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ABSTRACT

Intramolecular samarium diiodide-induced carbonyl-alkene or carbonyl-alkyne coupling reactions afforded without high dilution conditions
9- and 10-membered benzannulated carbocycles of type II and III in surprisingly good yields and stereoselectivities. A novel samarium diiodide-
mediated cascade process leading to tricyclic compounds of type IV was also observed. Bisbenzannulated 10- and 11-membered carbocycles
were prepared in very good yields.

Samarium diiodide was introduced as a reagent for organic
synthesis by Kagan and his co-workers.1 Over the years this
selective electron transfer agent has gained remarkable
importance due to its unique properties. It promotes a variety
of synthetic transformations, providing products often with
high regio- and stereoselectivity and under mild reaction
conditions.2 One of the areas where SmI2 may be applied is
the construction of medium-sized rings, which are key

structural features of a wide range of biologically active
compounds or natural products.3 SmI2 has been reported to
successfully facilitate formation of medium-sized carbocycles
in a number of ways. For example, 8-, 9-, 11-membered and
even larger rings were synthesized by intramolecular Re-
formatsky-type reactions of R-bromoesters with aldehydes.4a

The related Barbier couplings of allyl chlorides with
aldehydes4b and ketones4c furnished 8- and 9-membered
carbocycles. Molander et al. constructed cyclooctanol deriva-
tives by radical couplings of ketones with alkenes.4d Indirect
methods used SmI2 in sequential reactions, generating
intermediates which either form the desired carbocycles via
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intramolecular SmI2-induced acyl substitutions5a-d to give
7- to 9-membered rings or by fragmentation reactions leading
to 8- to 10-membered carbocycles.5e

Our group has utilized SmI2 for cyclizations of a variety
of ketones bearing γ-(2-alkenyl)aryl or γ-(2-alkynyl)aryl
moieties which furnished benzannulated cycloheptanol,6c

cyclooctanol6a-c,2f and cyclooctenol6d,2f derivatives. In con-
tinuation of this work we have now extended our method to
the synthesis of larger rings. Herein we describe an approach
to 9-, 10-, and 11-membered carbocycles via SmI2-induced
ketyl-alkene and ketyl-alkyne cyclization reactions.

The preparation of starting materials was easy starting from
protected δ- and ε-ketoesters 1-5 which are available by
standard methods. Alkylation of compounds 1-5 with
2-iodobenzyl iodide followed by ketal cleavage under acidic
conditions furnished key intermediates 6-10 (Scheme 1).
These were then equipped with different alkenyl groups by
using Suzuki-coupling reactions7a-d to furnish cyclization
precursors 11-16.

To our delight compound 11, the simplest precursor of
9-membered ring analogous to our previously described
systems, reacted with SmI2 under standard conditions (2.2
equiv of SmI2, 18 equiv of HMPA,8 2.0 equiv of t-BuOH in
THF) to furnish a 1:4.6 mixture of benzannulated cy-
clononane derivatives 17 and 18 in 73% combined yield.
The intermediate with cis-arrangement of the methoxycar-
bonyl group and the samariumoxy moiety is favored, which

leads to the formation of the γ-lactone bridge of 18 (Scheme
2). The analogous 8-membered product was isolated in only
41% yield, giving the trans-isomer predominantly (3.1:1).6b

A bulkier substituent adjacent to the carbonyl group was well
tolerated as demonstrated by the isopropyl-substituted com-
pound 12, which furnished cyclization products 19/20 in 67%
combined yield. Again a clear preference for the lactone-
bridged products 20 and its cis-configured precursor 19b was
observed over trans-compound 19a (Scheme 2). The δ-hy-
droxyester 19b was converted into 20 under acid catalysis.
Remarkably, the analogous 8-membered product was formed
in 84% yield with exclusive trans selectivity.6b

Models explaining the observed stereoselectivities are so
far speculative. A transition state as presented in Figure 1
for the 9-endo-trig cyclization of styryl-substituted δ-ke-
toesters such as 11 and 12 can rationalize the preferred
formation of cis-products. As a crucial feature we position

the methoxycarbonyl and the R substituents in extra-annular
positions. The samarium ketyl approaches the alkene in an
antiperiplanar fashion hence leading to a staggered confor-
mation. As a result cis-products are obtained in preference.
Certainly, more detailed studies are required to substantiate
these ideas.
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Scheme 1. Synthesis of Alkenyl-Substituted δ- and ε-Ketoesters
11-16

Scheme 2. Samarium Diiodide-Induced 9-endo-trig Cyclizations
of Styryl-Substituted δ-Ketoesters 11 and 12

Figure 1. Suggested transition state for 9-endo-trig cyclizations of
styryl-substituted δ-ketoesters such as 11 or 12 leading to cis-
products (HMPA ligands at samarium are omitted for simplicity).
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SmI2-induced reactions of the two diastereomeric cyclic
δ-ketoesters 13a and 13b (Scheme 3) demonstrate that higher
substituted precursors also undergo 9-endo-trig cyclizations
affording fairly complex cyclononane derivatives 21 and 22
in low or moderate yields but with excellent stereoselectivi-
ties.9 Remarkably, the methyl group at the newly formed
stereogenic center was found to be in a trans relationship to
the hydroxyl group (similar to that in analogous cyclooctanol
derivatives6c).

Stilbenyl-substituted δ-ketoester 23 was prepared by a
Heck reaction7e of 7 with styrene. To our surprise, its
cyclization gave two diastereomers (dr ) 1:1) of the
unexpected tricyclic product 24 in 30% yield together with
29% of starting material (Scheme 4). The structure and

relative configuration of 24a was unambiguously determined
by X-ray crystallography (Figure 2). We assume that these
products result from a SmI2-induced 5-exo-trig ketyl-me-
thoxycarbonyl coupling,10a followed by a SmI2-mediated
R-hydroxyketone deoxygenation10b and a SmI2-induced

6-exo-trig ketyl-alkene coupling.10c Remarkably, this ex-
periment was performed with only 2.4 equiv of SmI2. The
sequence most probably requires 6 equiv of SmI2 for
completion.11 To the best of our knowledge the transforma-
tion 23 to 24 is the first one with these steps occurring in a
sequential manner.

For the investigation of related alkynyl-substituted com-
pounds we prepared δ-ketoester 25 by Sonogashira
coupling7f of 7 with 3-methoxyprop-1-yne. Its SmI2-
promoted 9-endo-dig cyclization furnished cyclononenol
derivative 26 in moderate yield (Scheme 5).6d,13 This protocol
gives access to medium-sized rings featuring an attractive
allylic alcohol function opening many possibilities for their
further functionalization.14

Encouraged by these results we examined SmI2-promoted
cyclizations for the construction of larger rings. Upon
exposure to SmI2 the methyl ketone 14 provided the desired
cyclodecanol 27 in 54% yield as a 2:1 mixture of two
diastereomers (Scheme 6). Increase of the size of the
substituent adjacent to the carbonyl group retarded the
cyclization. The isopropyl-substituted ε-ketoester 15 fur-
nished product 28 in only 26% yield as an inseparable 1.4:1
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Scheme 3. Samarium Diiodide-Induced 9-endo-trig Cyclizations
of Isopropenyl-Substituted Cyclic δ-Ketoesters 13a and 13b

Scheme 4. Samarium Diiodide-Induced Cascade Reaction of
Stilbenyl-Substituted δ-Ketoester 23

Figure 2. Molecular structure (Diamond12) of tricyclic compound
24a.

Scheme 5. Samarium Diiodide-Induced 9-endo-dig Cyclization
of 3-Methoxypropynyl-Substituted δ-Ketoester 25

3336 Org. Lett., Vol. 11, No. 15, 2009

http://pubs.acs.org/action/showImage?doi=10.1021/ol901183h&iName=master.img-004.png&w=210&h=122
http://pubs.acs.org/action/showImage?doi=10.1021/ol901183h&iName=master.img-005.png&w=230&h=77
http://pubs.acs.org/action/showImage?doi=10.1021/ol901183h&iName=master.img-006.jpg&w=112&h=83
http://pubs.acs.org/action/showImage?doi=10.1021/ol901183h&iName=master.img-007.png&w=209&h=64


mixture of diastereomers. These results indicate a higher
sensitivity of the 10-endo-trig process to steric hindrance. It

is also reasonable that in both reactions no lactone bridge
was formed since ε-lactones are kinetically and thermody-
namically much less preferred. The flexibility of the cyclo-
decane ring and the distance between the two stereocenters
so far did not allow assignment of the relative configuration
of these compounds by NMR spectroscopy.

The efficacy of the 10-endo-trig cyclization was strongly
improved by use of ketoesters bearing 2′-vinylbiphenyl
moieties.15 Starting material 29 was prepared (analogously
to 16) from the corresponding 2-iodobenzyl-substituted
γ-ketoester6b by Suzuki-coupling with commercially avail-
able 2-vinylphenylboronic acid. It afforded bisbenzannulated
cyclodecanol derivatives 30 and 31 in 65% combined yield
and with a stereoselectivity of 2.6:1 in favor of the lactone-
bridged cis-product 31 (Scheme 7). The higher homologue-

δ-ketoester 16 underwent the 11-endo-trig cyclization with
excellent efficacy affording three diastereoisomeric products

32a-c in 82% combined yield and in 5.7:1.5:1 ratio. The
relative configuration of the major stereoisomer 32a was
unambiguously determined by X-ray crystallography (Figure
3). The configurations of the two minor diastereomers could
not be assigned so far, but we assume that one should also
be a trans-product, however, with an alternate orientation of
the chiral axis with respect to the stereogenic centers.

The X-ray structure determination of the major undecanol
derivative 32a shows that the dihedral angle between both
aromatic rings is 67.0(1)° (Figure 3). The bond linking the
two aryl rings is slightly bent (intersection angle of the lines
C8, C11 and C12, C15 4.9°) by the strain of the 11-
membered ring.

In conclusion, we have demonstrated that SmI2-induced
radical cyclizations are a surprisingly efficient tool for the
construction of medium-sized benzannulated carbocycles.
Several 9-, 10-, and 11-membered rings have been synthe-
sized in moderate to good yields and with good stereose-
lectivities. This method is especially attractive as it is
functional-group compatible, and starting materials are
readily available from simple and inexpensive building
blocks, allowing a wide range of variations. Further inves-
tigations are required to explore the scope and limitations
of this method and factors determining the stereoselectivity.
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Scheme 6. Samarium Diiodide-Induced 10-endo-trig
Cyclizations of Styryl-Substituted ε-Ketoesters 14 and 15b

a As separable diastereomers. b As inseparable mixture; dr determined
by the integration of NMR signals of the methoxy groups.

Scheme 7. Samarium Diiodide-Induced 10- and 11-endo-trig
Cyclizations of the 2′-Vinylbiphenyl-Substituted γ- and

δ-Ketoesters 29 and 16

Figure 3. Molecular structure (Diamond12) of the major undecanol
derivative 32a.
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