152 mg, 0.24 mmol) in DMF (4 mL) was added, in one portion, PdCl₂(CH₃CN)₂ (4 mg, 0.016 mmol). The reaction mixture was stirred for 8h, filtered through a short pad of neutral alumina (IV, hexane) and concentrated. Flash chromatography of the crude (Al₂O₃, hexane) filtered. The short pad of neutral alumina (IV, hexane) and concentrated. Flash chromatography of the crude (Al₂O₃, the short pad of neutral alumina (IV, hexane) and concentrated. Flash chromatography of the crude (Al₂O₃, hexane) solution trienyl iodide **2a** (50 mg, 0.104 (s, 6H), 1.09 (s, 9H),

¹Armarego, W. L. F.; Perrin, D. D. *Purification of Laboratory Chemicals*, 4th Ed; Butterworth-Heinemann: Oxford, **1996**.

1.4-1.5 (m, 4H), 1.6-1.7 (m, 2H), 1.74 (s, 3H), 2.04 (t, J = 6.2 Hz, 2H), 4.31 (d, J = 5.1 Hz, 2H), 5.80 (dt, J = 15.0, 5.1 Hz, 1H), 5.98 (dd, J = 10.7, 11.3 Hz, 1H), 6.04 (dd, J = 10.7, 11.3 Hz, 1H), 6.15 (dd, J = 15.6, 10.0 Hz, 1H), 6.22 (d, J = 15.6 Hz, 1H), 6.32 (dd, J = 10.0, 14.6 Hz, 1H), 6.59 (dd, J = 14.6, 10.7 Hz, 1H), 6.78 (dd, J = 15.0, 10.7 Hz, 1H), 7.3-7.4 (m, 6H), 7.6-7.7 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 19.2 (C), 19.3 (CH₂), 21.7 (CH₃), 26.8 (3xCH₃), 28.9 (2xCH₃), 33.2 (CH₂), 34.1 (C), 39.7 (CH₂), 64.3 (CH₂), 125.4 (CH), 126.3 (CH), 127.6 (4xCH), 128.2 (CH), 129.4 (CH), 129.6 (2xCH), 130.3 (C), 132.4 (CH), 132.9 (CH), 133.3 (CH), 133.6 (2xC), 134.7 (CH), 135.6 (4xCH), 137.4 (C) ppm. MS ESI-TOF *m*/*z* (%) 496 (2), 301 (28), 279 (100). HRMS (CI) calcd. for C₃₄H₄₄OSi, 496.3161; found, 496.3159.

(7E,9E,11Z,13E)-9-Demethyl-tert-butyldiphenylsilyl retinyl ether (13). Suzuki reaction: Following the same procedure as described for compound 12, reaction of trienyl iodide 2a (56 mg, 0.18 mmol), dienvl boronate **4b** (179 mg, 0.4 mmol), Pd(PPh₃)₄ (21 mg, 0.018 mmol) and TlOH (10 % in water, 0.8 mL, 0.37 mmol), in THF (5 mL) for 5 h, afforded 13 (82 mg, 90% yield) as an unstable pale yellow oil. Stille reaction: Following the same procedure as described for compound 12, reaction of trienyl iodide 2a (50 mg, 0.16 mmol), tributyldienylstannane 5b (156 mg, 0.25 mmol) and PdCl₂(CH₃CN)₂ (4.0 mg, 0.016 mmol) in DMF (4 mL), yielded 68 mg (83%) of **13**. ¹H NMR (750 MHz, CDCl₃) δ 1.03 (s, 6H), 1.05 (s, 9H), 1.4-1.5 (m, 2H), 1.5-1.6 (m, 2H), 1.67 (s, 3H), 1.72 (s, 3H), 2.02 (t, J = 6.3 Hz, 2H), 4.35 (d, J = 6.2 Hz, 2H), 5.69 (t, J = 6.2 Hz, 1H), 5.78 (d, J = 11.7 Hz, 1H), 6.00 (t, J = 11.7 Hz, 1H), 6.11(dd, J = 15.6, 10.7 Hz, 1H), 6.18 (d, J = 15.6 Hz, 1H), 6.30 (dd, J = 14.4, 10.7 Hz, 1H), 6.69 (dd, J = 14.4, 10.7 Hz, 1H)14.4, 11.7 Hz, 1H), 7.3-7.4 (m, 6H), 7.6-7.7 (m, 4H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 17.0 (CH₃), 18.8 (C), 19.2 (CH₂), 21.8 (CH₃), 26.8 (3xCH₃), 28.9 (2xCH₃), 33.3 (CH₂), 34.1 (C), 39.8 (CH₂), 61.1 (CH₂), 127.6 (4xCH), 127.9 (CH), 128.8 (CH), 129.6 (2xCH), 130.4 (C), 131.1 (CH), 132.1 (CH), 132.7 (CH), 133.4 (CH), 133.9 (2xC), 134.5 (C), 135.5 (CH), 135.6 (4xCH), 137.5 (C) ppm. MS (CI) *m/z* (%): 510 (58), 495 (2), 433 (5), 255 (75), 199 (100). HRMS (CI) calcd. for C₃₅H₄₆OSi, 510.3318; found, 510.3317.

(7E,9E,11Z,13E)-13-Demethyl-tert-butyldiphenylsilyl retinyl ether (14). Suzuki reaction with iodide: Following the same procedure as described for compound 12, reaction of trienyl iodide 2b (113 mg, 0.36 mmol), pinacol dienylboronate 4a (200 mg, 0.43 mmol), Pd(PPh₃)₄ (58 mg, 0.036 mmol) and TIOH (10 % in water, 2.9 mL, 1.30 mmol), in THF (8 mL) for 5 h, afforded 147 mg (80% yield) of 14 as an unstable pale yellow oil. Suzuki reaction with triflate: To a suspension of Pd(PPh₃)₄ (34 mg, 0.029 mmol), K₃PO₄ (123 mg, 0.58 mmol) and pinacol dienylboronate **4a** (199 mg, 0.44 mmol) in THF (4 mL) was added, via cannula, a solution of trienyl triflate 3 (100 mg, 0.29 mmol) in THF (2 mL), and the reaction mixture was stirred for 5h, filtered through a short pad of neutral alumina (IV, hexane), and concentrated. Flash chromatography of the crude (Al₂O₃, hexane) yielded 92 mg (63% yield) of 14. Stille reaction with iodide: Following the same procedure as described for compound 12, reaction of trienyl iodide 2b (50 mg, 0.16 mmol), tributyldienylstannane 5a (145.3 mg, 0.24 mmol) and PdCl₂(CH₃CN)₂ (4.0 mg, 0.016 mmol) in DMF (4 mL) afforded 47 mg (57%) of 14. Stille reaction with triflate: To a solution of trienyl triflate 3 (113 mg, 0.334 mmol) and dienylstannane 5a (225 mg, 0.367 mmol) in NMP (4 mL) were added, each in one portion, Pd₂(dba)₃·CHCl₃ (8.0 mg, 0.008 mmol) and AsPh₃ (20 mg, 0.067 mmol) and the reaction mixture was stirred for 12 h, filtered through a short pad of neutral alumina, and concentrated. Flash chromatography of the crude (Al₂O₃, hexane) yielded 133 mg (78%) of **14**. ¹H NMR (750 MHz, CDCl₃) δ 1.04 (s, 6H), 1.09 (s, 9H), 1.4-1.5 (m, 4H), 1.6-1.7 (m, 4H), 1.73 (s, 3H), 1.94 (s, 3H), 2.03 (t, J = 6.2 Hz, 2H), 4.31 (d, J = 4.8 Hz, 2H), 5.82 (dt, J = 15.0, 4.8 Hz, 1H), 6.05 (t, J = 11.1 Hz, 1H), 6.12 (d, J = 16.1 Hz, 1H), 6.20 (d, J = 16.1 Hz, 1H), 6.33 (dd, J = 12.0, 11.1 Hz, 1H), 6.45 (d, J = 12.0 Hz, 1H), 6.83 (dd, J = 15.0, 11.1 Hz, 1H), 7.2-7.3 (m, 6H), 7.7-7.8 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 12.3 (CH₃), 19.2 (CH₂), 19.3 (C), 21.7 (CH₃), 26.8 (3xCH₃), 29.0 (2xCH₃), 33.1 (CH₂), 34.3 (C), 39.6 (CH₂), 64.3 (CH₂), 124.9 (CH), 125.2 (CH), 125.4 (CH), 127.1 (CH), 127.7 (4xCH), 128.3 (CH), 128.7 (CH), 129.6 (2xCH), 133.1 (CH), 133.7 (2xC), 135.6 (4xCH), 136.5 (C), 137.8 (C), 137.9 (CH) ppm. MS (CI) m/z (%) 510 (88), 433 (7), 255 (66), 199 (100). HRMS (CI) calcd. for C₃₅H₄₆OSi, 510.3318; found, 510.3312.

Tables of spectroscopic data.

¹ H NMR 300 MHz, CDCI₃	H1	H2	H ₃	H₄	H₅	Me-C ₃	Si <i>t</i> Bu	SiPh	SnBu	SnMe	Bpin
Bpin 4a OTBDPS	5.36 d, 1H J _{cis} = 13.4	6.89 dd, 1H J _{cis} = 13.4 J _{s-cis} = 11.2	7.27 dd, 1H $J_{s-cis} = 11.2$ $J_{trans} = 15.2$	5.88 dt, 1H $J_{trans} = 15.2$ J = 4.2	4.29 d, 2H J = 4.2		1.08 s, 9H	7.3-7.5 m, 6H 7.6-7.8 m, 4H			1.25 s, 12 H
Bpin 4b OTBDPS	5.29 d, 1H J _{cis} = 14.8	6.69 d, 1H J _{cis} = 14.8		5.77 t, 1H J = 6.0	4.32 d, 2H J = 6.0	1.68 s, 3H	1.04 s, 9H	7.2-7.4 m, 6H 7.5-7.7 m, 4H			1.26 s, 12 H
Bu ₃ Sn 5a OTBDPS	6.06 d, 1H $J_{cis} = 12.6$ ${}^{2}J_{Sn-H} = 60.3$	7.11 dd, 1H $J_{cis} = 12.6$ $J_{s-cis} = 10.6$ ${}^{3}J_{Sn-Hirans} = 103.8$	6.35 dd, 1H J _{trans} = 14.9 J _{s-cis} = 10.6	5.81 dt J _{trans} = 14.9 J = 4.3	4.29 d, 2H J = 4.3		1.11 s, 9H	7.3-7.5 m, 6H 7.6-7.8 m, 4H	0.90, t, <i>J</i> = 7.2, 9H 0.9-1.0 m, 6H 1.2-1.4 m, 6H 1.4-1.6 m, 6H		
Bu ₃ Sn 5b OTBDPS	5.83 d, 1H J _{cis} = 13.4 ² J _{Sn-H} = 56.7	7.01 d, 1H $J_{cis} = 13.4$ ${}^{3}J_{Sn-H trans} = 136.4$		5.70 t, 1H J = 5.9	4.32 d, 2H J = 5.9	1.61 s, 3H	1.10 s, 9H	7.3-7.5 m, 6H 7.7-7.8 m, 4H	0.8-1.0 m, 15H 1.2-1.4 m, 6H 1.4-1.5 m, 6H		
Me ₃ Sn 6 OTBDPS	5.83 d, 1H J _{cis} = 13.4 ² J _{Sn-H} = 66.8	6.94 d, 1H J _{cis} = 13.4 ³ J _{Sn-H trans} = 150.2		5.66 t, 1H J = 5.9	4.27 d, 2H J = 5.9	1.56 s, 3H	1.05 s, 9H	7.3-7.5 m, 6H 7.6-7.8 m, 4H		0.17 s, 9H ² J _{Sn-H} = 54.2 Hz	
I 11 OTBDPS	6.23 d, 1H J _{cis} = 8.5	6.77 d, 1H <i>J_{cis}=</i> 8.5		5.96 t, 1H J = 6.1	4.39 d, 2H J = 6.1	1.77 s, 3H	1.13 s, 9H	7.3-7.5 m, 6H 7.7-7.8 m, 4H			
12 OTBDPS	5.05 d, 1H $J_{cis} = 10.4$ 5.17 d, 1H $J_{trans} = 17.4$	6.44 dd, 1H J _{cis} = 10.4 J _{trans} = 17.4		5.74 t, 1H J = 5.9	4.43 d, 2H J = 5.9	1.64 s, 3H	1.13 s, 9H	7.3-7.5 m, 6H 7.6-7.8 m, 4H			

¹³ C NMR 75 MHz, CDCl ₃	C1	C2	C3	C4	C5	Me-C ₃	SitBu	SiPh	SnBu	SnMe	Bpin
Bpin 4a OTBDPS	118.4, CH	150.2, CH	129.2, CH	137.2, CH	63.6, CH ₂		19.2, C 26.9, 3xCH ₃	127.6, 4xCH 129.5, 2xCH 133.4, 2xC 135.5, 4xCH			24.8, 4xCH ₃ 83.0, 2xC
Bpin OTBDPS	116.0, CH	150.3, CH	135.7, C	133.7, CH	61.3, CH ₂	14.6, CH ₃	19.1, C 26.8, 3xCH ₃	127.6, 4xCH 129.5, 2xCH 133.6, 2xC 135.5, 4xCH			24.8, 4xCH ₃ 83.4, 2xC
Bu ₃ Sn ² 5a OTBDPS	134.0, CH	146.0, CH	131.5, CH	133.0, CH	63.9, CH ₂		19.4, C 26.9, 3xCH ₃	127.6, 4xCH 129.5, 2xCH 133.4, 2xC 135.5, 4xCH	10.5, 3xCH ₂ , ¹ J _{Sn-C} = 332.8 13.8, 3xCH ₃ 27.3, 3xCH ₂ 29.3, 3xCH ₂		
Bu ₃ Sn 5b OTBDPS	128.5, CH	150.6, CH	137.7, C	128.4, CH	61.4, CH ₂	15.4, CH₃	19.3, C 26.9, 3xCH ₃	127.5, 4xCH 129.5, 2xCH 133.6, 2xC 135.6, 4xCH	11.4, 3xCH ₂ , ¹ J _{Sn-C} = 336.2 13.8, 3xCH ₃ 27.4, 3xCH ₂ 29.3, 3xCH ₂		
Me ₃ Sn 6 OTBDPS	129.9, CH	150.7, CH	137.9, C	129.2, CH	61.1, CH ₂	15.6, CH ₃	19.6, C 26.8, 3xCH ₃	127.6, 4xCH 129.6, 2xCH 133.7, 2xC 135.6, 4xCH		- 7.4, 3xCH3	
11 OTBDPS	76.2, CH	141.5, CH	133.3, C	133.1, CH	60.9, CH ₂	15.8, CH ₃	19.2, C 26.8, 3xCH ₃	127.6, 4xCH 129.5, 2xCH 133.6, 2xC 135.5, 4xCH			
12 OTBOPS	112.2, CH ₂	140.8, CH	134.3, C	131.5, CH	61.2, CH ₂	12.2, CH ₃	19.3, C 27.0, 3xCH ₃	127.6, 4xCH 129.5, 2xCH 133.6, 2xC 135.5, 4xCH			

¹ H NMR 300 MHz, CDCl₃	H ₁	H₃	H4	H₅	Me-C ₃	SitBu	SiPh	SnBu	Bpin
7a OTBDPS	2.91 d, 1H J = 2.3	5.94 dd, 1H J _{trans} = 15.8 J = 2.3	6.32 dt, 1H J _{trane} = 15.8 J = 3.8	4.25 d, 2H J = 3.8		1.10 s, 9H	7.3-7.5 m, 6H 7.6-7.8 m, 4H		
7b OTBDPS	2.83 s, 1H		6.15 tc, 1H J = 6.1 J = 1.1	4.30 d, 2H J = 6.1	1.67 d, 3H J = 1.1	1.10 s, 9H	7.3-7.4 m, 6H 7.6-7.8 m, 4H		
Bpin Bpin 8a OTBDPS		5.99 dt, 1H J _{trans} = 15.8 J = 2.2	6.38 dt, 1H J _{rans} = 15.8 J = 3.8	4.25 dd, 2H J = 3.8 J = 2.2		1.04 s, 9H	7.2-7.4 m, 6H 7.5-7.7 m, 4H		1.29 s, 12H
SnBu ₃		5.99 dt, 1H J _{trans} = 15.7 J = 2.1	6.21 dt, 1H J _{trane} = 15.7 J = 4.0	4.25 dd, 2H J = 4.0 J = 2.1		1.10 s, 9H	7.2-7.4 m, 6H 7.5-7.7 m, 4H	0.95 t, <i>J</i> = 7.3, 9H 1.0-1.1 m, 6H 1.3-1.4 m, 6H 1.5-1.7 m, 6H	
SnBu ₃			6.05 t, 1H J = 6.2	4.32 d, 2H J = 6.2	1.68 s, 3H	1.10 s, 9H	7.3-7.5 m, 6H 7.6-7.7 m, 4H	0.98 t, <i>J</i> = 7.3, 9H 1.0-1.1 m, 6H 1.3-1.4 m, 6H 1.6-1.7 m, 6H	

¹³ C NMR 75 MHz, CDCI ₃	C1	C2	C ₃	C4	C5	Me-C ₃	SitBu	SiPh	SnBu	Bpin
7a OTBDPS	77.9, CH	81.8, C	107.5, CH	143.7, CH	63.4, CH ₂		19.3, C 27.1, 3xCH₃	127.7, 4xCH 129.7, 2xCH 133.0, 2xC 135.3, 4xCH		
7b OTBDPS	86.1, CH	74.7, C	117.8, C	138.0, CH	60.7, CH ₂	17.5, CH₃	19.3, C 26.9, 3xCH₃	127.7, 4xCH 129.6, 2xCH 133.4, 2xC 135.5, 4xCH		
Bpin 8a OTBDPS	84.3, C	134.9, C	107.8, CH	145.8, CH	63.4, CH ₂		19.3, C 26.7, 3xCH₃	127.7, 4xCH 129.8, 2xCH 133.1, 2xC 135.4, 4xCH		24.7, 4xCH₃ 83.2, 2xC
SnBu ₃ U Sa	93.6, C	108.3, C	109.4, CH	141.6, CH	63.6, CH ₂		19.3, C 26.8, 3xCH₃	127.5, 4xCH 129.8, 2xCH 133.0, 2xC 135.3, 4xCH	11.2, 3xCH ₂ , ¹ J _{SP-C} = 373.6 13.8, 3xCH ₃ 27.1, 3xCH ₂ 28.9, 3xCH ₂	
SnBu ₃	90.1, C	112.9, C	119.5, C	136.1, CH	60.8, CH ₂	17.9, CH₃	19.1, C 26.7, 3xCH₃	127.6, 4xCH 129.7, 2xCH 133.6, 2xC 135.1, 4xCH	11.1, 3xCH ₂ , ¹ J _{Sn-C} = 374.0 13.7, 3xCH ₃ 26.9, 3xCH ₂ 28.9, 3xCH ₂	

CDCI3	H ₂	H ₃	H_4	H ₇	H ₈	H ₉	H ₁₀	H ₁₁	H ₁₂	H ₁₃	H ₁₄	H ₁₅	2Me-C ₁	Me-C₅	Me-C ₉	Me-C ₁₃	Si <i>t</i> Bu	SiPh
(400 MHz)	1.4-1.5	1.6-1.7	2.04	6.22	6.15	6.32	6.59	6.04	5.98	6.78	5.80	4.31	1.04	1.74			1.09	7.3-7.4
9,13-bis-	m, 2H	m, 2H	t, 2H	d, 1H	dd, 1H	dd, 1H	dd, 1H	dd, 1H	dd, 1H	dd, 1H	dt, 1H	d, 2H	s, 6H	s, 3H			s, 9H	m, 6H
demethyl			J = 6.2	J = 15.6	J = 15.6	J = 14.6	J = 14.6	J = 10.7	J = 10.7	J = 10.7	J = 15.0	J = 5.1						7.6-7.7
11- <i>cis</i> -retinil					J = 10.0	J = 10.0	J = 10.7	J = 11.3	J = 11.3	J = 15.0	J = 5.1							m, 4H
ether 12																		
(750 MHz)	1.4-1.5	1.5-1.6	2.02	6.18	6.11	6.30	6.69	6.00	5.78		5.69	4.35	1.03	1.72		1.67	1.05	7.3-7.4
9-demethyl	m, 2H	m, 2H	t, 2H	d, 1H	dd, 1H	dd, 1H	dd, 1H	t, 1H	d, 1H		t, 1H	d, 2H	s, 6H	s, 3H		s, 3H	s, 9H	m, 6H
11- <i>cis</i> -retinil			J = 6.3	J = 15.6	J = 15.6	J = 14.4	J = 14.4	J = 11.7	J = 11.7		J = 6.2	J = 6.2						7.6-7.7
ether 13					J = 10.7	J = 10.7	J = 11.7											m, 4H
(750 MHz)	1.4-1.5	1.6-1.7	2.03	6.20	6.12		6.45	6.33	6.05	6.83	5.82	4.31	1.04	1.73	1.94		1.09	7.2-7.3
13-demethyl	m, 2H	m, 2H	t, 2H	d, 1H	d, 1H		d, 1H	dd, 1H	t, 1H	dd, 1H	dt, 1H	d, 2H	s, 6H	s, 3H	s, 3H		s, 9H	m, 6H
11- <i>cis</i> -retinil			J = 6.2	J = 16.1	J = 16.1		J = 12.0	J = 12.0	J = 11.1	J = 15.0	J = 15.0	J = 4.8						7.7-7.8
ether 14								J = 11.1		J = 11.1	J = 4.8							m, 4H
(750 MHZ)	1.4-1.5	1.5-1.6	2.01	6.17	6.11		6.55	6.33	5.86		5.76	4.34	1.03	1.67	1.94	1.70	1.05	7.3-7.4
11- <i>cis</i> -retinil	m, 2H	m, 2H	t, 2H	d, 1H	d, 1H		d, 1H	t, 1H	d, 1H		t, 1H	d, 2H	s, 6H	s, 3H	s, 3H	s, 3H	s, 9H	m, 6H
ether 15			J = 6.1	J = 16.1	J = 16.1		J = 11.8	J = 11.8	J = 11.8		J = 6.2	J = 6.2						7.6-7.7
																		m, 4H
(400 MHz)	1.4-1.5	1.5-1.6	2.01	6.17	6.08		6.56	6.35	5.87		5.72	4.29	1.02	1.71	1.93	1.89		
11- <i>cis</i> -	m, 2H	m, 2H	t, 2H	d, 1H	d, 1H		d, 1H	t, 1H	d, 1H		t, 1H	t, 2H	s, 6H	s, 3H	s, 3H	s, 3H		
retinol (16)			J = 6.3	J = 16.1	J = 16.1		J = 11.8	J = 11.8	J = 11.8		J = 6.8	J = 6.8						
(400 MHz)	1.4-1.5	1.5-1.6	2.02	6.34	6.13		6.53	6.68	5.91		6.08	10.01	1.02	1.71	1.99	2.35		
11- <i>cis</i> -	m, 2H	m, 2H	t, 2H	d, 1H	d, 1H		d, 1H	dd, 1H	d, 1H		d, 1H	d, 1H	s, 6H	s, 3H	s, 3H	s, 3H		
retinal (1)			J = 5.8	J = 16.0	J = 16.0		J = 12.4	J = 12.4	J = 11.8		J = 8.0	J = 8.0						
								J = 11.8										

¹³ C NMR CDCl ₃	C ₁	C2	C ₃	C4	C 5	C ₆	C 7	C ₈	C9	C ₁₀	C ₁₁	C ₁₂	C ₁₃	C ₁₄	C ₁₅	2Me-C ₁	Me-C ₅	Me-C ₉	Me-C ₁₃	Si <i>t</i> Bu	SiPh
(100 MHz) 9,13-bis- demethyl 11- <i>cis</i> -retinil ether 12	34.1 C	39.7 CH ₂	19.3 CH ₂	33.2 CH ₂	130.3 C	137.4 C	132.4 CH	133.3 CH	134.7 CH	129.4 CH	126.3 CH	128.2 CH	125.4 CH	132.9 CH	64.3 CH ₂	28.9 2xCH ₃	21.7 CH ₃			19.2, C 26.8 3xCH ₃	127.6, 4xCH 129.6, 2xCH 133.6, 2xC 135.6, 4xCH
(75 MHz) 9-demethyl 11- <i>cis</i> -retinil ether 13	34.1 C	39.8 CH ₂	19.2 CH ₂	33.3 CH ₂	130.4 C	137.5 C	132.1 CH	133.4 CH	135.5 CH	127.9 CH	128.8 CH	132.7 CH	134.5 C	131.1 CH	61.1 CH ₂	28.9 2xCH ₃	21.8 CH ₃		17.0 CH ₃	18.8, C 26.8 3xCH₃	127.6, 4xCH 129.6, 2xCH 133.9, 2xC 135.6, 4xCH
(100 MHz) 13-demethyl 11- <i>cis</i> -retinil ether 14	34.3 C	39.6 CH ₂	19.2 CH ₂	33.1 CH ₂	128.7 C	136.5 C	127.1 CH	137.9 CH	137.8 C	124.9 CH	125.4 CH	128.3 CH	125.2 CH	133.1 CH	64.3 CH ₂	29.0 2xCH ₃	21.7 CH ₃	12.3 CH₃		19.3, C 26.8 3xCH₃	127.7, 4xCH 129.6, 2xCH 133.7, 2xC 135.6, 4xCH
(75 MHZ) 11- <i>cis</i> -retinil ether 15	34.3 C	39.6 CH ₂	19.3 CH ₂	33.0 CH ₂	129.1 C	137.9 C	126.7 CH	138.2 CH	137.7 C	126.5 CH	124.7 CH	132.9 CH	136.8 C	131.1 CH	61.4 CH ₂	28.9 2xCH ₃	21.7 CH3	12.2 CH₃	17.2 CH ₃	18.8, C 26.8 3xCH₃	127.6, 4xCH 129.5, 2xCH 133.8, 2xC 135.5, 4xCH
(100 MHz) 11- <i>cis</i> - retinol (16)	34.2 C	39.6 CH ₂	19.3 CH ₂	33.0 CH ₂	129.2 C	137.9 C	127.1 CH	138.0 CH	137.3 C	126.2 CH	125.3 CH	132.4 CH	136.5 C	130.1 CH	59.5 CH2	28.9 2xCH ₃	21.8 CH3	12.2 CH ₃	17.2 CH ₃		
(100 MHz) 11- <i>cis</i> - retinal (1)	34.3 C	39.5 CH2	19.2 CH ₂	33.0 CH ₂	130.2 C	137.6 C	131.5 CH	137.4 CH	141.7 C	125.7 CH	129.7 CH	130.1 CH	155.9 C	129.7 CH	191.2 CH	29.0 2xCH ₃	21.8 CH ₃	12.4 CH₃	18.0 CH ₃		

NMR Spectra.

¹H NMR (300 MHz, CDCl₃), Method A

$^{\rm 13}{\rm C}$ NMR (75 MHz, CDCl_3), Method A

S9

¹H NMR (300 MHz, CDCl₃), Method B

¹H NMR (300 MHz, CDCl₃), Method B

¹H NMR (300 MHz, CDCl₃), Method D

S20

¹H NMR (300 MHz, CDCI₃) 4.50 6.50 ppm (t1) Т Т 6.00 5.50 5.00 ſ ſ MM 8.0 ppm (t1) 5.0 3.0 2.0 7.0 6.0 4.0 1.0 0.0 ¹³C NMR (75 MHz, CDCl₃)

 1 H NMR (750 MHz, CDCl₃), Suzuki reaction

S24

