Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/bmcl

Eudistomidin G, a new β -carboline alkaloid from the Okinawan marine tunicate *Eudistoma glaucus* and structure revision of eudistomidin B

Yohei Takahashi, Haruaki Ishiyama, Takaaki Kubota, Jun'ichi Kobayashi *

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan

ARTICLE INFO

Article history: Received 19 April 2010 Revised 14 May 2010 Accepted 18 May 2010 Available online 10 June 2010

Keywords: β-Carboline alkaloids Tunicate Eudistoma glaucus Eudistomidins B and G

ABSTRACT

A new β -carboline alkaloid, eudistomidin G (1), has been isolated from the Okinawan marine tunicate *Eudistoma glaucus*, and the structure was elucidated from spectroscopic data. Furthermore, the structure of eudistomidin B (2), which has been isolated from the same tunicate, was revised from **2a** to **2b** by detailed analyses of spectroscopic data. Asymmetric synthesis of the revised structure (**2b**) of eudistomidin B (**2**) and its (1*S*,10*S*)-diastereomer (**2c**) has been accomplished with the Noyori catalytic asymmetric hydrogen-transfer reaction. The absolute configuration of eudistomidin B (**2**) was confirmed to be **2b** possessing (1*R*,10*S*)-configuration, from comparison of the ¹H NMR data, CD spectra, [α]_D values, and HPLC analysis of **2b**, **2c**, and natural eudistomidin B.

© 2010 Elsevier Ltd. All rights reserved.

Marine tunicates are well known to be a rich source of secondary metabolites with interesting structures and various biological activities.¹ Among them, many β -carboline alkaloids have been isolated from tunicates of the genus *Eudistoma* so far.² In our search for new metabolites from marine tunicates, a new β -carboline alkaloid, eudistomidin G (1), has been isolated from the Okinawan tunicate *Eudistoma glaucus* together with a known related β -carboline alkaloid, eudistomidin B (2). In this Letter, we describe the isolation and structure elucidation of eudistomidin G (1) and structure revision of eudistomidin B (2) from **2a** to **2b** as well as total synthesis of **2b**.

According to the previous purification procedure,³ fractions containing eudistomidins were purified by repeated reversed-phase HPLC to afford eudistomidins G ($\mathbf{1}$) and B ($\mathbf{2}$).

Eudistomidin G (1)⁴ was obtained as an optically active amorphous solid. The ESIMS spectrum of eudistomidin G (1) showed the pseudomolecular ion peaks at *m/z* 398 and 400 (1:1), indicating the presence of a bromine atom, and the molecular formula, $C_{21}H_{24}N_3^{79}Br$, was established by HRESIMS data (*m/z* 398.1235 [M+H]⁺, Δ +0.9 mmu). UV absorptions (λ_{max} 296, 286, and 231 nm) of 1 implied the presence of tetrahydro- β -carboline ring, while the existence of NH functionality was suggested by the IR absorptions (3211 and 3049 cm⁻¹). The ¹H NMR (Table 1) spectrum of 1 included signals due to one NH (δ_{H} 11.12), eight aromatic protons (δ_{H} 7.73–6.59), two sp³ methines (δ_{H} 5.14 and 4.13), six sp³ methylenes (δ_{H} 3.28–2.42), and two *N*-methyls (δ_{H} 2.92 and 2.87), while the ¹³C NMR (Table 1) spectrum of 1 showed signals due to six sp² quaternary carbons, eight sp² methines, two sp³ methines, three sp³ methylenes, and two sp³ methyls.

Connectivities of C-1 to C-10, C-3 to C-4, C-5 to C-6, C-10 to C-11, and C-13 to C-17 were deduced from the ¹H–¹H COSY, TOCSY, and HMQC spectra of **1** (Fig. 1). HMBC correlations for H-5 to C-7 and C-8a, H-6 to C-4b, H-8 to C-7, NH-9 to C-4b, and H-1 to C-9a, and NOESY correlations for H-1/NH-9, H-4/H-5, and H-8/NH-9 revealed the presence of a 1,2,7-trisubstituted tetrahydro- β -carboline ring. ¹³C chemical shifts of C-6–C-8 (δ_C 123.88, 117.67, and 115.40, respectively) suggested that a bromine atom was attached to C-7, while the connection of N-2 and C-19 was disclosed by ¹H and ¹³C chemical shifts for CH₃-19 (δ_H 2.92; δ_C 39.79) and HMBC correlations for H-19 to C-1 and C-3. The HMBC crosspeak of H-18 to C-10 and ¹H and ¹³C chemical shifts for CH-10 (δ_H 4.13; δ_C 63.80) and CH₃-18 (δ_H 2.87; δ_C 32.45) indicated that CH₃-18 was attached to C-10 (C-17), suggesting the connectivity of

^{*} Corresponding author. Tel.: +81 11 706 3239; fax: +81 11 706 4989. E-mail address: jkobay@pharm.hokudai.ac.jp (J. Kobayashi).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2010.05.071

Y. Takahashi et al./Bioorg. Med. Chem. Lett. 20 (2010) 4100-4103

Table 1
¹ H and ¹³ C NMR data for eudistomidin G (1) in CDCl ₃

Position	δ_{C}		δ_{H}	
1	63.83 ^c	СН	5.14	(d, 3.2)
3	45.65	CH ₂	3.28	(dd, 13.0, 6.0)
			2.95 ^e	(m)
4	15.01	CH ₂	2.87 ^e	(m)
			2.42	(dd, 16.3, 5.2)
4a	105.98	С		
4b	123.82 ^d	С		
5	119.53	CH	7.23	(d, 8.5)
6	123.88 ^d	CH	7.27	(dd, 8.5, 1.6)
7	117.67	С		
8	115.40	CH	7.73	(d, 1.6)
8a	137.53	С		
9			11.12	(s)
9a	121.62	С		
10	63.80 ^c	CH	4.13	(m)
11	33.06	CH ₂	3.24	(dd, 15.0, 4.8)
			3.09	(dd, 15.0, 9.7)
12	134.12	С		
13, 17	128.46	CH	6.59 ^a	(d, 7.5)
14, 16	128.86	CH	7.04 ^a	(dd, 7.5, 7.5)
15	127.77	CH	7.12	(dd, 7.5, 7.5)
18	32.45	CH ₃	2.87 ^b	(s)
19	39.79	CH ₃	2.92 ^b	(s)

^a 2H.

^b 3H. ^{c,d} Interchangeable.

^e *I*-values were not determined since overlapping with other signals.

Figure 1. Selected 2D NMR correlations for eudistomidin G (1).

C-11 and C-12. Thus, the gross structure of eudistomidin G was elucidated to be **1**.

The relative stereochemistry of **1** was not able to be elucidated from the ${}^{3}J_{H-1/H-10}$ value (3.2 Hz) and NOESY correlations of H-1/H-10, H-10/H-19, and NH-9/H-11b. The absolute configuration at C-1 in **1** was deduced as *R* from a positive Cotton effect at 228 nm ($\Delta\varepsilon$ +5.6) in the CD spectrum of **1**.⁵

The structure of eudistomidin B (2) was reinvestigated, since the total synthesis of the proposed structure (2a) of eudistomidin B (2) revealed that the NMR data of the synthetic compound were inconsistent with those of natural eudistomidin B (2).⁷ The molecular fomula of eudistomidin B (2)⁸ was shown to be C₂₁H₂₄N₃⁷⁹Br (*m*/*z* 398.1235 [M+H]⁺, Δ +0.9 mmu), and UV and IR absorptions of 2 were the same as those reported previously.³ The ¹H NMR (Table 2) spectrum of 2 measured in CDCl₃ showed signals due to one NH ($\delta_{\rm H}$ 11.19), eight aromatic protons ($\delta_{\rm H}$ 7.54–6.61), two sp³ methines ($\delta_{\rm H}$ 2.90 and 2.85). The ¹³C NMR (Table 2) spectrum of 2 included 19 signals derived from 21 carbons due to six sp² quaternary carbons, eight sp² methines, two sp³ methines, three sp³ methylenes, and two sp³ methyls. Among them, two methyls ($\delta_{\rm C}$ 39.81, $\delta_{\rm H}$ 2.90, and $\delta_{\rm C}$ 32.54, $\delta_{\rm H}$ 2.85) were ascribed to those bearing a nitrogen.

The ${}^{1}\text{H}-{}^{1}\text{H}$ COSY, TOCSY, and HMQC spectra of **2** revealed connectivities of C-1 to C-10, C-3 to C-4, C-7 to C-8, C-10 to C-11, and

Table 2			
¹ H and ¹³ C NMR data for	the revised structure	e (2b) of eudistomid	in B (2) in CDCl ₃

Position	δ_{C}		$\delta_{ m H}$	
1	63.63	СН	5.07	(d, 2.9)
3	45.85	CH ₂	3.30	(m)
			2.94 ^c	(m)
4	14.92	CH ₂	2.86 ^c	(m)
			2.43	(br d, 10.5)
4a	105.59	С		
4b	126.61	С		
5	121.06	CH	7.54	(s)
6	113.71	С		
7	127.06	CH	7.41	(d, 8.5)
8	113.82	CH	7.43	(d, 8.5)
8a	135.53	С		
9			11.19	(s)
9a	122.09	С		
10	63.86	CH	4.01	(m)
11	33.37	CH ₂	3.22	(m)
			3.07	(dd, 15.0, 9.4)
12	133.82	С		
13, 17	128.46	CH	6.61 ^a	(d, 7.5)
14, 16	128.93	CH	7.07 ^a	(dd, 7.5, 7.5)
15	127.93	CH	7.15	(dd, 7.5, 7.5)
18	32.54	CH ₃	2.85 ^b	(s)
19	39.81	CH ₃	2.90 ^b	(s)

^а 2Н. ^ь 3Н.

^c Interchangeable.

C-13 to C-17. HMBC and NOESY correlations indicated the presence of a 6-brominated 1,2,6-trisubstituted tetrahydro- β -carboline ring. The connectivity of C-11 and C-12 was suggested by HMBC correlations for H-11 to C-12 and C-13 (C-17). HMBC correlations for H₃-19 to C-1 and C-3 disclosed that one methyl group (C-19) was connected to N-2, while the HMBC correlation for H₃-18 to C-10 revealed that another methyl group (C-18) was not attached to C-15 but attached to N-10. (Fig. 2). These data suggested that the gross structure of eudistomidin B (**2**) was **2b** but not **2a**.⁹

The relative stereochemistry of revised structure (**2b**) of eudistomidin B (**2**) was not able to be assigned from the ${}^{3}J_{H-1/H-10}$ value (2.9 Hz), and NOESY correlations for H-10/H-19, H-1/H-10, and NH-9/H-11b. The absolute configuration at C-1 in eudistomidin B (**2**) was deduced to be *R* from a positive Cotton effect at 231 nm ($\Delta \varepsilon$ +2.4) in the CD spectrum of **2**.^{5,6}

To elucidate the relative and absolute configurations of eudistomidin B, the revised structure (**2b**) of eudistomidin B (**2**) and its (1*S*,10*S*)-diastereomer (**2c**) were prepared in optical active form employing the Noyori catalytic asymmetric hydrogen-transfer reaction¹⁰ (Scheme 1). Treatment of 5-bromotryptamine **3**⁷ with carboxylic acid **4**¹¹ in the presence of EDC and HOBt provided amide **5**. The Bischler–Napieralski reaction¹² in benzene afforded dihydro- β -carboline (**6**). Noyori asymmetric hydrogen-transfer reaction of **6** in DMF afforded tetrahydro- β -carboline, which was

Figure 2. Selected 2D NMR correlations for the revised structure (2b) of eudistomidin B (2).

Scheme 1. Synthesis of the revised structure (2b) of eudistomidin B (2) and its (15,105)-diastereomer (2c). Reagents and conditions: (a) HOBt, EDC, CH₂Cl₂, 94%; (b) POCl₃, benzene, 12%; (c) (*S*,*S*)-TsDPEN–Ru(II) complex, HCO₂H/Et₃N (5:2), DMF; (d) HCHO aq, NaBH₃CN, MeCN, 89% for two steps; (e) DBU, CH₂Cl₂, 85%; (f) (*R*,*R*)-TsDPEN–Ru(II) complex, HCO₂H/Et₃N (5:2), DMF; (g) HCHO aq, NaBH₃CN, MeCN, 92% for two steps; (h) DBU, CH₂Cl₂, 78%.

methylated with HCHO and NaBH₃CN to yield **7** in 89% (dr >10:1 from ¹H NMR analysis). Removal of Fmoc group in **7** with DBU furnished the revised structure (**2b**) of eudistomidin B (**2**), having (1*R*,10*S*)-configuration. Similarly, by starting from dihydro- β -carboline (**6**), (1*S*,10*S*)-diastereomer (**2c**) was synthesized.

The spectral data (¹H and ¹³C NMR, CD, and optical rotation)¹³ of the synthetic revised structure (**2b**) were coincident with those of natural eudistomidin B (**2**), whereas the spectral data¹⁴ for its synthetic (1*S*,10*S*)-diastereomer (**2c**) were inconsistent with those of natural eudistomidin B (**2**) (Table 3). Thus, the structure of eudistomidin B (**2**) was revised from **2a** to **2b**. Furthermore, synthetic compounds **2b** and **2c**, and natural eudistomidin B (**2**) were subjected to C₁₈ HPLC [Luna Phenyl-Hexyl, 4.6×250 mm; flow rate 0.5 mL/min: eluent; MeOH/H₂O/TFA (80:20:0.1); UV detection

Table 3

 1H NMR data for synthetic revised structure (**2b**) of eudistomidin B (**2**) and its synthetic (15,105)-diastereomer (**2c**) in CDCl₃

Position		2b		2c
1	5.10	(d, 2.0)	5.27	(d, 2.3)
3	3.32	(m)	3.52	(m)
	2.94	(m)	2.98	(m)
4	2.86	(m)	2.88	(m)
	2.42	(br d, 10.6)	2.30	(dd, 16.9, 4.9)
4a				
4b				
5	7.53	(s)	7.49	(d, 2.0)
6				
7	7.43	(d, 8.6)	7.48	(d, 9.0)
8	7.45	(d, 8.6)	7.42	(dd, 9.0, 2.0)
8a				
9	11.04	(s)	11.27	(s)
9a				
10	3.99	(m)	4.10	(m)
11	3.22	(m)	3.27	(m)
	3.07	(dd, 14.9, 9.3)	3.26	(m)
12				
13, 17	6.56 ^a	(d, 7.3)	6.50 ^a	(d, 7.5)
14, 16	7.07 ^a	(dd, 7.3, 7.3)	7.02 ^a	(d, 7.5)
15	7.15	(dd, 7.3, 7.3)	7.12	(d, 7.5)
18	2.87 ^b	(s)	2.92 ^b	(s)
19	2.91 ^b	(s)	2.94 ^b	(br s)

at 280 nm], and it was found that the retention time of natural eudistomidin B (**2**) (t_R 13.0 min) was identical with that of **2b** (t_R 13.0 min) but not that of **2c** (t_R 10.8 min). These results also support that natural eudistomidin B (**2**) has (1*R*,10*S*)-configuration.

The relative stereochemistry of eudistomidin G (1) was elucidated from comparison of ¹H NMR data of 1 with those of synthetic diastereomers (**2b** and **2c**) of eudistomidin B (2). ¹H NMR data of 1 were quite similar to those of **2b** but not those of **2c**, indicating that the relative stereochemistry of eudistomidin G (1) was the same as that of the revised structure (**2b**) of eudistomidin B (**2**). Since the absolute configuration at C-1 in eudistomidin G (1) was deduced to be *R* from the CD spectrum, the absolute configuration at C-10 in eudistomidin G (1) was assigned as *S*.

Eudistomidin G (1) corresponds to the 7-bromo analog of eudistomidin B (2). Biosynthetically both 1 and 2 might be derived from tryptophan and L-phenylalanine. Eudistomidins G (1) and B (2) showed cytotoxicity against L1210 murine leukemia cells (IC₅₀, 4.8 and 4.7 μ g/mL, respectively) in vitro. Since eudistomidin alkaloids show various biological activity,^{3,15} further biological studies of eudistomidins B and G are in progress.

Acknowledgments

Authors thank Ms. A. Tokumitsu, Center for Equipment Management Center, Hokkaido University, for measurements of ESIMS. This work was partly supported by a research fellowship for young scientists from the Japan Society for the Promotion of Science (to Y.T.) and Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References and notes

- Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2010, 27, 165.
- 2. Wang, W.; Nam, S.-J.; Lee, B.-C.; Kang, H. J. Nat. Prod. 2008, 71, 163. and references cited therein.
- 3. Kobayashi, J.; Cheng, J.-F.; Ohta, T.; Nozoe, S.; Ohizumi, Y.; Sasaki, T. J. Org. Chem. **1990**, 55, 3666.
- 4. Eukistomidin G (1): pale yellow amorphous solid; $[\alpha]_{D1}^{21}$ +6.4 (c 0.2, CHCl₃); IR (film) v_{max} 3211, 3049, 2922, 2851, and 1458 cm⁻¹; UV (MeOH) λ_{max} 366 (ϵ 200), 296 (sh 1870), 286 (2190), 231 (10,200), and 203 nm (10,400); CD (MeOH) λ_{ext} 293 ($\Delta \epsilon$ +0.11), 228 nm (+5.6), 213 nm (-2.5); ¹H and ¹³C NMR

(CDCl₃) see Table 1; ESIMS (pos.) m/z 398 and 400 ([M+H]⁺, 1:1); HRESIMS (pos.) m/z 398.1235 ([M+H]⁺, calcd for C₂₁H₂₅N₃⁷⁹Br, 398.1226).

- 5
- Stöckigt, J.; Zenk, M. H. J. Chem. Soc., Chem. Commun. **1977**, 646. Though we have previously reported³ that the absolute configuration at C-1 in 6 eudistomidin B (2) was assigned to be S from a negative Cotton effect at 216 nm ($\Delta \epsilon$ –14.4) in the CD spectrum⁵ of **2**, the 1*R* configuration of eudistomidin B (2) was deduced from a positive Cotton effect at 231 nm ($\Delta \varepsilon$ +2.4), considering red shift due to bromine substitution in the indole ring.
- 7 Ito, T.; Kitajima, M.; Takayama, H. Tetrahedron Lett. 2009, 50, 4506.
- Eukistomidin B (2): pale yellow amorphous solid; $[\alpha]_{21}^{D1} + 7.5$ (c 0.5, CHCl₃); IR (film) ν_{max} 3211, 3029, 2916, 2855, and 1454 cm⁻¹; UV (MeOH) λ_{max} 364 (ε 8 170), 301 (sh 1950), 291 (2490), 284 (sh 2410), 230 (12,100), and 204 nm (11,500); CD (MeOH) λ_{ext} 281 ($\Delta \epsilon$ +0.39), 231 nm (+2.4), and 213 nm (-1.7); ¹H and ¹³C NMR (CDCl₃) see Table 2; ESIMS (pos.) *m/z* 398 and 400 ([M+H]⁺, 1:1); HRESIMS (pos.) *m/z* 398.1235 ([M+H]⁺, calcd for C₂₁H₂₅N₃⁷⁹Br, 398.1226).
- 9 In this study, eudistomidin B reported previously³ has proved to be a (2:1) mixture of eudistomidins B (2) and G (1).
- 10 Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 4916.

- 11. Biron, E.; Chatterjee, J.; Ovadia, O.; Langenegger, D.; Brueggen, J.; Hoyer, D.; Schmid, H. A.; Jelinek, R.; Gilon, C.; Hoffman, A.; Kessler, H. Angew. Chem., Int. Ed. 2008, 47, 2595.
- 12 Bischler, A.; Napieralski, B. Chem. Ber. 1893, 26, 1891.
- 13. Synthetic **2b**: pale yellow amorphous solid; $[\alpha]_D^{20}$ +8.2 (c 0.2, CHCl₃); UV (MeOH) λ_{max} 361 (ε 280), 301 (sh 1770), 293 (2320), 284 (sh 2700), 227 (12,700), and 205 nm (12,800); CD (MeOH) $\lambda_{\rm ext}$ 276 ($\Delta \epsilon$ –0.6), 231 (+4.7), and 213 nm (-4.0); ¹H NMR (CDCl₃) see Table 3; ESIMS (pos.) m/z 398 and 400 ([M+H]⁺, 1:1); HRESIMS (pos.) *m*/*z* 398.1230 ([M+H]⁺, calcd for C₂₁H₂₅N₃⁷⁹Br, 398.1226); ¹³C NMR (CDCl₃) *δ*:135.43 (C-8a), 133.93 (C-12), 128.95 (C-14,16), 128.41 (C-13,17), 127.94 (C-15), 127.15 (C-7), 126.52 (C-4b), 121.90 (C-9a), 121.00 (C-5), 114.02 (C-8), 113.76 (C-6), 105.37 (C-4a), 64.22 (C-10), 64.03 (C-1), 45.61 (C-3),
- 39.93 (C-19), 33.76 (C-11), 32.54 (C-18), 15.03 (C-4).
 Synthetic **2c**: pale yellow amorphous solid; [α]_D²⁰ -11.5 (*c* 0.5, CHCl₃); UV (MeOH) λ_{max} 300 (ε 1710), 290 (2180), 279 (2190), 227 (11,700), and 205 nm (11,100); CD (MeOH) λ_{ext} 278 ($\Delta \epsilon$ +0.7), 231 (-3.3), and 215 nm (+1.3); ¹H MRR (CDCl₃) see Table 3; ESIMS (pos.) m/z 398 and 400 ([M+H]⁺, 1:1); HRESIMS (pos.) m/z 398.1227 ([M+H]⁺, calcd for C₂₁H₂₅N₃⁷⁹Br, 398.1226).
- 15. Kobayashi, J.; Nakamura, H.; Ohizumi, Y.; Hirata, Y. Tetrahedron Lett. 1986, 27, 1191.