

pubs.acs.org/joc

Direct Synthesis of Fused Indoles by Gold-Catalyzed Cascade Cyclization of Diynes

Kimio Hirano,^{†,‡} Yusuke Inaba,[†] Naoya Takahashi,[‡] Masanao Shimano,[‡] Shinya Oishi,[†] Nobutaka Fujii,^{*,†} and Hiroaki Ohno^{*,†}

[†]Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan, and [‡]Central Research Laboratories, Kaken Pharmaceutical Co., Ltd., Yamashina-ku, Kyoto 607-8042, Japan

hohno@pharm.kyoto-u.ac.jp; nfujii@pharm.kyoto-u.ac.jp

Received December 18, 2010

A direct, concise, and atom-economical synthetic method for the generation of fused indoles, using a gold-catalyzed cascade cyclization of diynes, has been developed. The reaction gave various fused indoles, such as aryl-annulated[a]carbazoles, dihydrobenzo[g]indoles, and azepino- or oxepinoindole derivatives in good to excellent yields, through an intramolecular cascade 5-endo-dig hydroamination followed by a 6- or 7-endo-dig cycloisomerization, without producing theoretical byproduct. Three of the resulting indoles exhibited potent antifungal activities against T. mentagrophytes and T. rubrum, demonstrating the practical application of the described cascade reaction for drug discovery.

Introduction

The indole moiety is a vital structural unit found in a large array of natural products and pharmaceuticals.¹ Aryl- and heteroaryl-annulated[*a*]carbazoles are particularly noted for their diverse biological activities.²⁻⁶ While synthetic methodologies have been developed to generate these compounds, most include stepwise introduction or construction of the

F.; Aboab, B.; Prudhomme, M. J. Med. Chem. 2007, 50, 4669–4680. (6) For thrombopoietin receptor agonistic action, see: Alper, P. B.;

Marsilje, T. H.; Mutnick, D.; Lu, W.; Chatterjee, A.; Roberts, M. J.; He, Y.; Karanewsky, D. S.; Chow, D.; Lao, J.; Gerken, A.; Tuntland, T.; Liu, B.; Chang, J.; Gordon, P.; Seidel, H. M.; Tian, S.-S. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 5255–5258.

1212 J. Org. Chem. **2011**, 76, 1212–1227

pyrrole and benzene rings.⁷ The development of a direct, concise, and atom-economical synthetic route to this class of compounds, producing minimum waste/byproduct, would therefore be of considerable interest for drug discovery and process chemistry.

In recent years, cascade reactions have been recognized as an efficient approach to target molecules by minimizing the number of steps and separation processes and the amount of time, labor, and waste involved.⁸ Gold catalysis is an important and powerful tool for the promotion of cascade reactions because it can promote several types of nucleophilic reaction through the electrophilic activation of carbon–carbon multiple bonds.⁹ To develop a more atomeconomical and direct synthetic method to aryl-annulated-[*a*]carbazoles **2**, we designed a cycloisomerization cascade

Published on Web 01/21/2011

⁽¹⁾ For recent reviews, see: Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875–2911.

⁽²⁾ For antituberculosis activity, see: Choi, T. A.; Czerwonka, R.; Fröhner, W.; Krahl, M. P.; Reddy, K. R.; Franzblau, S. G.; Knölker, H.-J. *ChemMedChem* **2006**, *1*, 812–815.

⁽³⁾ For antitumor activity, see: (a) Lescot, E.; Muzard, G.; Markovits, J.; Belleney, J.; Roques, B. P.; Le Pecq, J.-B. *J. Med. Chem.* **1986**, *29*, 1731–1737.
(b) Cavazos, C. M.; Keir, S. T.; Yoshinari, T.; Bigner, D. D.; Friedman, H. S. Cancer Chemother. Pharmacol. **2001**, *48*, 250–254.

 ⁽⁴⁾ For antifungal activity, see: Thevissen, K.; Marchand, A.; Chaltin, P.;
 Meert, E. M.K.; Cammue, B. P.A. Curr. Med. Chem. 2009, 16, 2205–2211.
 (5) For checkpoint kinase l inhibitory activity, see: Conchon, E.; Anizon,

⁽⁷⁾ For recent reviews, see: (a) Kirsch, G. H. *Curr. Org. Chem.* **2001**, *5*, 507–518. (b) Knölker, H.-J.; Reddy, K. R. *Chem. Rev.* **2002**, *102*, 4303–4427.

⁽⁸⁾ For recent reviews on cascade reactions, see: (a) Tietze, L. F. Chem. Rev. 1996, 96, 115–136. (b) Wasilke, J.-C.; Obrey, S. J.; Baker, T.; Bazan, G. C. Chem. Rev. 2005, 105, 1001–1020. (c) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134–7186. (d) Kirsch, S. F. Synthesis 2008, 3183–3204. (e) Nicolaou, K. C.; Chen, J. S. Chem. Soc. Rev. 2009, 38, 2993–3009.

SCHEME 1. Synthesis of Aryl-Annulated[*a*]Carbazoles: Our Strategy

strategy on the basis of gold-catalyzed 5-*endo-dig* hydroamination¹⁰ and subsequent 6-*endo-dig* hydroarylation¹¹ of diyne 1 (Scheme 1). We now report full details of our study on the synthesis of aryl-annulated[*a*]carbazoles based on this strategy.¹² Synthesis of other heterocyclic indoles, such as dihydrobenzoindole, oxepinoindole, and cycloheptaindole derivatives and the antifungal activities of these indole derivatives are also presented.

Results and Discussion

Synthesis of Aryl-Annulated[a]Carbazoles Using Various Aniline-Substituted Diethynylarenes. Our preliminary investigation revealed that 5 mol % of Ph₃PAuCl/AgOTf in MeCN at 80 °C produced carbazoles in good yields from divne derivatives bearing an *n*-propyl, cyclohexyl, phenyl, and electron-deficient aryl group (p-F₃CC₆H₄, p-NCC₆H₄, or p-ClC₆H₄) at the alkyne terminus (Table 1, entries 1–6). On the other hand, the reaction of 1g or 1h bearing an electron-rich aryl group (p-MeC₆H₄ or p-MeOC₆H₄) as the R substituent under identical conditions gave the corresponding carbazoles 2g and 2h in relatively low yields (42% and 29%, respectively, entries 7 and 8). The yields of 2g and 2h were only moderately improved by increasing the loading of Ph₃PAuCl/AgOTf to 20 mol % (65% and 45%, respectively). The lower reactivity of these substrates can be attributed to the predominant coordination of the electronrich arvl-substituted alkyne to the active cationic gold complex, which hinders the first cyclization step.

We further optimized the reaction conditions for diyne **1g** using highly alkynophilic gold–phosphine catalysts (**A**–**C**)

 TABLE 1.
 Reaction of Various Aniline Derivatives under Unoptimized

 Conditions^a
 Provide Conditions^a

entry	1	R	time ^{b} (h)	2	yield ^{b} (%)
1	1a	<i>n</i> -Pr	0.75	2a	87
2	1b	c-Hex	0.75	2b	82
3	1c	Ph	1.5	2c	80
4	1d	$p-F_3CC_6H_4$	0.5	2d	84
5	1e	p-NCC ₆ H ₄	1.0	2e	78
6	1f	p-ClC ₆ H ₄	0.75	2f	81
7	1g	p-MeC ₆ H ₄	3.5(0.83)	2g	42 (65)
8	1ĥ	p-MeOC ₆ H ₄	4.0(1.5)	2h	29 (45)

^{*a*}Unless stated otherwise, all reactions were carried out with Ph_3PAuCl (5 mol %) and AgOTf (5 mol %) in MeCN at 80 °C. ^{*b*}Reaction times and yields in parentheses indicate those with 20 mol % of the catalysts.

FIGURE 1. Screened gold-phosphine catalysts.

(Figure 1).¹³ We postulated that the bulky biarylphosphine ligands might effectively promote dissociation of the gold catalyst from the substrate, which would improve the chance of activation of the appropriate alkyne for hydroamination.^{14–16} Pleasingly, reactions carried out with 5 mol % of catalysts A-C exhibited significantly increased turnover of **1g** to give **2g**, with good yields obtained (Table 2, 71–83%, entries 2–4).

Using the optimized conditions described in entry 4 (catalyst C, Table 2), the cascade cyclization was extended to other types of substituted anilines. The results are summarized in Table 3. In contrast to the low yield obtained for the reaction of aniline **1h** having a methoxy group with 5 mol % of Ph₃PAuCl/AgOTf (29% yield, entry 8, Table 1), the cascade cyclization of **1h** with 5 mol % of C/AgOTf proceeded cleanly to give **2h** in 83% yield (entry 2). When using precursors **1i**–**k**, which bear a *meta*-substituted phenyl group at R¹, the corresponding products **2i**–**k** were afforded in good to excellent yields (76–98%, entries 3–5). It should be noted that an *o*-cyano group at R¹ significantly decreased

⁽⁹⁾ For recent reviews on gold catalysis: (a) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180–3211. (b) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395–403. (c) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326–3350. (d) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395–3442. (e) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208–3221.

⁽¹⁰⁾ For alkyne hydroamination to give indoles, see: (a) Arcadi, A.;
Bianchi, G.; Marinelli, F. Synthesis 2004, 610–618. (b) Alfonsi, M.; Arcadi, A.; Aschi, M.; Bianchi, G.; Marinelli, F. J. Org. Chem. 2005, 70, 2265–2273.
(c) Miyazaki, Y.; Kobayashi, S. J. Comb. Chem. 2008, 10, 355–357.
(d) Praveen, C.; Sagayaraj, Y. W.; Perumal, P. T. Tetrahedron Lett. 2009, 50, 644–647. Quite recently, a Pd(II)-catalyzed oxidative halocyclization cascade using highly related substrates to give benzo[a]carbazoles appeared:
(e) Chen, C.-C.; Chin, L.-Y.; Yang, S.-C.; Wu, M.-J. Org. Lett. 2010, 12, 5652–5655.

⁽¹¹⁾ For gold-catalyzed electrophilic activation of alkynes toward intra-molecular nucleophilic attack at the C-3 position of indoles, see: (a) Ferrer, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 1105–1109.
(b) Ferrer, C.; Amijs, C. H. M.; Echavarren, A. M. Chem.—Eur. J. 2007, 13, 1358–1373. (c) Sanz, R.; Miguel, D.; Rodríguez, F. Angew. Chem., Int. Ed. 2008, 47, 7354–7357. (d) England, D. B.; Padwa, A. Org. Lett. 2008, 10, 3631–3634. (e) Lu, Y.; Du, X.; Jia, X.; Liu, Y. Adv. Synth. Catal. 2009, 351, 1517–1522. (f) Verniest, G.; England, D.; Kimpe, N. D.; Padwa, A. Tetrahedron 2010, 66, 1496–1502. (g) Liu, Y.; Xu, W.; Wang, X. Org. Lett. 2010, 12, 1448–1451. (h) Li, G.; Liu, Y. Jorg. Chem. 2010, 75, 3526–3528.

⁽¹²⁾ A portion of this study (Table 1, entry 1 in Table 2 and Scheme 2) has already been reported in a preliminary communication: Hirano, K.; Inaba, Y.; Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. *Adv. Synth. Catal.* **2010**, *352*, 368–372.

⁽¹³⁾ Nieto-Oberhuber, C.; López, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178–6179.

⁽¹⁴⁾ For a recent review on ligand effects of gold catalysis, see: Gorin, D. J.; Sherry, B. D.; Toste, F. D. *Chem. Rev.* **2008**, *108*, 3351–3378.

⁽¹⁵⁾ For the impact of the bulky biarylphosphine ligands on gold catalysis, see: Benitez, D.; Tkatchouk, E.; Gonzalez, A. Z.; Goddard, W. A., III; Toste, F. D. Org. Lett. **2009**, *11*, 4798–4801.

⁽¹⁶⁾ While this reference does not refer to a gold-catalyzed reaction, it discusses the origin of improved reactivity in a Pd-catalyzed C-N bond formation reaction by bulky and electron-rich monophosphinobiaryl ligands; see: Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 13978-13980.

TABLE 2. Investigation of Gold Catalysts Bearing Bulky Biarylphosphine Ligands^a

entry	Aucatalyst	time (mm)	yleid (70)	
1	Ph ₃ PAuCl	50	42	
2	Α	45	71	
3	В	45	80	
4	С	45	83	
<i>a</i> a 11				

^{*a*}All reactions were carried out with Au catalyst (5 mol %) and AgOTf (5 mol %) in MeCN at 80 °C.

entry	1	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	2	time (min)	yield (%)
1	1g	p-MeC ₆ H ₄	Н	Н	2g	45	83
2	1h	<i>p</i> -MeOC ₆ H ₄	Н	Н	2h	30	83
3	1i	m-CF ₃ C ₆ H ₄	Н	Н	2i	40	98
4	1j	m-NCC ₆ H ₄	Н	Н	2j	30	79
5	1k	m-MeC ₆ H ₄	Н	Н	2k	30	76
6	1l	$o-NCC_6H_4$	Н	Н	21	250	10
7	1m	o-MeC ₆ H ₄	Н	Н	2m	40	82
8	1n	3-thienyl	Н	Н	2n	40	74
9	10	c-pentyl	Н	Н	20	40	90
10	1p	Ph	CO ₂ Me	Н	2p	120	68
11	1q	Ph	Me	Н	2q	30	83
12	1r	Ph	Н	Cl	2r	40	92
13	1s	c-Hex	Н	Cl	2s	90	96
14	1t	c-Hex	Н	CF_3	2t	90	87
^{<i>a</i>} All reactions were carried out with C (5 mol %) and AgOTf (5 mol							
%) in MeCN at 80 °C.							

the yield (10%, entry 6), while the effect of *p*-cyanophenyl group was less important (Table 1, entry 5). This is presumably because of a coordination effect of the *o*-cyano group, which would promote an undesired interaction between the R^1 group substituted triple bond and the catalyst before hydroamination.¹⁷ This explanation is supported by the high yield obtained with **1m**, which bears an R^1 *o*-tolyl group (82%, entry 7), showing that any steric hindrance of the reaction by *o*-substituents on R^1 is relatively unimportant. Diynes **1n** and **1o** bearing a thienyl and cyclopentyl group as R^1 , respectively, were good substrates for the cascade cyclization (entries 8 and 9). We also examined the effect of substituents R^2 and R^3 on the aniline moiety (entries 10–14).

TABLE 4. Effect of a Nitrogen Substituent and Various Arene Tethers^a

"Unless otherwise stated, all reactions were carried out with C (5 mol %) and AgOTf (5 mol %) in MeCN at 80 °C. ^{*b*}Reaction times and yields in parentheses indicate those with 20 mol % of the catalysts.

Substitution with a methoxycarbonyl group at the paraposition decreased the reactivity of 1p, and 2p was only obtained in a moderate yield (68%, entry 10) with prolonged reaction time. This is presumed to be due to the decreased nucleophilicity of the amino group in the first step as well as the indole 3-position in the second step. Reaction of 1q, containing a *p*-methyl group, led to **2q** in good yield (83%, entry 11).¹⁸ Diynes 1r and 1s, which bear chlorine substituents, afforded carbazoles 2r and 2s in excellent yields (92% and 96%, entries 12 and 13), independent of the R^1 substituent. A trifluoromethyl group R³ substituent was also tolerated (entry 14). From these results, the reaction using catalyst C, with bulky biaryl phosphine ligand, is applicable to various substrate types and affords the corresponding carbazoles in good yields, reducing the importance of substrate electronic effects to reaction outcome.

Next, we investigated nitrogen substitution and other arene tethers between the two alkynes (Table 4). *tert*-Butyl carbamate 1u satisfactorily underwent cascade cyclization in the presence of gold catalyst C to give 2u in a yield of 89% (entry 1). The reaction of 1v, which has a methyl group as \mathbb{R}^1 substituent, also reacted cleanly to afford 2v in excellent yield (92%, entry 2). Anilines 1w and 1y, which have fluorinated phenyl or furan groups tethering the alkyne moieties, provided the desired carbazoles 2w and 2y in 84% and 98% yields, respectively (entries 3 and 5). However, diyne 1x, containing a pyridine moiety, proved to be a poor substrate,

⁽¹⁷⁾ For example, N-heterocyclic carbene gold(I) activates a nitrile group, see: Ramón, R. S.; Marion, N.; Nolan, S. P. Chem. Eur. J. 2009, 15, 8695– 8697.

⁽¹⁸⁾ It is noteworthy that the reaction of 1p or 1q under the previous conditions (5 mol % of Ph₃PAuCl/AgOTf) gave the corresponding carbazoles 2p or 2q in only low yields (35% and 29%, respectively); see ref 12.

SCHEME 3. Synthesis of Dihydrobenzoindole and Dihydronaphthofuran

resulting in a low yield of 2x (15%, entry 4). The yield of 2x was improved slightly (37%) by the use of increased catalyst loading (20 mol %, entry 4). Interestingly, the base-promoted cyclization of 1x using *t*-BuOK in NMP showed a dramatic change in cyclization mode, resulting in the formation of product 3 in 60% yield, as the single *E*-isomer, ¹⁹ through a cascade 5-*endo-dig*/5-*exo-dig* cyclization (Scheme 2).^{20,21}

Synthesis of Dihydrobenzoindole and Dihydronaphthofuran. We examined the reactivity of nucleophilic groups other than anilines (Scheme 3). Unfortunately, the alkyl aminederived diyne 4 did not give dihydrobenzoindole 5. We speculated that unfavorable interactions of the amino group with the gold catalyst may be responsible for this result, and therefore tested the Boc-protected amine derivative 6, which reacted cleanly to afford compound 7 in high yield (99%). The Boc group of 7 was easily removed by treatment with 2 N

ciiti y	diyne		(1101 /0)	(11)	product	(70)
1	10a	NTs	C (5)	2.5	11a	38
2	10a	NTs	A (5)	1.5	11a	42
3	10a	NTs	A (20)	1	11a	66
4	10b	0	C (5)	4	11b	49
5	10c	$C(CO_2Me)_2$	C (5)	2.5	11c	63
a A 11	ronation	s wore corried a	aut with Au on	tolvet (5	or 20 mol 9	() and

^{*a*}All reactions were carried out with Au catalyst (5 or 20 mol %) and AgOTf (5 or 20 mol %) in MeCN at 80 $^{\circ}$ C.

HCl/1,4-dioxane to afford dihydrobenzoindole **5** in 90% yield.^{22,23} Similarly, the cyclization of alcohol **8** gave dihydronaphthofuran **9** in 85% yield.^{23,24} These results show that *tert*-butyl carbamates and alcohols can also be used as the nucleophile in this cascade cyclization. Synthesis of dihydrobenzo[g]indole derivative such as **5** seems to be especially important in drug discovery, in terms of improvement of physiological properties of aryl-annulated[*a*]carbazoles (e.g., water solubility, lipophilicity) by removing one benzene ring from these molecules.²⁵

Synthesis of Azepino- or Oxepino[3,4-b]indole and Cyclohepta[b]indole Derivatives. Indole-fused seven-membered ring derivatives are attractive drug templates,²⁶ and we envisioned their synthesis by establishing seven-membered ring formation as the second step of the cascade cyclization (Table 5). Three diyne derivatives, sulfonamide 10a, ether 10b, and diester 10c were prepared and subjected to the standard conditions for the cascade cyclization. Treatment of 10a with 5 mol % of the gold catalyst C/AgOTf resulted in azepinoindole 11a in 38% yield (entry 1). This result shows that intramolecular nucleophilic attack at the C-3 position of the indole intermediate underwent 7-endo-dig cyclization as we expected.²⁷ The reaction was also performed by using 5 mol % (entry 2) and 20 mol % (entry 3) of the gold

⁽¹⁹⁾ NOE analysis indicates that **3** has an *E*-configuration; see ref 12.

⁽²⁰⁾ For related base-mediated reactions, see: (a) Wu, M.J.; Lee, C.-Y.; Lin, C.-F. Angew. Chem., Int. Ed. 2002, 41, 4077–4079. (b) Lee, C.-Y.; Lin, C.-F.; Lee, J.-L.; Chiu, C.-C.; Lu, W.-D.; Wu, M.-J. J. Org. Chem. 2004, 69, 2106–2110.

⁽²¹⁾ In 2004, Wu reported base-promoted cascade cyclization of anilinesubstituted (Z)-endiyne derivatives to form carbazoles. However, our detailed reinvestigation of the reactions has shown that these reactions generate pyrido[1,2-a]indole derivatives, not carbazoles; see ref 12.

⁽²²⁾ For representative syntheses of dihydrobenzoindole derivatives, see: (a) Kappe, C. O.; Cochran, J. E.; Padwa, A. *Tetrahedron Lett.* **1995**, *36*, 9285–9288. (b) Padwa, A.; Kappe, C. O.; Cochran, J. E.; Snyder, J. P. J. Org. Chem. **1997**, *62*, 2786–2797. (c) Ghoral, B. K.; Herndon, J. W. Organometallics **2003**, *22*, 3951–3957. (d) Kise, N.; Isemoto, S.; Sakurai, T. Org. Lett. **2009**, *11*, 4902–4905.

⁽²³⁾ For the synthesis of dihydrobenzoindole and dihydronaphthofuran derivatives, see: Taduri, B. P.; Odedra, A.; Lung, C.-Y.; Liu, R.-S. *Synthesis* **2007**, 2050–2054.

⁽²⁴⁾ For the representative synthesis of a dihydronaphthofuran derivative, see: Duperrouzel, P.; Lee-Ruff, E. *Can. J. Chem.* **1980**, *58*, 51–54.

⁽²⁵⁾ Ritchie, T. J.; Macdonald, S. J. F. *Drug Discov. Today* **2009**, *14*, 1011–1020.

^{(26) (}a) Putey, A.; Joucla, L.; Picot, L.; Besson, T.; Joseph, B. Tetrahedron
2007, 63, 867-879. (b) Singh, U. S.; Shankar, R.; Yadav, G. P.; Kharkwal, G.;
Dwivedi, A.; Keshri, G.; Singh, M. M.; Moulik, P. R.; Hajela, K. Eur. J.
Med. Chem. 2008, 43, 2149-2158. (c) Keller, L.; Beaumont, S.; Liu, J.-M.;
Thoret, S.; Bignon, J. S.; Wdzieczak-Bakala, J.; Dauban, P.; Dodd, R. H. J.
Med. Chem. 2008, 51, 3414-3421. (d) Feytens, D.; Vlaeminck, M. D.;
Cescato, R.; Tourwé, D.; Reubi, J. C. J. Med. Chem. 2009, 52, 95-104. (e)
Putey, A.; Popowycz, F.; Do, Q.-T.; Bernard, P.; Talapatra, S. K.; Kozielski,
F.; Galmarini, C. M.; Joseph, B. J. Med. Chem. 2009, 52, 5916-5925. (f)
Yeung, B. K. S.; Zou, B.; Rottmann, M.; Lakshminarayana, S. B.; Ang,
S. H.; Leong, S. Y.; Tan, J.; Wong, J.; Keller-Maerki, S.; Fischli, C.; Goh, A.;
Schmitt, E. K.; Krastel, P.; Francotte, E.; Kuhen, K.; Plouffe, D.; Henson,
K.; Wagner, T.; Winzeler, E. A.; Petersen, F.; Brun, R.; Dartois, V.; Diagana,
T. T.; Keller, T. H. J. Med. Chem. 201, 53, 5155-5164.

SCHEME 4. Effect of Methyl Substituent at the Alkyne Terminus

SCHEME 5. Plausible Reaction Mechanism

catalyst A/AgOTf to give **11a** in 42% and 66% yields, respectively. The gold-catalyzed cyclization of diynes **10b** and **10c** with 5 mol % of C/AgOTf gave oxepinoindole **11b** (49%, entry 4) and cycloheptaindole **11c** (63%, entry 5), respectively, through the same cyclization cascade. While azepinoindole synthesis has been previously reported by us,²⁸ the syntheses of 3,10-dihydro-1*H*-oxepino[3,4-*b*]indole and 6,8-dihydrocyclohepta[*b*]indole derivative are unprecedented.

In contrast to the diester **10c**, which bears a phenyl group at the alkyne terminus, the cyclization of **12**, bearing a methyl group, favors 6-*exo-dig* cyclization in the second step,²⁹

TABLE 6. Antifungal Activities of Indoles

11110 (411	-)	
T. mentagrophytes (SM-110)	<i>T. rubrum</i> (KD-1137)	LD ₅₀ (µM)
3.13	25	5.14
3.13	>100	4.53
< 0.05	0.20	8.17
	<i>T. mentagrophytes</i> (SM-110) 3.13 3.13 < 0.05	T. mentagrophytes (SM-110) T. rubrum (KD-1137) 3.13 25 3.13 > 100 < 0.05

providing *E*-olefin **13** (34%),³⁰ *Z*-olefin **14** (10%), and *endo*-olefin **15** (2%), Scheme 4).³¹ Thus, the phenyl group at the alkyne terminus of **10** plays a crucial role in promoting *7-endo-dig* cyclization in the second step, and we postulated that this may be due to activation of the neighboring carbon by the phenyl group.

Mechanism of the Cascade Cyclization. A plausible mechanism for the cascade cyclization is shown in Scheme 5. First, activation of the alkyne between two arenes of 1c by the cationic gold complex (as depicted in 16) promotes 5-endo-dig cyclization to form indolylgold intermediate 17. This is followed by proto-deauration to give the first cyclization product 18; further activation of the second alkyne by the gold catalyst to form 18 would lead to 6-endo-dig cyclization at the C-3 position of the indole and subsequent rearomatization to give arylgold intermediate 19. Finally, proto-deauration of 19 would produce fused carbazole 2c to regenerate the active catalyst. This mechanism, including the second cyclization after proto-deauration of the vinyl gold intermediate 17, is supported by the reaction of plausible intermediate 20: treatment of 20 under the standard reaction conditions quantitatively proceeded to afford the desired carbazole 2c (Scheme 6).

Antifungal Activities of Indoles. The synthesized indoles were evaluated for antifungal activity against *Trichophyton mentagrophytes* and *Trichophyton rubrum* (Table 6). Among

(31) The yields of (E)-13, (Z)-14, and 15 were determined by NMR.

⁽²⁷⁾ For gold-catalyzed electrophilic activation of alkynes toward intramolecular nucleophilic attack at the C-3 position of indoles in a 7-endo-dig manner, see refs 11a and 11b.

⁽²⁸⁾ For the synthesis of an azepinoindole derivative based on coppermediated multicomponent coupling and cyclization, see: (a) Ohno, H.; Ohta, Y.; Oishi, S.; Fujii, N. *Angew. Chem., Int. Ed.* **2007**, *46*, 2295–2298. (b) Ohta, Y.; Chiba, H.; Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem. **2009**, *74*, 7052– 7058.

⁽²⁹⁾ For gold-catalyzed electrophilic activation of alkynes toward intramolecular nucleophilic attack at the C-3 position of indoles in a 6-*exo-dig* manner, see ref 11a,11b,11d,11f,11g.

them, carbazoles 2b and 2i showed good activity against T. mentagrophytes (minimal inhibitory concentration (MIC) = 3.13 µM in both cases). Compound 2b demonstrated modest antifungal activity against T. rubrum with an MIC of 25 μ M, while compound 2i showed no activity at 100 μ M. Indole 3, fused with cyclopenta[b]pyridine, exhibited highly potent antifungal activities against T. mentagrophytes and T. rubrum (MIC < 0.05 and $0.20 \,\mu$ M, respectively). The three potent compounds were tested for in vitro toxicity against human embryonic lung (HEL) cells, and showed low cytotoxicity (50% lethal dose $(LD_{50}) = 4.53 - 8.17 \,\mu M$, Table 6). Particularly, selectivity index of indole 3 was high against both T. mentagrophytes (>163-fold for MIC) and T. rubrum (41-fold for MIC). The unprecedented antifungal activities of fused indoles will be useful in future structure-activity relationships toward the development of this class of indole derivatives as antifungal therapeutics.

Conclusions

We have developed an atom-economical, new synthesis of aryl-annulated[a]carbazoles via gold-catalyzed 5-endo-dig hydroamination followed by 6-endo-dig hydroarylation of divnes. The electronic influence of divne substituents in the cascade cyclization can be circumvented by using a gold catalyst with bulky biaryl phosphine ligands. Consequently, reaction with 5 mol % of catalyst gives not only arylannulated[a]carbazoles but also various other fused indoles such as dihydrobenzo[g]indole, azepino- or oxepinoindole, and cycloheptaindole derivatives. Three of the resulting indoles exhibited good to excellent antifungal activities against T. mentagrophytes and T. rubrum, demonstrating the practical application of the described cascade reaction for drug discovery, including the development of antifungal agents. Further optimization studies of these antifungal compounds are now underway.

Experimental Section

General Methods. ¹H NMR spectra were recorded at 400 or 500 MHz. ¹³C NMR spectra were recorded at 100 or 125 MHz. Internal references were used for CDCl₃, C₆D₆, and DMSO-d₆ in ¹H and ¹³C NMR spectra. Data are presented as follows: chemical shift (in ppm on the δ scale relative to δ TMS = 0), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (*J*/Hz) and number of protons. ¹H NMR assignments were confirmed by ¹H-¹H COSY (PFG) and difference NOE analyses if necessary. Melting points were measured by a hot stage melting point apparatus and are uncorrected. For column chromatography, silica gel (45–75 μ m) and amino silica gel (100–200 mesh) were employed. The compounds **1a–h,p,q,x, 2a–h,p,q,x**, and **3** are known. Characterization data and NMR spectra for these compounds were already reported in our preliminary communication.¹²

The compounds S5,³³ S6,³³ S8,³⁴ S10,¹² S17,^{35–37} S20,³⁷ S21,³⁸ S24,³⁹ and $S25^{40}$ were synthesized according to the literature procedures. The gold catalyst **B** was synthesized according to the literature procedures. ¹³ Other reagents are commercially available, which were used without further purification.

Preparation of Starting Materials

Synthesis of 2-[(2-Ethynylphenyl)ethynyl]aniline (S1). S1 was prepared according to the procedure in a preliminary communication.¹² Characterization data for **S1** are as follows: pale yellow solid; IR (neat) 3454 (NH), 3361 (NH), 2210 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.35 (s, 1H, C=CH), 4.50 (br s, 2H, NH₂), 6.73–6.69 (m, 2H, Ar), 7.17–7.13 (m, 1H, Ar), 7.30–7.26 (m, 1H, Ar), 7.34 (td, J = 7.6, 1.3 Hz, 1H, Ar), 7.38 (dd, J = 7.6, 1.5 Hz, 1H, Ar), 7.54 (dd, J = 6.2, 1.6 Hz, 2H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 81.0, 83.3, 90.7, 93.3, 107.6, 114.3, 117.9, 123.9, 126.7, 127.8, 128.8, 130.2, 131.5, 132.2, 132.8, 148.4; HRMS (FAB) calcd for C₁₆H₁₁N [M⁺] 217.0891, found 217.0894.

Synthesis of 2-[(2-{[3-(Trifluoromethyl)phenyl]ethynyl}phenyl)ethynyl]aniline (1i). A mixture of S1 (0.10 g, 0.46 mmol), CuI (2.2 mg, 0.012 mmol), PdCl₂(PPh₃)₂ (8.1 mg, 0.012 mmol), Et₃N (0.32 mL, 2.3 mmol), and *m*-iodobenzotrifluoride (S2a) (66 μ L, 0.46 mmol) in THF (1.0 mL) was stirred at room temperature for 6 h under argon. Concentration under reduced pressure followed by purification through a pad of silica gel with nhexane/EtOAc (5:1) afforded 1i (0.12 g, 70% yield) as a brown solid, which was recrystallized from *n*-hexane to give pure **1i** as brown crystals: mp 87–88 °C; IR (neat) 3478 (NH), 3378 (NH), 2205 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.34 (br s, 2H, NH_2 , 6.69–6.73 (m, 2H, Ar), 7.15 (ddd, J = 7.7, 7.7, 1.5 Hz, 1H, Ar), 7.30-7.41 (m, 3H, Ar), 7.48 (dd, J = 7.7 Hz, 1H, Ar), 7.58–7.61 (m, 3H, Ar), 7.74 (d, J = 7.7 Hz, 1H, Ar), 7.86 (s, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 90.2, 90.7, 91.5, 93.4, 107.4, 114.2, 117.8, 123.7 (q, J = 273.1 Hz), 124.0, 124.4, 125.0 (q, J = 3.6 Hz), 126.1, 127.8, 128.6, 128.7 (q, J = 3.6 Hz), 128.9, 130.1, 131.0 (q, J = 32.4 Hz), 131.6, 132.0, 132.1, 134.9, 148.0. Anal. Calcd for C₂₃H₁₄F₃N: C, 76.45; H, 3.91; N, 3.88. Found: C, 76.65; H, 4.17; N, 3.91.

3-({**2-**[(**2-**Aminophenyl)ethynyl]phenyl]ethynyl]benzonitrile (1j). By a procedure identical to that described for the preparation of **1i**, **S1** (0.10 g, 0.46 mmol) was converted into **1j** (0.14 g, 96% yield) as a brown solid using 3-iodobenzonitrile (**S2b**) (0.11 g, 0.46 mmol): IR (neat) 3474 (NH), 3378 (NH), 2232 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.33 (br s, 2H, NH₂), 6.71–6.75 (m, 2H, Ar), 7.14–7.19 (m, 1H, Ar), 7.31–7.40 (m, 3H, Ar), 7.47 (dd, J = 7.8, 7.8 Hz, 1H, Ar), 7.86–7.87 (m, 1H, Ar); ¹³C NMR (125

⁽³²⁾ At present, we cannot rule out an alternative mechanism where the intermediate 17 attacks the alkyne moiety directly before protonation. For a related paper describing the formation of an arylgold(III) intermediate in an S_N2-type mechanism, see: Shi, Z.; He, C. J. Am. Chem. Soc. **2004**, *126*, 13596–13597.

 ⁽³³⁾ Schmittel, M.; Strittmatter, M. *Tetrahedron* 1998, 54, 13751–13760.
 (34) Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. 1998, 63, 7652–7662.

⁽³⁵⁾ Wills, M. S. B.; Danheiser, R. L. J. Am. Chem. Soc. 1998, 120, 9378-9379.

⁽³⁶⁾ Kang, S.-K.; Baik, T.-G.; Kulak, A. N.; Ha, Y.-H.; Lim, Y.; Park, J. J. Am. Chem. Soc. **2000**, 122, 11529–11530.

⁽³⁷⁾ Chang, H.-T.; Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2007, 9, 505–508.

⁽³⁸⁾ Flynn, B. L.; Funke, F. J.; Silveira, C. C.; de Meijere, A. *Synlett* **1995**, 1007–1010.

⁽³⁹⁾ García-Rubín, S.; Varela, J. A.; Castedo, L.; Saá, C. *Chem.—Eur. J.* **2008**, *14*, 9772–9778.
(40) Shen, Z.; Lu, X. *Adv. Synth. Catal.* **2009**, *351*, 3107–3112.

 $\begin{array}{l} MHz, CDCl_3)\,\delta\,90.6, 90.7, 91.0, 93.3, 107.4, 112.9, 114.3, 117.9, \\ 117.9, \,\,124.1, \,\,124.6, \,\,126.1, \,\,127.9, \,\,128.8, \,\,129.3, \,\,130.2, \,\,131.6, \\ 131.6, \,\,132.0, \,\,132.1, \,\,135.1, \,\,135.8, \,\,148.0; \,\,HRMS \,\,(FAB) \,\,calcd \\ for \,\,C_{23}H_{14}N_2\,[M^+]\,\,318.1157, \,\,found\,\,318.1158. \end{array}$

2-{[**2**-(*m*-Tolylethynyl)phenyl]ethynyl} aniline (1k). By a procedure identical to that described for the preparation of 1i, S1 (0.10 g, 0.46 mmol) was converted into 1k (0.11 g, 76% yield) as a brown oil using 1-iodo-3-methylbenzene (S2c) (59 μ L, 0.46 mmol): IR (neat) 3479 (NH), 3378 (NH), 2205 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 3H, CH₃), 4.36 (br s, 2H, NH₂), 6.67–6.71 (m, 2H, Ar), 7.13 (ddd, *J* = 8.5, 7.0, 1.2 Hz, 1H, Ar), 7.16–7.18 (m, 1H, Ar), 7.23–7.26 (m, 1H, Ar), 7.28–7.35 (m, 2H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 21.2, 88.5, 90.4, 93.3, 93.7, 107.6, 114.0, 117.6, 122.8, 125.2, 125.9, 127.7, 128.1, 128.2, 128.9, 129.5, 129.9, 131.4, 132.0, 132.0, 132.5, 138.0, 148.2; HRMS (FAB) calcd for C₂₃H₁₆N [M – H][−] 306.1283, found 306.1289.

2-({**2-**[(**2-***Aminophenyl*)*ethynyl*]*phenyl*}*ethynyl*]*benzonitrile* (11). By a procedure identical to that described for the preparation of **1i**, **S1** (0.11 g, 0.50 mmol) was converted into **1l** (0.15 g, 92% yield) as a brown solid using 2-iodobenzonitrile (**S2d**) (0.10 g, 0.44 mmol), which was recrystallized from *n*-hexane–EtOAc to give pure **1l** as pale brown crystals: mp 93–94 °C; IR (neat) 3475 (NH), 3370 (NH), 2228 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.38 (br s, 2H, NH₂), 6.69–6.73 (m, 2H, Ar), 7.13–7.17 (m, 1H, Ar), 7.32–7.45 (m, 4H, Ar), 7.54–7.60 (m, 2H, Ar), 7.67–7.72 (m, 3H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 89.1, 90.7, 93.2, 95.0, 107.6, 114.2, 115.4, 117.5, 117.8, 123.9, 125.9, 126.9, 127.9, 128.5, 129.1, 130.0, 131.6, 132.1, 132.4, 132.6, 132.7, 132.9, 148.1. Anal. Calcd for C₂₃H₁₄N₂: C, 86.77; H, 4.43; N, 8.80. Found: C, 86.80; H, 4.72; N, 8.74.

2-{[**2**-(*o*-**Tolylethynyl**)**phenyl**]**ethynyl**}**aniline** (1m). By a procedure identical to that described for the preparation of 1i, S1 (83 mg, 0.38 mmol) was converted into **1m** (30 mg, 25% yield) as a brown oil using 1-iodo-2-methylbenzene (**S2e**) (49 μ L, 0.38 mmol): IR (neat) 3478 (NH), 3378 (NH), 2208 (C≡C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.50 (s, 3H, CH₃), 4.32 (br s, 2H, NH₂), 6.64 (dd, J = 8.7, 0.6 Hz, 1H, Ar), 6.68 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H, Ar), 7.09−7.14 (m, 1H, Ar), 7.14−7.19 (m, 1H, Ar), 7.21−7.27 (m, 2H, Ar), 7.28−7.34 (m, 2H, Ar), 7.36−7.38 (m, 1H, Ar), 7.52 (d, J = 7.8 Hz, 1H, Ar), 7.55−7.60 (m, 2H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ : 20.9, 90.3, 92.1, 92.5, 93.7, 107.5, 114.0, 117.5, 122.7, 125.4, 125.5, 125.7, 127.8, 128.0, 128.6, 129.5, 129.9, 131.6, 132.0, 132.1, 132.1, 140.6, 148.2; HRMS (FAB) calcd for C₂₃H₁₆N [M − H][−] 306.1283, found 306.1279.

Synthesis of 2-{[2-(Thiophene-3-ylethynyl)phenyl]ethynyl}aniline (1n). To a solution of S1 (88 mg, 0.41 mmol) in THF (1.3 mL) were successively added Et₃N (0.27 mL, 1.9 mmol), CuI (3.7 mg, 0.019 mmol), PdCl₂(PPh₃)₂ (14 mg, 0.019 mmol), and 3-iodothiophene (S2f) (39 μ L, 0.39 mmol) at room temperature under argon. The mixture was stirred for 50 h and quenched by addition of saturated aqueous NH₄Cl and brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with *n*-hexane/ EtOAc (3:1) to afford 1n (68 mg, 59% yield) as a pale brown solid: IR (neat) 3474 (NH), 3372 (NH), 2206 (C=C) cm⁻¹; ¹H NMR

(400 MHz, CDCl₃) δ 4.39 (br s, 2H, NH₂), 6.68–6.72 (m, 2H, Ar), 7.13 (ddd, J = 7.8, 7.8, 1.5 Hz, 1H, Ar), 7.23–7.26 (m, 1H, Ar), 7.28–7.35 (m, 3H, Ar), 7.39 (dd, J = 7.8, 1.5 Hz, 1H, Ar), 7.55–7.59 (m, 3H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ : 88.2, 88.3, 90.4, 93.7, 107.6, 114.1, 117.6, 122.0, 125.0, 125.4, 125.8, 127.7, 128.1, 129.3, 129.9, 130.1, 131.4, 132.0, 132.0, 148.2; HRMS (FAB) calcd for C₂₀H₁₃NS [M⁺] 299.0769, found 299.0765.

Synthesis of 2-[(2-Bromophenyl)ethynyl]aniline (S3). S3 was prepared according to the procedure in our preliminary communication.¹² Characterization data for **S3** are as follows: colorless solid; IR (neat) 3406 (NH), 3308 (NH), 2210 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.48 (br s, 2H, NH₂), 6.69–6.74 (m, 2H, Ar), 7.13–7.19 (m, 2H, Ar), 7.30 (ddd, J = 7.6, 7.6, 0.9 Hz, 1H, Ar), 7.39 (dd, J = 7.6, 1.2 Hz, 1H, Ar), 7.56 (dd, J = 7.6, 1.6 Hz, 1H, Ar), 7.62 (dd, J = 8.0, 0.7 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 91.2, 93.4, 107.4, 114.4, 117.9, 125.1, 125.7, 127.3, 129.3, 130.3, 132.2, 132.4, 133.0, 148.5; HRMS (FAB) calcd for C₁₄H₁₀BrN [M⁺] 270.9997, found 270.9987.

Synthesis of 2-{[2-(Cyclopentylethynyl)phenyl]ethynyl}aniline (10). To a solution of S3 (0.27 g, 0.99 mmol) in THF (1.7 mL) were successively added diisopropylamine (0.69 mL, 4.9 mmol), CuI (11 mg, 0.059 mmol), PdCl₂(PhCN)₂ (23 mg, 0.059 mmol), $P(t-Bu)_3$ (29 μ L, 0.12 mmol), and ethynylcyclopentane (S4a) (0.13 mL, 1.0 mmol) at room temperature under argon. The mixture was stirred at room temperature for 16 h and quenched by addition of saturated aqueous NH₄Cl at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with n-hexane/EtOAc (5:1) to afford 10 (0.14 g, 50% yield) as a brown solid, which was recrystallized from n-hexane to give pure **10** as brown crystals: mp 62–63 °C; IR (neat) 3474 (NH), 3372 (NH), 2208 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.57-1.64 (m, 2H, c-pentyl), 1.71-1.80 (m, 4H, c-pentyl), 1.97-2.05 (m, 2H, c-pentyl), 2.84-2.92 (m, 1H, c-pentyl), 4.47 (br s, 2H, NH₂), 6.69–6.73 (m, 2H, Ar), 7.12–7.16 (m, 1H, Ar), 7.21-7.27 (m, 4H, Ar), 7.37 (dd, J = 7.7, 1.6 Hz, 1H, Ar), 7.42-7.44 (m, 1H, Ar), 7.47-7.51 (m, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 25.2 (2C), 31.1, 34.2 (2C), 79.6, 89.7, 94.1, 99.0, 108.0, 114.2, 117.8, 125.6, 126.2, 127.4, 127.8, 129.9, 131.5, 132.1, 132.3, 148.1. Anal. Calcd for C21H19N: C, 88.38; H, 6.71; N, 4.91. Found: C, 88.27; H, 6.70; N, 4.82.

Synthesis of 5-Chloro-2-{[2-(phenylethynyl)phenyl]ethynyl}aniline (1r). To a solution of 5-chloro-2-iodoaniline (S2g) (0.14 g, 0.55 mmol) in THF (0.42 mL) were successively added Et₃N

(0.38 mL, 2.8 mmol), CuI (2.6 mg, 0.014 mmol), PdCl₂(PPh₃)₂ (9.7 mg, 0.014 mmol), and 1-ethynyl-2-(2-phenylethynyl)benzene (S5) (0.11 g, 0.55 mmol) in THF (0.50 mL) at room temperature under argon. The mixture was stirred at room temperature for 21 h and quenched by addition of saturated aqueous NH₄Cl at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on amino silica gel with nhexane/EtOAc (6:1) to afford 1r (70 mg, 39% yield) as a brown solid: IR (neat) 3460 (NH), 3363 (NH), 2200 (C≡C) cm^{-1} ; ¹H NMR (400 MHz, CDCl₃) δ 4.43 (br s, 2H, NH₂), 6.65-6.67 (m, 2H, Ar), 7.28-7.39 (m, 6H, Ar), 7.54-7.60 (m, 4H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 88.7, 89.4, 93.1, 94.4, 106.0, 113.7, 117.8, 122.8, 125.0, 125.5, 127.9, 128.2, 128.4 (2C), 128.7, 131.4, 131.8 (2C), 132.1, 132.8, 135.5, 149.0; HRMS (FAB) calcd for $C_{22}H_{13}ClN [M - H]^{-326.0737}$, found 326.0739.

Synthesis of 1-(Cyclohexylethynyl)-2-ethynylbenzene (S7). To a solution of 2-(2-bromophenyl)ethynyltrimethylsilane (S6) (0.86 g, 3.4 mmol) in THF (6.8 mL) were successively added diisopropylamine (2.4 mL, 17 mmol), CuI (39 mg, 0.21 mmol), PdCl₂(PhCN)₂ (79 mg, 0.21 mmol), P(t-Bu)₃ (99 µL, 0.41 mmol), and cyclohexylacetylene (S4b) (0.48 mL, 3.8 mmol) at room temperature under argon. The mixture was stirred at room temperature for 2 h and concentrated in vacuo. To the residue were added THF (6.5 mL) and TBAF (1 M solution in THF; 3.5 mL, 3.5 mmol). The mixture was stirred at room temperature for 2.5 h and quenched by addition of saturated aqueous NH₄Cl and brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with n-hexane/EtOAc (20:1) to afford S7 (0.53 g, 75% yield in two steps) as a brown oil: IR (neat) 3289 (C=CH), 2224 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.34-1.44 (m, 3H, Cy), 1.50-1.64 (m, 3H, Cy), 1.76-1.91 (m, 4H, Cy), 2.65-2.71 (m, 1H, Cy), 3.27 (s, 1H, C=CH), 7.18-7.29 (m, 2H, Ar), 7.39-7.41 (m, 1H, Ar), 7.47 (dd, J = 7.7, 1.3 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ

24.6 (2C), 26.0, 29.7, 32.5 (2C), 79.1, 80.4, 82.5, 99.0, 124.5, 127.0, 127.2, 128.4, 131.7, 132.4; HRMS (FAB) calcd for $C_{16}H_{16}$ [M+] 208.1252, found 208.1251.

 $Synthesis of \ 5-Chloro-2-\{[2-(cyclohexylethynyl)phenyl]ethynyl\}-1-(cyclohexylethynyl)phenyl]ethynyl-1-(cyclohexylethynyl)phenyl]ethynyl-1-(cyclohexylethynyl)phenyl]ethynyl-1-(cyclohexylethynyl)phenyl]ethynyl-1-(cyclohexylethynyl)phenyl]ethynyl-1-(cyclohexylethynyl)phenyl]ethynyl-1-(cyclohexylethynyl)phenyl]ethynyl]ethynyl]ethynyl-1-(cyclohexylethynyl)phenyl]ethynyl[ethynyl]ethynyl]ethynyl]ethynyl[ethynyl]ethynyl[ethynyl]ethynyl[ethynyl]ethynyl[ethynyl]ethynyl[ethynyl]ethynyl[ethynyl]ethynyl[ethynyl]ethynyl[ethynyl]ethynyl[ethynyl]ethynyl[ethynyl[ethynyl]ethynyl[ethynyl]ethynyl[ethynyl[ethynyl[ethynyl]ethynyl[eth$ aniline (1s). To a solution of S2g (0.12 g, 0.48 mmol) in THF (0.30 mL) were successively added Et₃N (0.34 mL, 2.4 mmol), CuI (4.6 mg, 0.024 mmol), PdCl₂(PPh₃)₂ (17 mg, 0.024 mmol), and S7 (0.11 g, 0.55 mmol) in THF (0.50 mL) at room temperature under argon. The mixture was stirred at room temperature for 16 h and quenched by addition of saturated aqueous NH₄Cl at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on amino silica gel with n-hexane/EtOAc (5:1) to afford 1s (0.11 g, 71% yield) as a colorless solid, which was recrystallized from *n*-hexane to give pure 1s as colorless crystals: mp 90-91 °C; IR (neat) 3481 (NH), 3376 (NH), 2205 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.30-1.40 (m, 2H, Cy), 1.52-1.60 (m, 4H, Cy), 1.73-1.81 (m, 2H, Cy), 1.86-1.92 (m, 2H, Cy), 2.60-2.67 (m, 1H, Cy), 4.53 $(br s, 2H, NH_2), 6.68 (dd, J = 8.2, 1.6 Hz, 1H, Ar), 6.73 (d, J =$ 2.0 Hz, 1H, Ar), 7.23-7.29 (m, 3H, Ar), 7.43-7.51 (m, 2H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 24.9 (2C), 26.0, 30.1, 32.8 (2C), 80.1, 88.6, 94.8, 98.9, 106.6, 113.9, 118.0, 125.2, 126.2, 127.5, 128.0, 131.5, 132.4, 133.0, 135.5, 149.0. Anal. Calcd for C₂₂H₂₀ClN: C, 79.15; H, 6.04; N, 4.20. Found: C, 79.14; H, 5.99; N, 4.25.

Synthesis of 2-{[2-(Cyclohexylethynyl)phenyl]ethynyl}-5-(trifluoromethyl)aniline (1t). To a solution of 2-bromo-5-(trifluoromethyl)aniline (S2h) (76 µg, 0.54 mmol) in THF (0.54 mL) were successively added diisopropylamine (0.38 mL, 2.7 mmol), CuI (6.2 mg, 0.032 mmol), PdCl₂(PhCN)₂ (12 mg, 0.032 mmol), P(t-Bu)₃ (16 µL, 0.065 mmol), and S7 (0.13 mL, 1.0 mmol) in THF (0.60 mL) at room temperature under argon. The mixture was stirred at room temperature for 22 h and quenched by addition of saturated aqueous NH₄Cl at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with n-hexane/EtOAc (8:1) to afford 1t (0.14 g, 50% yield) as a brown solid: IR (neat) 3481 (NH), 3382 (NH), 2294 (C=C), 2221 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.31-1.40 (m, 3H, Cy), 1.54-1.58 (m, 3H, Cy), 1.74-1.81 (m, 2H, Cy), 1.87-1.92 (m, 2H, Cy), 2.61-2.67 (m, 1H, Cy), 4.65 (br s, 2H, NH₂), 6.92-6.96 (m, 2H, Ar), 7.26-7.29 (m, 2H, Ar), 7.43-7.53 (m, 3H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 25.0 (2C), 26.0, 30.1, 32.9 (2C), 80.0, 88.2, 95.9, 99.1, 110.6, 110.6, 111.2, 114.1, 114.2, 124.9, 126.4, 127.5, 128.4, 131.7, 132.4, 132.5, 148.1; HRMS (FAB) calcd for $C_{23}H_{20}F_{3}N$ [M⁺] 367.1548, found 367.1553.

Synthesis of *tert*-Butyl 2-{[2-(Phenylethynyl)phenyl]ethynyl}phenylcarbamate (1u). A mixture of 1c (0.21 g, 0.73 mmol) and (Boc)₂O (0.24 g, 1.1 mmol) in THF (2.0 mL) was refluxed under stirring for 18 h under argon. Concentration under reduced pressure followed by purification through a pad of silica gel with *n*-hexane/EtOAc (10:1) afforded 1u (0.28 g, 97% yield) as a colorless solid: IR (neat) 3387 (NH), 2294 (C=C), 2256 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.32 [s, 9H, C(CH₃)₃], 7.00 (td, J = 7.6, 1.0 Hz, 1H, Ar), 7.31–7.38 (m, 6H, Ar), 7.49–7.54 (m, 3H, Ar), 7.57–7.62 (m, 2H, Ar), 8.24 (d, J = 8.5 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 28.1, 80.7, 85.3, 88.2, 88.7, 94.1, 94.9, 111.0, 117.6, 122.1, 123.2, 125.1, 126.0, 128.2, 128.5 (2C), 128.6, 128.6, 130.0, 131.8, 131.8, 132.0 (2C), 132.1, 139.9, 146.9, 152.5; HRMS (FAB) calcd for $C_{27}H_{23}NO_2$ [M⁺] 393.1729, found 393.1728.

Synthesis of N-Methyl-2-[(trimethylsilyl)ethynyl]aniline (S9). To a solution of 2-iodo-N-methylaniline (S8) (0.88 g, 3.8 mmol) in THF (7.5 mL) were successively added Et₃N (2.6 mL, 19 mmol), CuI (18 mg, 0.095 mmol), PdCl₂(PPh₃)₂ (67 mg, 0.095 mmol), and trimethylsilylacetylene (0.55 mL, 4.0 mmol) at room temperature under argon. The mixture was stirred at room temperature for 16 h and quenched by addition of saturated aqueous NH₄Cl at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with n-hexane/EtOAc (10:1) to afford S9 (0.77 g, 100% yield) as a pale yellow oil: IR (neat) 3422 (NH), 2143 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) & 0.27 [s, 9H, Si(CH₃)₃], 2.91 (s, 3H, NCH₃), 4.64 (s, 1H, NH), 6.57 (d, J = 8.5 Hz, 1H, Ar), 6.59–6.62 (m, 1H, Ar), 7.22 (ddd, J = 8.6, 7.0, 1.3 Hz, 1H, Ar), 7.30 (dd, J = 7.6, 1.2 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 0.0 (3C), 30.1, 99.8, 101.9, 106.9, 108.6, 115.8, 130.0, 132.1, 150.0; HRMS (FAB) calcd for C₁₂H₁₇NSi [M⁺] 203.1130, found 203.1126.

Synthesis of N-Methyl-2-{[2-(phenylethynyl)phenyl]ethynyl}aniline (1v). A mixture of S9 (0.73 g, 3.6 mmol) and TBAF (1 M solution in THF; 4.3 mL, 4.3 mmol) in THF (1.8 mL) was stirred at room temperature for 17 h, quenched by addition of saturated aqueous NH₄Cl and brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with n-hexane/EtOAc (50:1) to afford 2-ethynyl-N-methylaniline (0.47 g). To a solution of 1-bromo-2-(2-phenylethynyl)benzene (S10) (0.27 g, 1.1 mmol) in THF (1.0 mL) were successively added diisopropylamine (0.74 mL, 5.3 mmol), CuI (12 mg, 0.064 mmol), PdCl₂(PhCN)₂ (24 mg, 0.064 mmol), P(t-Bu)₃ (31 µL, 0.13 mmol), and 2-ethynyl-N-methylaniline (0.15 g, 1.1 mmol) in THF (0.80 mL) at room temperature under argon. The mixture was stirred at room temperature for 46 h and quenched by addition of saturated aqueous NH4Cl at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na2SO4, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with n-hexane/Et₂O (50:1) to afford 1v (0.13 g, 40% yield in two steps) as a pale yellow solid: IR (neat) cm⁻¹ 3409 (NH), 2205 (C=C); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 2.51 \text{ (d}, J = 5.1 \text{ Hz}, 3\text{H}, \text{NCH}_3), 4.97 \text{ (d}, J =$ 3.9 Hz, 1H, NH), 6.54 (d, J = 8.3 Hz, 1H, Ar), 6.64 (ddd, J = 7.5, 7.5, 1.1 Hz, 1H, Ar), 7.20-7.37 (m, 6H, Ar), 7.40 (dd, J=7.5, 1.5 Hz, 1H, Ar), 7.55–7.59 (m, 4H, Ar); ¹³C NMR (125 MHz, CDCl₃) & 30.1, 88.8, 90.8, 93.2, 94.0, 107.1, 108.9, 116.0, 122.9, 125.0, 126.1, 127.8, 128.3, 128.5 (2C), 128.7, 130.4, 131.5, 131.9,

132.1 (2C), 132.2, 150.1; HRMS (FAB) calcd for $C_{23}H_{16}N [M - H]^-$ 306.1283, found 306.1280.

Synthesis of 1-(Cyclohexylethynyl)-2-ethynyl-4-fluorobenzene (S12). To a solution of 1-bromo-4-fluoro-2-iodobenzene (S11) (0.22 mL, 1.7 mmol) in THF (3.0 mL) were successively added Et₃N (1.2 mL, 8.3 mmol), CuI (16 mg, 0.083 mmol), PdCl₂-(PPh₃)₂ (58 mg, 0.083 mmol), and trimethylsilylacetylene (0.24 mL, 1.7 mmol) at room temperature under argon. The mixture was stirred at room temperature for 16 h and quenched by addition of saturated aqueous NH4Cl at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with *n*-hexane to afford [(2-bromo-5-fluorophenyl)ethynyl]trimethylsilane (0.43 g, 95% yield) as a pale yellow oil. To a solution of this compound (0.22 g, 0.81 mmol) in THF (1.3 mL) were successively added diisopropylamine (0.56 mL, 4.0 mmol), CuI (9.2 mg, 0.048 mmol), PdCl₂(PhCN)₂ (19 mg, 0.048 mmol), P(t-Bu)₃ (23 µL, 0.097 mmol), and S4b (0.11 mL, 0.89 mmol) at room temperature under argon. The mixture was stirred at room temperature for 17 h and quenched by addition of saturated aqueous NH₄Cl at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with n-hexane/EtOAc (40:1) to afford {[2-(cyclohexylethynyl)-5-fluorophenyl]ethynyl}trimethylsilane (0.25 g, 100% yield) as a brown oil. A mixture of this compound (0.25 g, 0.81 mmol) and TBAF (1 M solution in THF; 0.89 mL, 0.89 mmol) in THF (4.0 mL) was stirred at room temperature for 2 h and quenched by addition of saturated aqueous NH₄Cl and brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with n-hexane/ EtOAc (40:1) to afford S12 (0.12 g, 61% yield in three steps) as a brown oil: IR (neat) 3304 (C=CH), 2227 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.34-1.41 (m, 3H, Cy), 1.50-1.62 (m, 3H, Cy), 1.76-1.89 (m, 4H, Cy), 2.63-2.69 (m, 1H, Cy), 3.30 (s, 1H, C=CH), 6.97 (ddd, J = 8.4, 8.4, 2.7 Hz, 1H, Ar), 7.16 (dd, J = 9.0, 2.7 Hz, 1H, Ar), 7.37 (dd, J = 8.4, 5.7 Hz, 1H)Ar); ¹³C NMR (125 MHz, CDCl₃) δ 24.7 (2C), 26.0, 29.7, 32.5 (2C), 78.1, 81.5 (2C), 98.6, 116.1 (d, J = 21.6 Hz), 119.1 (d, J = 24.0 Hz), 123.5, 126.3 (d, J = 9.6 Hz), 133.4 (d, J = 8.4 Hz), 161.1 (d, J = 248.3 Hz); HRMS (FAB) calcd for C₁₆H₁₅F [M⁺] 226.1158, found 226.1163.

Synthesis of 2-{[2-(Cyclohexylethynyl)-5-fluorophenyl]ethynyl}aniline (1w). To a solution of S12 (0.10 g, 0.45 mmol) in Et₃N (4.0 mL) were successively added CuI (8.6 mg, 0.045 mmol), PdCl₂(PPh₃)₂ (16 mg, 0.023 mmol), and 2-iodoaniline (99 mg,

0.45 mmol) at room temperature under argon. The mixture was stirred at room temperature for 2.5 h and guenched by addition of saturated aqueous NH₄Cl at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with n-hexane/EtOAc (5:1) to afford 1w (81 mg, 56% yield) as a brown oil: IR (neat) 3480 (NH), 3377 (NH), 2203 (C=C) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.30–1.38 (m, 3H, Cy), 1.51-1.59 (m, 3H, Cy), 1.73-1.79 (m, 2H, Cy), 1.87-1.89 (m, 2H, Cy), 2.60-2.65 (m, 1H, Cy), 4.45 (s, 2H, NH₂), 6.69–6.73 (m, 2H, Ar), 6.94 (ddd, J = 8.4, 8.4, 2.5 Hz, 1H, Ar), 7.15 (dd, *J* = 8.4, 8.4 Hz, 1H, Ar), 7.18 (dd, *J* = 9.2, 2.3 Hz, 1H, Ar), 7.36 (d, J = 7.4 Hz, 1H, Ar), 7.40 (dd, J = 8.4, 5.7 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 24.8 (2C), 25.9, 29.9, 32.7 (2C), 79.0, 90.6, 92.9, 98.2, 107.3, 114.2, 115.3 (d, J = 21.6 Hz), 117.7, 118.0 (d, J = 24.0 Hz), 122.3 (d, J = 2.4 Hz), 127.3 (d, J = 10.8 Hz), 130.1, 132.1, 133.9 (d, J = 9.6 Hz), 148.1, 161.3 (d, J = 248.3 Hz); HRMS (FAB) calcd for C₂₂H₂₀FN [M⁺] 317.1580, found 317.1572.

Synthesis of 3-Bromo-2-(phenylethynyl)furan (S14). To a solution of 2,3-dibromofuran (S13) (1.0 g, 4.6 mmol) in THF (9.3 mL) were successively added diisopropylamine (3.2 mL, 23 mmol), CuI (53 mg, 0.28 mmol), PdCl₂(PhCN)₂ (0.11 g, 0.28 mmol), P(t-Bu)₃ (0.14 mL, 0.56 mmol), and phenylacetylene (0.56 mL, 5.1 mmol) at room temperature under argon. The mixture was stirred at room temperature for 15 h and quenched by addition of saturated aqueous NH₄Cl at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with n-hexane/EtOAc (20:1) to give S14 (0.45 g, 39% yield) as a colorless oil: IR (neat) cm⁻¹: 2217 (C=C); ¹H NMR (500 MHz, CDCl₃) δ 6.51 (d, J = 2.3 Hz, 1H, Ar), 7.35–7.37 (m, 4H, Ar), 7.54-7.57 (m, 2H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 81.5, 97.1, 105.8, 114.7, 121.9, 128.4 (2C), 129.0, 131.6 (2C), 136.5, 143.7; HRMS (FAB) calcd for C₁₂H₇BrO [M⁺] 245.9680; found 245.9680.

Synthesis of 2-{[2-(Phenylethynyl)furan-3-yl]ethynyl}aniline (1y). To a solution of S14 (0.41 g, 1.7 mmol) in THF (1.6 mL) were successively added diisopropylamine (1.2 mL, 8.4 mmol), CuI (19 mg, 0.10 mmol), PdCl₂(PhCN)₂ (38 mg, 0.10 mmol), P(*t*-Bu)₃ (49 μ L, 0.20 mmol), and 2-ethynylaniline (0.27 mL, 2.3 mmol) in THF (1.2 mL) at room temperature under argon. The mixture was stirred at room temperature for 14 h and quenched by addition of saturated aqueous NH₄Cl at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on amino silica gel with *n*-hexane/EtOAc (5:1) to

afford **1y** (0.16 g, 34% yield) as a pale brown solid, which was recrystallized from *n*-hexane to give pure **1y** as pale brown crystals: mp 68–69 °C; IR (neat) 3479 (NH), 3382 (NH), 2203 ($C \equiv C$) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.32 (s, 2H, NH₂), 6.55 (dd, J = 2.0, 0.5 Hz, 1H, Ar), 6.69–6.73 (m, 2H, Ar), 7.14 (td, J = 7.7, 1.4 Hz, 1H, Ar), 7.35–7.39 (m, 5H, Ar), 7.54–7.58 (m, 2H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 78.8, 86.1, 91.6, 97.6, 107.7, 113.1, 113.2, 114.4, 118.0, 122.1, 128.6 (2C), 129.1, 130.0, 131.8 (2C), 131.9, 140.0, 143.5, 148.0. Anal. Calcd for C₂₀H₁₃NO: C, 84.78; H, 4.62; N, 4.94. Found: C, 85.04; H, 4.59; N, 4.95.

Synthesis of 4-[2-(Phenylethynyl)phenyl]but-3-yn-1-ol (8). To a solution of S10 (0.52 g, 2.0 mmol) in THF (3.4 mL) were successively added diisopropylamine (1.4 mL, 10 mmol), CuI (23 mg, 0.12 mmol), PdCl₂(PhCN)₂ (47 mg, 0.12 mmol), P(t-Bu)₃ (59 µL, 0.24 mmol), and 3-butyn-1-ol (0.17 mL, 2.1 mmol) at room temperature under argon. The mixture was stirred at room temperature for 14 h and quenched by addition of saturated aqueous NH₄Cl at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with n-hexane/EtOAc (3:1) to afford 8 (0.36 g, 72% yield) as a pale brown oil: IR (neat) 3359 (OH), 2217 (C≡C) cm⁻¹; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 2.07 \text{ (t, } J = 5.9 \text{ Hz}, 1\text{H}, \text{OH}), 2.77 \text{ (t, } J =$ 6.1 Hz, 2H, CH_2CH_2OH), 3.82 (td, J = 5.7, 5.7 Hz, 2H, CH₂CH₂OH), 7.25-7.28 (m, 2H, Ar), 7.34-7.39 (m, 3H, Ar), 7.43–7.46 (m, 1H, Ar), 7.51–7.59 (m, 3H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 24.1, 61.0, 81.5, 88.3, 90.8, 93.1, 123.0, 125.6, 125.8, 127.7, 128.0, 128.4 (2C), 128.5, 131.6 (2C), 131.7, 131.9; HRMS (FAB) calcd for C₁₈H₁₄O [M⁺] 246.1045, found 246,1046

Synthesis of 1-(4-Azidobut-1-ynyl)-2-(phenylethynyl)benzene (S15). To a solution of 8 (0.26 g, 1.1 mmol) in CH₂Cl₂ (5.5 mL) were successively added Et₃N (0.18 mL, 1.3 mmol) and MsCl (87 µL, 1.1 mmol) at 0 °C for 1.5 h under argon. The mixture was stirred at room temperature for 24 h. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. To the residue were added DMSO (2.5 mL) and NaN₃ (0.11 g, 1.6 mmol). The mixture was stirred at room temperature for 18 h and quenched by addition of saturated aqueous NaHCO3 and brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with n-hexane/EtOAc (10:1) to give S15 (0.18 g, 62% yield in two steps) as a pale yellow oil: IR (neat) 2217 $(C \equiv C)$, 2102 (N₃) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.80

(t, J = 7.0 Hz, 2H, $CH_2CH_2N_3$), 3.50 (t, J = 7.0 Hz, 2H, $CH_2CH_2N_3$), 7.23–7.30 (m, 2H, Ar), 7.34–7.38 (m, 3H, Ar), 7.44–7.46 (m, 1H, Ar), 7.50–7.57 (m, 3H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 20.7, 50.0, 81.3, 88.2, 90.0, 93.1, 123.3, 125.6, 125.8, 127.8, 127.9, 128.4 (2C), 128.4, 131.6 (2C), 131.8, 131.9; HRMS (FAB) calcd for $C_{18}H_{13}N_3$ [M⁺] 271.1109, found 271.1104.

Synthesis of 2,2,2-Trifluoro-N-{4-[2-(phenylethynyl)phenyl]but-3-vnvl}acetamide (S16). To a solution of S15 (0.34 g, 1.2 mmol) in THF (2.0 mL) were successively added PPh₃ (0.33 g, 1.2 mmol) in THF (1.0 mL) and H₂O (45 μ L, 2.5 mmol) at room temperature. The mixture was stirred at room temperature for 23 h and concentrated in vacuo. To the residue were added pyridine (5.0 mL) and TFAA (0.19 mL, 1.4 mmol). The mixture was stirred at room temperature for 12 h and quenched by addition of H₂O and brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with n-hexane/EtOAc (3:1) to afford S16 (0.22 g, 53% yield in two steps) as a colorless solid, which was recrystallized from *n*-hexane/EtOAc to give pure S16 as colorless crystals: mp 80–81 °C; IR (neat) 3323 (NH), 2217 (C=C), 1697 (C=O) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.76–2.81 (m, 2H, C=CCH₂CH₂), 3.58-3.64 (m, 2H, C=CCH₂-CH₂), 6.70 (br s, 1H, NH), 7.24-7.27 (m, 1H, Ar), 7.28-7.31 (m, 1H, Ar), 7.34–7.37 (m, 3H, Ar), 7.41–7.45 (m, 1H, Ar), 7.49–7.55 (m, 3H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 20.1, 38.6, 81.9, 88.1, 89.5, 93.0, 115.5 (q, J = 286.7 Hz), 122.9, 125.2, 125.8, 128.0, 128.1, 128.5 (2C), 128.6, 131.5 (2C), 131.8, 131.9, 162.0 (q, J = 34.4 Hz). Anal. Calcd for C₂₀H₁₄F₃NO: C, 70.38; H, 4.13; N, 4.10. Found C, 70.54; H, 4.12; N, 4.08.

Synthesis of 4-[2-(Phenylethynyl)phenyl]but-3-yn-1-amine (4). To a solution of S16 (0.13 g, 0.38 mmol) in MeOH (3.4 mL) were successively added K₂CO₃ (0.26 g, 1.9 mmol) and H₂O (0.21 mL) at room temperature for 12 h. The reaction mixture was filtrated, and concentrated in vacuo. The residue was purified by column chromatography on amino silica gel with *n*-hexane/EtOAc (1:2) to give 4 (89 mg, 97% yield) as a pale yellow oil: IR (neat) 3359 (NH), 3287 (NH), 2216 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.64 (t, J = 6.2 Hz, 2H, CH₂CH₂NH₂), 2.94 (t, J = 6.2 Hz, 2H, CH₂CH₂NH₂), 2.94 (t, J = 6.2 Hz, 2H, CH₂CH₂NH₂), 7.25–7.29 (m, 2H, Ar), 7.33–7.38 (m, 3H, Ar), 7.42–7.46 (m, 1H, Ar), 7.51–7.56 (m, 3H, Ar); ¹³C NMR (CDCl₃) δ 24.8, 41.2, 80.9, 88.4, 92.3, 92.9, 123.2, 125.7, 126.0, 127.5, 128.0, 128.4 (2C), 128.4, 131.6 (2C), 131.8, 131.8; HRMS (FAB) calcd for C₁₈H₁₆N [M + H]⁺ 246.1283, found 246.1279.

Synthesis of tert-Butyl 4-(2-(Phenylethynyl)phenyl)but-3-ynylcarbamate (6). To a solution of 4 (78 mg, 0.32 mmol) in THF (0.50 mL) were successively added Et₃N (44 μ L, 0.32 mmol) and (Boc)₂O (0.10 g, 0.47 mmol) in THF (1.0 mL) at room temperature under argon. The mixture was stirred at room temperature for 23 h and quenched by addition of H₂O at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with nhexane/EtOAc (3:1) to afford 6 (96 mg, 88% yield) as a colorless solid: IR (neat) 3358 (NH), 2294 (C=C), 2217 (C=C), 1698 (C=O) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.40 [s, 9H, $(CH_3)_3$], 2.69 (t, J = 6.3 Hz, 2H, C=CCH₂CH₂), 3.39 (td, J =5.9, 5.9 Hz, 2H, C=CCH₂CH₂), 4.94-5.02 (br m, 1H, NH), 7.24-7.29 (m, 2H, Ar), 7.34-7.37 (m, 3H, Ar), 7.43-7.45 (m, 1H, Ar), 7.51–7.56 (m, 3H, Ar); 13 C NMR (125 MHz, CDCl₃) δ 21.2, 28.3 (3C), 39.5, 79.3, 80.8, 88.3, 91.6, 93.0, 123.2, 125.8, 125.8, 127.7, 128.0, 128.4 (2C), 128.4, 131.6 (2C), 131.8, 131.9, 155.7; HRMS (FAB) calcd for $C_{23}H_{23}NO_2$ [M⁺] 345.1729, found 345.1719.

Synthesis of N-[3-(2-Aminophenyl)prop-2-ynyl]-4-methyl-N-[3-(trimethylsilyl)prop-2-ynyl]benzenesulfonamide (S18). To a solution of 4-methyl-N-prop-2-ynyl-N-(3-trimethylsilylprop-2vnyl)benzenesulfonamide (S17) (0.28 g, 0.86 mmol) in THF (2.7 mL) were successively added Et₃N (0.57 mL, 4.1 mmol), CuI (4.7 mg, 0.025 mmol), PdCl₂(PPh₃)₂ (17 mg, 0.025 mmol), and 2-iodoaniline (0.18 g, 0.82 mmol) at room temperature under argon. The mixture was stirred at room temperature for 16 h and quenched by addition of saturated aqueous NH₄Cl at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with n-hexane/EtOAc (5:1) to afford S18 (0.17 g, 50% yield) as a brown solid: IR (neat) 3482 (NH), 3382 (NH), 2175 (C=C), 1349 (S=O), 1160 (S=O) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.06 [s, 9H, Si(CH₃)₃], 2.38 (s, 3H, C₆H₄CH₃), 4.10 (br s, 2H, NH₂), 4.23 (s, 2H, CH₂), 4.40 (s, 2H, CH₂), 6.60-6.65 (m, 2H, Ar), 7.05 (dd, J = 7.7, 1.6 Hz, 1H, Ar), 7.08-7.12 (m, 1H, Ar), 7.28 (d, J = 8.5 Hz, 2H, Ar), 7.75 (d, J = 8.3 Hz, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 0.0 (3C), 21.8, 37.7, 37.8, 82.9, 87.2, 91.6, 98.1, 107.1, 114.6, 117.9, 128.3 (2C), 130.0 (2C), 130.3, 132.6, 135.6, 144.2, 148.6; HRMS (FAB) calcd for C₂₂H₂₇- $N_2O_2SSi [M + H]^+ 411.1563$, found 411.1557.

Synthesis of N-[3-(2-Aminophenyl)prop-2-ynyl]-4-methyl-N-(prop-2-vnvl)benzenesulfonamide (S19). A mixture of S18 (0.15 g, 0.36 mmol) and TBAF (1 M solution in THF; 0.39 mL, 0.39 mmol) in THF (1.8 mL) was stirred at room temperature for 40 min and quenched by addition of saturated aqueous NH₄Cl and brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with *n*-hexane/EtOAc (3:1) to give S19 (0.17 g, 50% yield) as a brown solid: IR (neat) 3478 (NH), 3380 (NH), 3285 (C≡CH), 2216 (C≡C), 1348 (S=O), 1160 (S=O) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.19 (t, J = 2.3 Hz, 1H, C=CH), 2.38 (s, 3H, $C_6H_4CH_3$), 4.07 (br s, 2H, NH₂), 4.21 (d, J = 2.3 Hz, 2H, CH₂), 4.44 (s, 2H, CH₂), 6.60–6.65 (m, 2H, Ar), 7.01 (d, J = 7.6 Hz, 1H, Ar), 7.07–7.12 (m, 1H, Ar), 7.26–7.30 (m, 2H, Ar), 7.76 (d, J = 8.3 Hz, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) & 21.5, 36.5, 37.4, 74.0, 82.8, 86.6, 100.6, 106.6, 114.2, 117.6, 127.9 (2C), 129.6 (2C), 130.0, 132.3, 135.2, 144.0, 148.2; HRMS (FAB) calcd for C₁₉H₁₈N₂O₂S [M⁺] 338.1089, found 338.1095.

Synthesis of *N*-[3-(2-Aminophenyl)prop-2-ynyl]-4-methyl-*N*-(3-phenylprop-2-ynyl)benzenesulfonamide (10a). To a solution of S19 (76 mg, 0.22 mmol) in Et₃N (2.2 mL) were successively added CuI (4.2 mg, 0.022 mmol), PdCl₂(PPh₃)₂ (7.8 mg, 0.011 mmol), and iodobenzene (25 μ L, 0.22 mmol) at room temperature under argon. The mixture was stirred at room temperature for 14 h and quenched by addition of saturated aqueous NH₄Cl

at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with *n*-hexane/EtOAc (3:1) to afford **10a** (70 mg, 75% yield) as a brown solid: IR (neat) 3474 (NH), 3382 (NH), 2212 (C=C), 1349 (S=O), 1161 (S=O) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.33 (s, 3H, C₆H₄CH₃), 4.09 (br s, 2H, NH₂), 4.45 (s, 2H, CH₂), 4.47 (s, 2H, CH₂), 6.59–6.64 (m, 2H, Ar), 7.05 (dd, *J* = 7.7, 1.3 Hz, 1H, Ar), 7.09 (td, *J* = 7.7, 1.5 Hz, 1H, Ar), 7.18–7.32 (m, 7H, Ar), 7.78–7.81 (m, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 37.5, 37.7, 81.7, 82.7, 85.9, 87.0, 106.7, 114.2, 117.6, 122.1, 127.9 (2C), 128.2 (2C), 128.5, 129.6 (2C), 130.0, 131.6 (2C), 132.3, 135.3, 143.9, 148.2; HRMS (FAB) calcd for C₂₅H₂₂N₂O₂S [M⁺] 414.1402, found 414.1404.

Synthesis of 2-[3-(3-Phenylprop-2-ynyloxy)prop-1-ynyl]aniline (10b). To a solution of 2-iodoaniline (0.40 g, 1.8 mmol) in THF (2.0 mL) were successively added Et₃N (1.3 mL, 9.2 mmol), CuI (8.7 mg, 0.046 mmol), PdCl₂(PPh₃)₂ (32 mg, 0.046 mmol), and [3-(prop-2-ynyloxy)prop-1-ynyl]benzene (S20) (0.33 g, 1.9 mmol) in THF (1.0 mL) at room temperature under argon. The mixture was stirred at room temperature for 4 h and quenched by addition of saturated aqueous NH₄Cl at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with *n*-hexane/EtOAc (3:1) to give 10b (0.18 g, 37% yield) as a brown oil: IR (neat) 3475 (NH), 3380 (NH), 2246 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.21 (s, 2H, NH₂), 4.55 (s, 2H, CH₂), 4.60 (s, 2H, CH₂), 6.66-6.69 (m, 2H, Ar), 7.11-7.15 (m, 1H, Ar), 7.28–7.34 (m, 4H, Ar), 7.45–7.47 (m, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 57.3, 57.5, 83.6, 84.3, 86.8, 89.6, 107.0, 114.3, 117.8, 122.4, 128.3 (2C), 128.5, 130.0, 131.8 (2C), 132.5, 148.2; HRMS (FAB) calcd for $C_{18}H_{15}NO[M^+]$ 261.1154, found 261.1158.

Synthesis of Dimethyl 2-[3-(2-Aminophenyl)prop-2-ynyl]-2-[3-(trimethylsilyl)prop-2-ynyl]malonate (S22). To a solution of 2-iodoaniline (0.22 g, 1.0 mmol) in THF (2.0 mL) were successively added Et₃N (0.71 mL, 5.1 mmol), CuI (9.7 mg, 0.051 mmol), PdCl₂(PPh₃)₂ (36 mg, 0.051 mmol), and dimethyl 2-(prop-2-ynyl)-2-[3-(trimethylsilyl)prop-2-ynyl]malonate (S21) (0.30 g, 1.1 mmol) in THF (2.0 mL) at room temperature under argon. The mixture was stirred at room temperature for 14 h and quenched by addition of saturated aqueous NH₄Cl at

room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with *n*-hexane/EtOAc (3:1) to afford S22 (0.23 g, 62% yield) as a pale brown solid: IR (neat) 3477 (NH), 3383 (NH), 2179 (C=C), 1737 (C=O) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.14 [s, 9H, Si(CH₃)₃], 3.06 (s, 2H, CH₂), 3.24 (s, 2H, CH₂), 3.77 (s, 6H, 2 × CO₂CH₃), 4.21 (br s, 2H, NH₂), 6.61–6.66 (m, 2H, Ar), 7.06–7.10 (m, 1H, Ar), 7.21 (dd, *J* = 7.8, 1.5 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 0.0 (3C), 24.2, 24.4, 53.1 (2C), 57.2, 80.6, 88.8, 89.0, 100.8, 107.7, 114.2, 117.6, 129.5, 132.2, 148.2, 169.6 (2C); HRMS (FAB) calcd for C₂₀H₂₄NO₄Si [M – H]⁻ 370.1475, found 370.1485.

Synthesis of Dimethyl 2-[3-(2-Aminophenyl)prop-2-ynyl]-2-(prop-2-ynyl)malonate (S23). A mixture of S22 (0.22 g, 0.58 mmol) and TBAF (1 M solution in THF; 0.64 mL, 0.64 mmol) in THF (3.0 mL) was stirred at room temperature for 1.5 h and quenched by addition of saturated aqueous NH₄Cl and brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with *n*-hexane/EtOAc (3:1) to give S23 (0.12 g, 69% yield) as a pale brown solid: IR (neat) 3476 (NH), 3381 (NH), 3288 (C=*CH*), 2260 (C=*C*), 1734 (C=*O*) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.05 (t, *J* = 2.7 Hz, 1H, C=*C*H), 3.06 (d, *J* = 2.7 Hz, 2H, CH₂), 3.27 (s, 2H, CH₂), 3.79 (s, 6H, 2 × CO₂CH₃), 4.20 (br s, 2H, NH₂), 6.62–6.67 (m, 2H, Ar), 7.06–7.11 (m, 1H, Ar), 7.21 (dd, *J* = 7.8, 1.5 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 23.0, 24.1, 53.2 (2C), 56.8, 71.8, 78.4, 80.7, 88.7, 107.5, 114.2, 117.6, 129.4, 132.1, 148.1, 169.5 (2C); HRMS (FAB) calcd for C₁₇H₁₇NO₄ [M⁺] 299.1158, found 299.1151.

Synthesis of Dimethyl 2-[3-(2-Aminophenyl)prop-2-ynyl]-2-(3phenylprop-2-ynyl)malonate (10c). To a solution of S23 (94 mg, 0.32 mmol) in Et_3N (3.0 mL) were successively added CuI (6.0 mg, 0.032 mmol), PdCl₂(PPh₃)₂ (11 mg, 0.016 mmol), and iodobenzene (35 μ L, 0.32 mmol) at room temperature under argon. The mixture was stirred at room temperature for 6 h and quenched by addition of saturated aqueous NH₄Cl at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with n-hexane/EtOAc (3:1) to afford 10c (0.11 g, 93% vield) as a pale brown solid: IR (neat) 3482 (NH), 3384 (NH), 2295 (C=C), 2222 (C=C), 1729 (C=O) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.27 (s, 2H, CH₂), 3.32 (s, 2H, CH₂), 3.81 (s, 6H, $2 \times CO_2CH_3$), 4.25 (br s, 2H, NH₂), 6.62–6.67 (m, 2H, Ar), 7.07–7.11 (m, 1H, År), 7.22 (dd, J = 7.6, 1.2 Hz, 1H, År), 7.26–7.29 (m, 3H, År), 7.36–7.39 (m, 2H, År); ¹³C NMR (100 MHz, CDCl₃) δ 24.0, 24.3, 53.1 (2C), 57.2, 80.7, 83.7, 83.9, 88.9, 107.6, 114.2, 117.6, 123.0, 128.1, 128.2 (2C), 129.4, 131.7 (2C), 132.1, 148.1, 169.6 (2C); HRMS (FAB) calcd for C23H22NO4 [M + H]⁺ 376.1549, found 376.1553.

Synthesis of Dimethyl 2-[3-(2-Aminophenyl)prop-2-ynyl]-2-(but-2-ynyl)malonate (12). To a solution of 2-iodoaniline (0.13 g, 0.59 mmol) in THF (1.2 mL) were successively added Et₃N (0.41 mL, 3.0 mmol), CuI (5.6 mg, 0.030 mmol), PdCl₂-(PPh₃)₂ (21 mg, 0.030 mmol), and dimethyl 2-(but-2-ynyl)-2-(prop-2-ynyl)malonate (S24) (0.14 g, 0.62 mmol) in THF

(1.2 mL) at room temperature under argon. The mixture was stirred at room temperature for 20 h and quenched by addition of saturated aqueous NH₄Cl at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with n-hexane/ EtOAc (3:1) to give 12 (68 mg, 37% yield) as a brown oil: IR (neat) 3481 (NH), 3382 (NH), 2253 (C=C), 1734 (C=O) cm⁻ H NMR (400 MHz, CDCl₃) δ 1.77 (t, J = 2.4 Hz, 3H, C=CCH₃), 2.99 (q, J = 2.4 Hz, 2H, CH₂), 3.24 (s, 2H, CH₂), 3.78 (s, 6H, 2 × CO₂CH₃), 4.22 (br s, 2H, NH₂), 6.61-6.66 (m, 2H, Ar), 7.06–7.10 (m, 1H, Ar), 7.21 (dd, J = 7.6, 1.0 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 3.5, 23.3, 24.1, 53.0 (2C), 57.1, 72.8, 79.4, 80.4, 89.1, 107.6, 114.1, 117.5, 129.3, 132.1, 148.1, 169.8 (2C); HRMS (FAB) calcd for $C_{18}H_{19}NO_4$ [M⁺] 313.1314, found 313.1310.

Synthesis of N-(2-{[2-(Phenylethynyl)phenyl]ethynyl}phenyl)methanesulfonamide (S26). To a solution of S10 (0.31 g, 1.2 mmol) in THF (2.0 mL) were successively added diisopropylamine (0.85 mL, 6.1 mmol), CuI (14 mg, 0.073 mmol), PdCl₂- $(PhCN)_2$ (28 mg, 0.073 mmol), $P(t-Bu)_3$ (35 μ L, 0.15 mmol) and S25 (0.24 g, 1.3 mmol) at room temperature under argon. The mixture was stirred at room temperature for 19 h, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with n-hexane/EtOAc (3:1) to give **S26** (0.22 g, 48% yield) as a pale brown sold: IR (neat) 3329 (NH), 2256 (C≡C), 2215 (C≡C), 1338 (S=O), 1155 (S=O) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.88 (s, 3H, CH₃), 7.16 (td, J = 7.7, 1.1 Hz, 1H, Ar), 7.22 (br s, 1H, NH), 7.32-7.41 (m, 6H, Ar), 7.53-7.62 (m, 6H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 39.5, 87.5, 87.9, 94.0, 95.3, 114.3, 119.8, 122.7, 124.2, 124.7, 126.0, 128.2, 128.4 (2C), 128.7, 128.9, 130.2, 131.8, 131.8 (2C), 132.3, 132.4, 137.8; HRMS (FAB) calcd for C₂₃H₁₇NO₂S [M⁺] 371.0980, found 371.0983.

Synthesis of 1-(Methylsulfonyl)-2-[2-(phenylethynyl)phenyl]-1H-indole (S27). To a solution of S26 (0.20 g, 0.54 mmol) in NMP (2.5 mL) were added N,N-diisopropylethylamine (0.47 mL, 2.7 mmol). The mixture was stirred at 80 °C for 15 h and quenched by addition of H₂O at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with *n*-hexane/ EtOAc (3:1) to give S27 (0.18 g, 90% yield) as a pale yellow oil: IR (neat) 2294 (C=C), 2254 (C=C), 1370 (S=O), 1171 (S=O) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.94 (s, 3H, CH₃), 6.85 (s, 1H, Ar), 7.13-7.26 (m, 5H, Ar), 7.34-7.46 (m, 4H, Ar), 7.51–7.53 (m, 1H, Ar), 7.63–7.66 (m, 2H, Ar), 8.11 (dd, J = 8.0, 0.7 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 39.7, 88.5, 93.2, 113.2, 115.0, 121.1, 122.7, 123.6, 124.2, 125.0, 127.6, 128.3 (2C), 128.4, 128.7, 129.9, 131.3 (2C), 131.5, 131.7, 134.7, 137.0, 139.2; HRMS (FAB) calcd for $C_{23}H_{17}NO_2S$ [M⁺] 371.0980, found 371.0978.

Synthesis of 2-[2-(Phenylethynyl)phenyl]-1*H*-indole (20). To a solution of S27 (74 mg, 0.20 mmol) in MeOH (2.0 mL) was added MeONa (65 mg, 1.2 mmol) at 60 °C. The mixture was

stirred at 60 °C for 18 h, and MeONa (32 mg, 0.60 mmol) was added at 80 °C. The reaction mixture was stirred at 80 °C for 19 h and quenched by addition of H₂O at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on silica gel with *n*-hexane/ EtOAc (6:1) to give 20 (40 mg, 68% yield) as a pale yellow solid: IR (neat) 3430 (NH), 2249 (C=C) cm⁻¹; ¹H NMR (400 MHz, $CDCl_3$) δ 7.00 (d, J = 1.5 Hz, 1H, Ar), 7.11–7.15 (m, 1H, Ar), 7.19-7.23 (m, 1H, Ar), 7.28 (td, J = 7.6, 1.0 Hz, 1H, Ar), 7.36-7.41 (m, 5H, Ar), 7.52-7.55 (m, 2H, Ar), 7.63 (dd, J = 7.8, 1.0 Hz, 1H, Ar), 7.66 (d, J=7.8 Hz, 1H, Ar), 7.78 (dd, J=7.8, 0.5 Hz, 1H, Ar), 9.60 (br s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃) δ 89.6, 93.6, 102.1, 110.9, 118.7, 120.1, 120.7, 122.5, 122.7, 127.2, 128.0, 128.4, 128.6 (2C), 128.8, 129.0, 131.3 (2C), 133.4, 134.0, 136.3, 136.8; HRMS (FAB) calcd for C₂₂H₁₅N [M⁺] 293.1204, found 293.1205.

Gold-Catalyzed Cascade Cyclization of Diynes. General Procedure for Synthesis of Fused Indoles. Synthesis of 6-*p*-Tolyl-11*H*-benzo[*a*]carbazole (2g) (Table 2, Entry 4). A mixture of the gold catalyst C (5.0 mg, 7.1 μ mol, 5 mol %) and AgOTf (1.8 mg, 7.1 μ mol, 5 mol %) in acetonitrile (0.71 mL) was stirred at room temperature under argon. After aniline 1g (43 mg, 0.14 mmol) was added, the mixture was stirred at 80 °C for 45 min. The reaction mixture was diluted with EtOAc, washed with saturated aqueous NH₄Cl and brine, dried over Na₂SO₄, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on amino silica gel with *n*-hexane/Et₂O (2:3) to afford 2g (36 mg, 83% yield) as a brown oil. ¹H NMR spectra of 2g were in good agreement with those previously reported.¹²

Synthesis of 6-(4-Methoxyphenyl)-11*H*-benzo[*a*]carbazole (2h) (Table 3, Entry 2). By a procedure similar to that described for the preparation of carbazole 2g, 1h (36 mg, 0.11 mmol) was converted into 2h (30 mg, 83% yield) as a pale brown solid by treatment with C (3.9 mg, 5.6 μ mol) and AgOTf (1.4 mg, 5.6 μ mol) in acetonitrile (0.56 mL) at 80 °C for 30 min. ¹H NMR spectra of 2h were in good agreement with those previously reported.¹²

Synthesis of 6-[3-(Trifluoromethyl)phenyl]-11H-benzo[a]carbazole (2i) (Table 3, Entry 3). By a procedure similar to that described for the preparation of carbazole 2g, 1i (31 mg, 0.087 mmol) was converted into 2i (31 mg, 98% yield) as a brown oil by treatment with C (3.1 mg, 4.3 µmol) and AgOTf (1.1 mg, 4.3 µmol) in acetonitrile (0.43 mL) at 80 °C for 40 min: IR (neat) 3472 (NH) cm⁻¹; ¹H NMR (500 MHz, C_6D_6) δ 7.01–7.07 (m, 2H, Ar), 7.22 (d, J = 8.0 Hz, 1H, Ar), 7.27 (s, 1H, Ar), 7.30 (dd J = 7.4, 7.4 Hz, 1H, Ar), 7.37–7.41 (m, 2H, Ar), 7.46 (d, J = 7.4 Hz, 1H, Ar), 7.55–7.58 (m, 2H, Ar), 7.62 (d, J=8.6 Hz, 1H, Ar), 7.78–7.79 (m, 1H, Ar), 7.92 (br s, 1H, NH), 7.96 (s, 1H, Ar); ¹³C NMR (125 MHz, C₆D₆) δ 111.4, 116.6, 120.2, 120.9, 121.0, 121.6, 122.0, 123.9, 124.4 (q, J = 3.6 Hz), 125.0, 125.0 (q, *J* = 272.3 Hz), 125.6, 125.9, 126.5 (q, *J* = 3.6 Hz), 129.0, 129.3, 131.0 (q, J = 32.0 Hz), 132.5, 133.1, 135.1, 135.7, 139.1, 142.6; HRMS (FAB) calcd for C₂₃H₁₄F₃N [M⁺] 361.1078, found 361.1068.

Synthesis of 3-(11*H*-Benzo[*a*]carbazol-6-yl)benzonitrile (2j) (Table 3, Entry 4). By a procedure similar to that described for the preparation of carbazole 2g, 1j (33 mg, 0.10 mmol) was converted into 2j (26 mg, 79% yield) as a yellow solid by treatment with C (3.7 mg, 5.2 μ mol) and AgOTf (1.3 mg, 5.2 μ mol) in acetonitrile (0.52 mL) at 80 °C for 30 min: IR (neat) 3344 (NH), 2234 (C=N) cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 6.81 (dd, *J* = 7.7, 7.7 Hz, 1H, Ar), 7.03 (dd, *J* = 7.7, 7.7 Hz, 1H, Ar), 7.11–7.15 (m, 2H, Ar), 7.69 (d, *J* = 6.9 Hz, 1H, Ar), 7.81 (dd, *J* = 6.9, 2.3 Hz, 1H, Ar), 8.09 (br s, 1H, NH); ¹³C NMR (125 MHz, C₆D₆) δ 111.5, 113.2, 116.4, 118.9, 120.2, 121.0, 121.1,

121.5, 121.8, 123.8, 125.1, 125.7, 126.0, 128.9, 129.2, 131.0, 132.4, 132.8, 133.6, 134.3, 135.7, 139.1, 142.6; HRMS (FAB) calcd for $C_{23}H_{14}N_2$ [M⁺] 318.1157, found 318.1149.

Synthesis of 6-m-Tolyl-11H-benzo[a]carbazole (2k) (Table 3, Entry 5). By a procedure similar to that described for the preparation of carbazole 2g, 1k (33 mg, 0.11 mmol) was converted into 2k (26 mg, 76% yield) as a brown oil by treatment with C (3.8 mg, 5.3 μ mol) and AgOTf (1.4 mg, 5.3 μ mol) in acetonitrile (0.53 mL) at 80 °C for 30 min: IR (neat) 3469 (NH) cm^{-1} ; ¹H NMR (500 MHz, C₆D₆) δ 2.21 (s, 3H, CH₃), 7.06 (dd, J = 7.4, 7.4 Hz, 1H, Ar), 7.13 (d, J = 7.4 Hz, 1H, Ar), 7.23 (d, J = 8.0 Hz, 1H, Ar), 7.27 (dd, J = 7.4, 7.4 Hz, 1H, Ar), 7.32 (dd, J = 7.4, 7.4 Hz, 1H, Ar), 7.36-7.41 (m, 2H, Ar), 7.49 (s, 1H, Ar), 7.53–7.55 (m, 2H, Ar), 7.64 (d, J = 8.6 Hz, 1H, Ar), 7.82–7.85 (m, 2H, Ar), 7.89 (br s, 1H, NH); 13 C NMR (125 MHz, C₆D₆) δ 21.4, 111.2, 117.4, 120.0, 120.7, 121.0, 121.3, 122.6, 124.5, 124.8, 125.1, 125.7, 126.9, 128.5, 128.5, 129.2, 130.5, 132.8, 135.6, 137.4, 138.1, 139.2, 141.8; HRMS (FAB) calcd for C₂₃H₁₆N $[M - H]^{-}$ 306.1283, found 306.1285.

Synthesis of 2-(11*H*-Benzo[*a*]carbazol-6-yl)benzonitrile (2l) (Table 3, Entry 6). By a procedure similar to that described for the preparation of carbazole 2g, 1l (41 mg, 0.13 mmol) was converted into 2l (4.2 mg, 10% yield) as a yellow solid by treatment with C (4.6 mg, 6.5 μ mol) and AgOTf (1.7 mg, 6.5 μ mol) in acetonitrile (0.65 mL) at 80 °C for 250 min: IR (neat) 3365 (NH), 2228 (C=N) cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 6.81 (d, *J* = 7.7 Hz, 1H, Ar), 6.98 (dd, *J* = 7.7, 7.7 Hz, 1H, Ar), 7.36 (dd, *J* = 7.7, 7.7 Hz, 1H, Ar), 7.57 (s, 1H, Ar), 7.62–7.80 (m, 5H, Ar), 7.94 (dd, *J* = 7.7, 7.7 Hz, 1H, Ar), 8.10–8.12 (m, 2H, Ar), 8.61 (d, *J* = 8.3 Hz, 1H, Ar), 12.49 (br s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃) δ : 111.1, 113.0, 116.1, 118.4, 119.7, 120.5, 120.7, 120.8, 121.2, 123.1, 124.7, 125.8, 126.1, 128.2, 129.0, 131.0, 131.6, 131.7, 132.6, 133.1, 135.3, 138.6, 145.1; HRMS (FAB) calcd for C₂₃H₁₄N₂ [M⁺] 318.1157, found 318.1157.

Synthesis of 6-*o*-Tolyl-11*H*-benzo[*a*]carbazole (2m) (Table 3, Entry 7). By a procedure similar to that described for the preparation of carbazole 2g, 1m (30 mg, 0.096 mmol) was converted into 2m (24 mg, 82% yield) as a brown solid by treatment with C (3.4 mg, 4.8 μ mol) and AgOTf (1.2 mg, 4.8 μ mol) in acetonitrile (0.48 mL) at 80 °C for 40 min: IR (neat) 3431 (NH) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.11 (s, 3H, CH₃), 6.95 (d, *J* = 8.0 Hz, 1H, Ar), 7.00 (dd, *J* = 8.0, 8.0 Hz, 1H, Ar), 7.32–7.36 (m, 2H, Ar), 7.39–7.45 (m, 4H, Ar), 7.52–7.60 (m, 3H, Ar), 7.99 (d, *J* = 8.0 Hz, 1H, Ar), 8.14 (d, *J* = 8.0 Hz, 1H, Ar), 8.85 (br s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃) δ 19.9, 110.8, 117.4, 120.0, 120.2, 120.2, 120.4, 121.2, 124.1, 124.6, 125.3, 125.5, 125.9, 127.8, 128.9, 129.6, 129.9, 132.2, 134.8, 135.9, 136.7, 138.5, 140.7; HRMS (FAB) calcd for C₂₃H₁₆N [M – H]⁻ 306.1283, found 306.1289.

Synthesis of 6-(Thiophen-3-yl)-11*H*-benzo[*a*]carbazole (2n) (Table 3, Entry 8). By a procedure similar to that described for the preparation of carbazole 2g, 1n (28 mg, 0.093 mmol) was converted into 2n (21 mg, 74% yield) as a yellow solid by treatment with C (3.3 mg, 4.7 μ mol) and AgOTf (1.2 mg, 4.7 μ mol) in acetonitrile (0.47 mL) at 80 °C for 40 min: IR (neat) cm⁻¹: 3410 (NH); ¹H NMR (500 MHz, CDCl₃) δ 7.10 (dd, *J* = 7.4, 7.4 Hz, 1H, Ar), 7.37 (dd, *J* = 7.4, 7.4 Hz, 1H, Ar), 7.42 (dd, *J* = 4.6, 1.1 Hz, 1H, Ar), 7.50–7.57 (m, 6H, Ar), 7.60 (d, *J* = 7.4 Hz, 1H, Ar), 7.96 (d, *J* = 7.4 Hz, 1H, Ar), 8.09 (d, *J* = 8.0 Hz, 1H, Ar), 8.85 (br s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃) δ 110.9, 117.0, 119.7, 120.3, 120.3, 121.0, 122.0, 123.0, 123.8, 124.7, 125.4, 125.5, 125.7, 128.8, 129.3, 131.2, 132.0, 135.2, 138.6, 141.7; HRMS (FAB) calcd for C₂₀H₁₃NS [M⁺]: 299.0769; found: 299.0767.

Synthesis of 6-Cyclopentyl-11*H*-benzo[*a*]carbazole (20) (Table 3, Entry 9). By a procedure similar to that described for the preparation of carbazole 2g, 10 (34 mg, 0.12 mmol) was converted into 20 (31 mg, 90% yield) as a pale brown solid by

treatment with C (4.2 mg, 6.0 μ mol) and AgOTf (1.5 mg, 6.0 μ mol) in acetonitrile (0.60 mL) at 80 °C for 40 min, which was recrystallized from *n*-hexane/EtOAc to give pure **20** as pale brown crystals: mp: 147–149 °C; IR (neat) cm⁻¹: 3417 (NH); ¹H NMR (500 MHz, CDCl₃) δ 1.85–2.00 (m, 6H, *c*-pentyl), 2.29–2.35 (m, 2H, *c*-pentyl), 4.07–4.13 (m, 1H, *c*-pentyl), 7.31 (dd, J = 7.4, 7.4 Hz, 1H, Ar), 7.42 (dd, J = 7.4, 7.4 Hz, 1H, Ar), 7.42 (dd, J = 7.4, 7.4 Hz, 1H, Ar), 7.42 (dd, J = 7.4, 7.4 Hz, 1H, Ar), 7.57 (d, J = 8.0 Hz, 1H, Ar), 7.94 (dd, J = 6.3, 3.4 Hz, 1H, Ar), 8.04 (dd, J = 6.3, 3.2 Hz, 1H, Ar), 8.24 (d, J = 8.0 Hz, 1H, Ar), 8.80 (br s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃) δ 25.0 (2C), 32.6 (2C), 42.9, 111.0, 115.2, 117.7, 119.6, 119.9, 120.1, 122.5, 124.1, 124.2, 124.7, 125.3, 128.4, 132.4, 135.1, 138.6, 140.4. Anal. Calcd for C₂₁H₁₉N: C, 88.38; H, 6.71; N, 4.91. Found C, 88.18; H, 6.60; N, 4.91.

Synthesis of Methyl 6-Phenyl-11*H*-benzo[*a*]carbazole-8-carboxylate (2p) (Table 3, Entry 10). By a procedure similar to that described for the preparation of carbazole 2g, 1p (43 mg, 0.12 mmol) was converted into 2p (29 mg, 68% yield) as a pale brown solid by treatment with C (4.4 mg, 6.2 μ mol) and AgOTf (1.6 mg, 6.2 μ mol) in acetonitrile (0.62 mL) at 80 °C for 120 min. ¹H NMR spectra of 2p were in good agreement with those previously reported.¹²

Synthesis of 8-Methyl-6-phenyl-11*H*-benzo[*a*]carbazole (2q) (Table 3, Entry 11). By a procedure similar to that described for the preparation of carbazole 2g, 1q (29 mg, 0.096 mmol) was converted into 2q (24 mg, 83% yield) as a brown solid by treatment with C (3.4 mg, 4.8 μ mol) and AgOTf (1.2 mg, 4.8 μ mol) in acetonitrile (0.48 mL) at 80 °C for 30 min. ¹H NMR spectra of 2q were in good agreement with those previously reported.¹²

Synthesis of 9-Chloro-6-phenyl-11*H*-benzo[*a*]carbazole (2r) (Table 3, Entry 12). By a procedure similar to that described for the preparation of carbazole 2g, 1r (30 mg, 0.092 mmol) was converted into 2r (28 mg, 92% yield) as a yellow solid by treatment with C (3.3 mg, 4.6 μ mol) and AgOTf (1.2 mg, 4.6 μ mol) in acetonitrile (0.46 mL) at 80 °C for 40 min: IR (neat) 3416 (NH) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.98 (dd, *J* = 8.6, 1.7 Hz, 1H, Ar), 7.31 (d, *J* = 8.6 Hz, 1H, Ar), 7.48–7.59 (m, 7H, Ar), 7.63 (dd, *J* = 8.0, 1.7 Hz, 2H, Ar), 7.97 (d, *J* = 7.4 Hz, 1H, Ar), 8.07 (d, *J* = 8.0 Hz, 1H, Ar), 8.82 (br s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃) δ 110.8, 116.3, 120.1, 120.2, 120.3, 121.3, 122.4, 122.8, 125.7, 125.9, 127.7, 128.4 (2C), 128.9, 129.2 (2C), 130.3, 132.2, 135.6, 136.2, 139.1, 140.8; HRMS (FAB) calcd for C₂₂H₁₃ClN [M – H]⁻ 326.0737, found 326.0740.

Synthesis of 9-Chloro-6-cyclohexyl-11H-benzo[a]carbazole (2s) (Table 3, Entry 13). By a procedure similar to that described for the preparation of carbazole 2g, 1s (34 mg, 0.10 mmol) was converted into 2s (33 mg, 96% yield) as a pale yellow solid by treatment with C (3.6 mg, 5.1 μ mol) and AgOTf (1.3 mg, 5.1 µmol) in acetonitrile (0.51 mL) at 80 °C for 90 min: IR (neat) $3416 \text{ (NH) cm}^{-1}$; ¹H NMR (500 MHz, CDCl₃) δ 1.36–1.45 (br m, 1H, Cy), 1.58-1.68 (m, 4H, Cy), 1.89-1.91 (br m, 1H, Cy), 1.96-2.01 (br m, 2H, Cy), 2.22-2.29 (br m, 2H, Cy), 3.43-3.47 (br m, 1H, Cy), 7.26 (dd, J = 8.6, 1.7 Hz, 1H, Ar), 7.46 (s, 1H, Ar), 7.50–7.52 (m, 3H, Ar), 7.93 (dd, *J* = 6.0, 3.2 Hz, 1H, Ar), 7.99-8.00 (m, 2H, Ar), 8.72 (br s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃) δ 26.5, 27.2 (2C), 33.1 (2C), 41.1, 110.9, 115.8, 116.7, 119.5, 120.1, 120.6, 122.4, 123.0, 124.9, 125.6, 128.6, 129.9, 132.6, 135.4, 139.0, 141.9; HRMS (FAB) calcd for C₂₂H₂₀ClN [M⁺] 333.1284, found 333.1277.

Synthesis of 6-Cyclohexyl-9-(trifluoromethyl)-11*H*-benzo-[*a*]carbazole (2t) (Table 3, Entry 14). By a procedure similar to that described for the preparation of carbazole 2g, 1t (32 mg, 0.088 mmol) was converted into 2t (28 mg, 87% yield) as a pale brown solid by treatment with C (3.1 mg, 4.4 μ mol) and AgOTf (1.1 mg, 4.4 μ mol) in acetonitrile (0.44 mL) at 80 °C for 90 min: IR (neat) 3495 (NH) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.36–1.45 (br m, 1H, Cy), 1.60–1.69 (m, 4H, Cy), 1.90–1.93 (br m, 1H, Cy), 1.99–2.01 (br m, 2H, Cy), 2.21–2.31 (br m, 2H, Cy), 3.46–3.50 (br m, 1H, Cy), 7.47 (s, 1H, Ar), 7.50–7.58 (m, 3H, Ar), 7.80 (s, 1H, Ar), 7.94 (dd, J = 5.7, 2.9 Hz, 1H, Ar), 8.02 (dd, J = 7.5, 3.2 Hz, 1H, Ar), 8.17 (d, J = 8.6 Hz, 1H, Ar), 8.89 (br s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃) δ 26.5, 27.2 (2C), 33.2 (2C), 41.1, 108.3 (q, J = 4.8 Hz), 116.1, 116.5, 116.7 (q, J = 3.6 Hz), 119.4, 120.3, 122.4, 124.8 (q, J = 241.9 Hz), 125.1, 125.9 (q, J = 32.4 Hz), 126.0, 126.2, 128.6, 133.0, 136.5, 137.5, 142.2; HRMS (FAB) calcd for C₂₃H₂₀F₃N [M⁺] 367.1548, found 367.1556.

Synthesis of tert-Butyl 6-Phenyl-11H-benzo[a]carbazole-11carboxylate (2u) (Table 4, Entry 1). By a procedure similar to that described for the preparation of carbazole 2g, 1u (41 mg, 0.10 mmol) was converted into 2u (36 mg, 89% yield) as a yellow oil by treatment with C (3.7 mg, 5.2 µmol) and AgOTf (1.3 mg, 5.2 μ mol) in acetonitrile (0.52 mL) at 80 °C for 2 h: IR (neat) 1730 (C=O) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.71 [s, 9H, $C(CH_3)_3$], 7.07 (dd, J = 8.0, 8.0 Hz, 1H, Ar), 7.16 (d, J = 8.0 Hz, 1H, Ar), 7.35-7.39 (m, 1H, Ar), 7.49-7.56 (m, 5H, Ar), 7.59-7.61 (m, 2H, Ar), 7.65 (s, 1H, Ar), 7.93 (d, J = 8.0 Hz, 1H, Ar), 8.19 (d, J = 8.0 Hz, 1H, Ar), 8.26 (d, J = 8.0 Hz, 1H, Ar);¹³C NMR (125 MHz, CDCl₃) δ 28.2 (3C), 84.5, 114.8, 122.0, 122.1, 122.6, 122.8, 124.9, 125.0, 125.6, 126.0, 126.1, 126.2, 127.8, 128.5, 128.5 (2C), 128.7, 129.4 (2C), 133.0, 135.3, 140.6, 140.6, 151.9; HRMS (FAB) calcd for C₂₇H₂₃NO₂ [M⁺] 393.1729, found 393.1731.

Synthesis of 11-Methyl-6-phenyl-11*H*-benzo[*a*]carbazole (2v) (Table 4, Entry 2). By a procedure similar to that described for the preparation of carbazole 2g, 1v (32 mg, 0.11 mmol) was converted into 2v (30 mg, 92% yield) as a colorless solid by treatment with C (3.7 mg, 5.3 µmol) and AgOTf (1.3 mg, 5.3 μ mol) in acetonitrile (0.53 mL) at 80 °C for 40 min, which was recrystallized from *n*-hexane to give pure **2v** as colorless crystals: mp 194–195 °C; ¹H NMR (500 MHz, C₆D₆) δ 3.54 (s, 3H, CH₃), 7.04 (dd, J = 7.4, 7.4 Hz, 1H, Ar), 7.13 (d, J = 8.6 Hz, 1H, Ar), 7.27–7.34 (m, 5H, Ar), 7.38 (dd, J=5.7, 3.2 Hz, 1H, Ar), 7.52 (s, 1H, Ar), 7.66–7.71 (m, 3H, Ar), 7.88 (dd, *J* = 5.7, 2.9 Hz, 1H, Ar), 8.37 (dd, J = 5.7, 3.4 Hz, 1H, Ar); ¹³C NMR (125 MHz, C₆D₆) δ 33.4, 109.1, 117.9, 119.6, 121.8, 122.4, 122.5, 122.5, 123.3, 124.7, 124.9, 125.1, 127.7, 128.6 (2C), 129.6, 129.8 (2C), 133.8, 136.3, 136.9, 141.4, 142.1. Anal. Calcd for C₂₃H₁₇N: C, 89.87; H, 5.57; N, 4.56. Found: C, 89.61; H, 5.79; N, 4.60.

Synthesis of 6-Cyclohexyl-2-fluoro-11H-benzo[a]carbazole (2w) (Table 4, Entry 3). By a procedure similar to that described for the preparation of carbazole 2g, 1w (33 mg, 0.11 mmol) was converted into 2w (28 mg, 84% yield) as a brown solid by treatment with C (3.7 mg, 5.3 µmol) and AgOTf (1.3 mg, 5.3 μ mol) in acetonitrile (0.53 mL) at 80 °C for 50 min: IR (neat) 3457 (NH) cm⁻¹; 1 H NMR (500 MHz, CDCl₃) δ 1.35–1.44 (br m, 1H, Cy), 1.59-1.70 (m, 4H, Cy), 1.89-2.00 (m, 3H, Cy), 2.27-2.28 (br m, 2H, Cy), 3.51-3.55 (br m, 1H, Cy), 7.22-7.26 (m, 1H, Ar), 7.32 (dd, J = 7.4, 7.4 Hz, 1H, Ar), 7.42–7.45 (m, 2H, Ar), 7.55 (d, J = 8.0 Hz, 1H, Ar), 7.62 (dd, J = 9.7, 1.7 Hz, 1H, Ar), 7.89 (dd, J = 8.9, 5.4 Hz, 1H, Ar), 8.14 (d, J = 8.0 Hz, 1H, Ar), 8.64 (br s, 1H, NH); 13 C NMR (125 MHz, CDCl₃) δ 26.6, 27.2 (2C), 33.2 (2C), 41.0, 104.3 (d, J = 22.8 Hz), 111.1, 115.1, 115.1, 119.9, 120.0, 122.5, 123.7, 124.6, 129.3, 130.8, 130.8, 134.6 (d, J=4.8 Hz), 138.7, 141.4, 160.1 (d, J = 244.7 Hz); HRMS (FAB) calcd for C₂₂H₂₀FN [M⁺] 317.1580, found 317.1575.

Synthesis of 6-Phenyl-11*H*-pyrido[3,2-*a*]carbazole (2x) (Table 4, Entry 4). By a procedure similar to that described for the preparation of carbazole 2g, 1x (41 mg, 0.14 mmol) was converted into 2x (17 mg, 37% yield) as a brown solid by treatment with C (20 mg, 0.028 mmol) and AgOTf (7.1 mg, 0.028 mmol) in acetonitrile (0.69 mL) at 80 °C for 24 h. ¹H NMR spectra of 2x were in good agreement with those previously reported.¹²

Synthesis of 5-Phenyl-10*H*-furo[3,2-*a*]carbazole (2y) (Table 4, Entry 5). By a procedure similar to that described for the

preparation of carbazole **2g**, **1y** (34 mg, 0.12 mmol) was converted into **2y** (33 mg, 98% yield) as a colorless solid by treatment with **C** (4.2 mg, 5.9 μ mol) and AgOTf (1.5 mg, 5.9 μ mol) in acetonitrile (0.59 mL) at 80 °C for 75 min, which was recrystallized from *n*-hexane to give pure **2y** as colorless crystals: mp 120–121 °C; IR (neat) 3443 (NH) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.98–7.01 (m, 2H, Ar), 7.29–7.32 (m, 2H, Ar), 7.36 (d, *J* = 8.0 Hz, 1H, Ar), 7.44–7.54 (m, 4H, Ar), 7.63–7.64 (m, 2H, Ar), 7.69 (d, *J*=2.3 Hz, 1H, Ar), 8.38 (br s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃) δ 103.4, 105.7, 110.6, 110.9, 115.7, 119.4, 121.8, 123.7, 124.4, 127.5, 128.4 (2C), 129.4 (2C), 132.6, 134.6, 139.1, 141.3, 144.1, 154.6 Anal. Calcd for C₂₀H₁₃NO: C, 84.78; H, 4.62; N, 4.94. Found: C, 84.55; H, 4.65; N, 4.78.

Synthesis of *tert*-Butyl 4-Phenyl-2,3-dihydro-1*H*-benzo[*g*]indole-1-carboxylate (7) (Scheme 3). By a procedure similar to that described for the preparation of carbazole 2g, 6 (42 mg, 0.12 mmol) was converted into 7 (41 mg, 99% yield) as a pale yellow solid by treatment with C (4.3 mg, 6.0 μ mol) and AgOTf (1.5 mg, 6.0 μ mol) in acetonitrile (0.60 mL) at 80 °C for 25 min: IR (neat) 1698 (C=O) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.55 [s, 9H, C(CH₃)₃], 3.16 (t, *J* = 7.7 Hz, 2H, CH₂), 4.24 (t, *J* = 7.7 Hz, 2H, CH₂), 7.36–7.51 (m, 7H, Ar), 7.63 (s, 1H, Ar), 7.83 (d, *J* = 8.0 Hz, 1H, Ar), 7.98 (d, *J* = 8.0 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 28.4 (3C), 30.0, 51.9, 81.1, 124.0, 124.8, 125.2, 125.4, 125.5, 127.3, 128.2, 128.4 (2C), 128.6 (2C), 129.6, 134.0, 136.5, 139.5, 140.4, 154.5; HRMS (FAB) calcd for C₂₃H₂₃NO₂ [M⁺] 345.1729, found 345.1734.

Synthesis of 4-Phenyl-2,3-dihydro-1H-benzo[g]indole (5) (Scheme 3). To a solution of 7 (40 mg, 0.12 mmol) in 1,4-dioxane (0.50 mL) was added 4 N HCl/1,4-dioxane (0.50 mL, 2.0 mmol) at room temperature. The mixture was stirred at room temperature for 19 h and quenched by addition of saturated aqueous NaHCO₃ at room temperature. The aqueous mixture was extracted with EtOAc, and the layers were separated. The organic layer was dried over Na2SO4, filtrated, and concentrated in vacuo. The residue was purified by column chromatography on amino silica gel with n-hexane/EtOAc (5:1) to afford 5 (26 mg, 90% yield) as a red oil: IR (neat) 3373 (NH) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.27 (t, J = 8.5 Hz, 2H, CH₂), 3.73 (t, J = 8.5 Hz, 2H, CH₂), 3.95 (br s, 1H, NH), 7.32-7.46 (m, 6H, Ar), 7.52-7.55 (m, 2H, Ar), 7.62-7.66 (m, 1H, Ar), 7.79–7.83 (m, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 30.8, 48.0, 118.8, 120.1, 121.3, 121.8, 124.8, 125.5, 127.0, 128.3 (2C), 128.5 (2C), 128.6, 133.8, 137.4, 141.2, 147.4; HRMS (FAB) calcd for C₁₈H₁₅N [M⁺] 245.1204, found 245.1206.

Synthesis of 4-Phenyl-2,3-dihydronaphtho[1,2-b]furan (9) (Scheme 3). By a procedure similar to that described for the preparation of carbazole 2g, 8 (42 mg, 0.17 mmol) was converted into 9 (36 mg, 85% yield) as a pale yellow solid by treatment with C (6.1 mg, 8.6 μ mol) and AgOTf (2.2 mg, 8.6 μ mol) in acetoni-trile (0.86 mL) at 80 °C for 40 min: ¹H NMR (500 MHz, CDCl₃) δ 3.42 (t, J = 8.9 Hz, 2H, CH₂), 4.76 (t, J = 8.9 Hz, 2H, CH₂), 7.36 (dd, J = 7.4, 7.4 Hz, 1H, Ar), 7.42–7.46 (m, 5H, Ar), 7.54–7.55 (m, 2H, Ar), 7.82 (dd, J = 6.0, 3.2 Hz, 1H, Ar), 7.96 (dd, J = 6.0, 3.4 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 30.7, 71.9, 118.7, 119.7, 119.8, 121.4, 125.2, 126.1, 127.2, 127.9, 128.3 (2C), 128.5 (2C), 134.2, 137.0, 140.8, 155.8; HRMS (FAB) calcd for C₁₈H₁₄O [M⁺] 246.1045, found 246.1050.

Synthesis of 5-Phenyl-2-tosyl-1,2,3,10-tetrahydroazepino[3,4-*b*]indole (11a) (Table 5, Entry 2). By a procedure similar to that described for the preparation of carbazole 2g, 10a (33 mg, 0.079 mmol) was converted into 11a (14 mg, 42% yield) as a brown solid by treatment with A (2.1 mg, 4.0 μ mol) and AgOTf (1.0 mg, 4.0 μ mol) in acetonitrile (0.40 mL) at 80 °C for 1.5 h: IR (neat) 3369 (NH), 1331 (S=O), 1157 (S=O) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.32 (s, 3H, C₆H₄CH₃), 3.92 (d, *J* = 6.9 Hz, 2H, CH₂), 4.60 (s, 2H, CH₂), 5.97 (t, *J* = 6.9 Hz, 1H, C=CHCH₂), 6.63 (d, *J* = 8.0 Hz, 1H, Ar), 6.86 (dd, *J* = 7.4, 7.4 Hz, 1H, Ar), 7.12 (dd, J = 7.4, 7.4 Hz, 1H, Ar), 7.17 (d, J = 8.0 Hz, 2H, Ar), 7.25–7.34 (m, 6H, Ar), 7.71 (d, J = 8.0 Hz, 2H, Ar), 8.63 (br s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃) δ 21.4, 44.5, 45.8, 111.3, 114.0, 119.7, 120.0, 120.8, 122.4, 126.2, 127.3 (2C), 128.0, 128.1 (2C), 128.2 (2C), 129.7 (2C), 134.2, 135.7, 135.8, 139.6, 143.2, 143.5; HRMS (FAB) calcd for C₂₅H₂₂N₂O₂S [M⁺] 414.1402, found 414.1408.

Synthesis of 5-Phenyl-3,10-dihydro-1*H*-oxepino[3,4-*b*]indole (11b) (Table 5, Entry 4). By a procedure similar to that described for the preparation of carbazole 2g, 10b (38 mg, 0.14 mmol) was converted into 11b (18 mg, 49% yield) as a brown oil by treatment with C (5.1 mg, 7.2 μ mol) and AgOTf (1.8 mg, 7.2 μ mol) in acetonitrile (0.72 mL) at 80 °C for 4 h: IR (neat) 3282 (NH) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.11 (d, *J* = 6.3 Hz, 2H, CH₂), 4.83 (s, 2H, CH₂), 6.29 (t, *J* = 6.3 Hz, 1H, C=CHCH₂), 6.75 (d, *J* = 8.0 Hz, 1H, Ar), 6.91 (ddd, *J* = 7.7, 7.7, 1.1 Hz, 1H, Ar), 7.16 (ddd, *J* = 7.7, 7.7, 1.1 Hz, 1H, Ar), 7.44–7.46 (m, 2H, Ar), 8.34 (br s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃) δ 63.7, 64.8, 111.2, 114.6, 120.0, 121.1, 122.3, 124.1, 126.4, 127.9, 128.2 (2C), 128.2 (2C), 135.9, 138.7, 140.2, 143.5; HRMS (FAB) calcd for C₁₈H₁₅NO [M⁺] 261.1154, found 261.1153.

Synthesis of Dimethyl 10-Phenyl-6,8-dihydrocyclohepta[b]indole-7,7(5H)-dicarboxylate (11c) (Table 5, Entry 5). By a procedure similar to that described for the preparation of carbazole 2g, 10c (35 mg, 0.092 mmol) was converted into 11c (22 mg, 63% yield) as a colorless solid by treatment with C (3.3 mg, 4.6 μ mol) and AgOTf (1.2 mg, 4.6 μ mol) in acetonitrile (0.46 mL) at 80 °C for 2.5 h: IR (neat) 3329 (NH), 1726 (C=O) cm^{-1} ; ¹H NMR (500 MHz, CDCl₃) δ 2.62 (d, J = 6.9 Hz, 2H, CH₂), 3.31 (s, 2H, CH₂), 3.74 (s, 6H, 2 × CO₂CH₃), 6.43 (t, J = 6.9 Hz, 1H, C=CHCH₂), 6.85 (d, J = 7.4 Hz, 1H, Ar), 6.91 (dd, J = 7.4, 7.4 Hz, 1H, Ar), 7.12 (dd, J = 7.4, 7.4 Hz, 1H, Ar), 7.30–7.31 (br m, 3H, Ar), 7.36 (d, J = 8.0 Hz, 1H, Ar), 7.40-7.42 (br m, 2H, Ar), 8.55 (br s, 1H, NH); ¹³C NMR (125 MHz, CDCl₃) δ 31.4, 33.4, 52.8 (2C), 70.3, 110.9, 112.6, 119.7, 120.3, 121.5, 122.9, 126.6, 127.5, 127.6 (2C), 128.1 (2C), 135.6, 138.1, 139.8, 141.1, 171.7 (2C); HRMS (FAB) calcd for C₂₃H₂₁NO₄ [M⁺] 375.1471, found 375.1471.

Synthesis of (*E*)-Dimethyl 4-Ethylidene-3,4-dihydro-1*H*-carbazole-2,2(9*H*)-dicarboxylate [(*E*)-13] (Scheme 4). By a procedure similar to that described for the preparation of carbazole 2g, 12 (31 mg, 0.099 mmol) was converted into (*E*)-13 (17 mg, 34% yield) as a pale yellow solid by treatment with C (3.5 mg, 5.0 μ mol) and AgOTf (1.3 mg, 5.0 μ mol) in acetonitrile (0.50 mL) at 80 °C for 3 h: IR (neat) 3423 (NH), 1739 (C=O) cm⁻¹; ¹H NMR (400 MHz, C₆D₆) δ : 1.84 (d, *J* = 6.8 Hz, 3H, CH₃CH=C), 3.26 (s, 2H, CH₂), 3.28 (s, 6H, 2 × CO₂CH₃), 3.35 (s, 2H, CH₂), 6.25 (q, *J* = 6.9 Hz, 1H, CH₃CH=C), 6.68 (br s, 1H, NH), 6.99–7.03 (m, 1H, Ar), 7.15–7.20 (m, 2H, Ar), 7.91–7.94 (m, 1H, Ar); ¹³C NMR (125 MHz, C₆D₆) δ 13.3, 30.0, 32.5, 52.4 (2C), 55.6, 111.3, 111.9, 116.2, 120.5, 120.7, 121.9, 125.5, 129.1, 132.5, 137.1, 171.2 (2C); HRMS (FAB) calcd for $C_{18}H_{19}NO_4$ [M⁺] 313.1314, found 313.1305.

Synthesis of 6-Phenyl-11*H*-benzo[*a*]carbazole (2c) (Scheme 6). By a procedure similar to that described for the preparation of carbazole 2g, 20 (30 mg, 0.102 mmol) was converted into 2c (31 mg, quant) as a yellow solid by treatment with Ph₃PAuCl (2.5 mg, 5.1 μ mol) and AgOTf (1.3 mg, 5.1 μ mol) in acetonitrile (0.51 mL) at 80 °C for 40 min. ¹H NMR spectra of 2c were in good agreement with those previously reported.¹²

Antifungal Susceptibility Tests. Antifungal susceptibility assay was performed by the CLSI M38-A2 microdilution method.⁴¹ Compounds were assayed at $0.05-100 \,\mu$ M concentrations (2-fold serial dilutions). The inoculum size was 1×10^3 to 3×10^3 CFU/mL as a final concentration. Ninety-six-well microplates were incubated at 35 °C for 4 days. MICs were determined as the minimal inhibitory concentration of drug that produced visually 80% reduction of turbidity compared to that of the growth control (drug-free medium). *T. mentagrophytes* KD-1031 (MYA-4439) and *T. rubrum* KD-1137 (MYA-4438) were used as quality control strains recommended for use in CLSI method (M38-A2).

Cytotoxicity Assays. Cytotoxicity to human embryonic lung cell (HEL cell) was determined with the MTT assay. Cells were seeded into 96-well microplates at 1×10^5 cells/mL as a final concentration. Then, cells were treated with 0.05 to 100 μ M concentration of each compound. Microplates were incubated at 37 °C for 72 h under 5% CO₂. After incubation, the medium was removed from the cells. The MTT solution (Eagle's MEM supplemented with 0.45 mg/mL MTT and 1% fetal bovine serum) were added into 96-well microplates and incubated for 4 h. After incubation, the medium was removed, and formazan crystals were solubilized with DMSO. Its optical density was measured at 540 nm, and then the LD₅₀ (lethal doses 50%) was calculated.

Acknowledgment. This work was supported in part by the Japan Science and Technology Agency (JST). We are grateful for a Grant-in-Aid for Scientific Research on Innovative Areas "Integrated Organic Synthesis" (H.O.) and the Targeted Proteins Research Program from the Ministry of Education, Culture, Sports, Science and Technology of Japan, as well as the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO).

Supporting Information Available: ¹H and ¹³C NMR spectra of all new compounds are provided. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽⁴¹⁾ Clinical and Laboratory Standards Institute (CLSI). *Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; Approved standard*, 2nd ed.; M38-A2; Clinical and Laboratory Standards Institute: Wayne, PA, 2008.