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Introduction

The development of new synthetic methods to construct
carbon chains has been an essential topic in organic chemis-
try because of the need to construct complex carbon skele-
tons present in molecules with a human application. Trans-
formations to synthesize complex organic molecules have
generally involved end-to-end reactions to combine two or
more molecules together. Another useful method of trans-
formation is the insertion of a molecular unit into a carbon–
carbon bond of an existing molecule. Such transformations
are direct and powerful ways to construct new carbon skele-
tons. However, transformations through carbon–carbon
bond cleavage are usually difficult.[1] To realize efficient
transformations through carbon–carbon bond cleavage, the
following types of substrates are typically used: compounds
with ring strain, such as three- and four-membered cyclic
compounds,[2–4] or in the case of retro-allylation[5] and -aryla-
tion reactions, compounds with inherent steric bulkiness.[6]

Herein, we report the insertion of alkynes into a carbon–
carbon single bond of cyclic and acyclic b-keto esters by
using rhenium and manganese catalysts.

Results and Discussion

Ring-Expansion Reactions

Medium-sized cyclic structures are important elements
within many natural products and drugs. However, the con-

struction of such structures is not always straightforward. A
well-known method to efficiently synthesize medium-sized
rings is the olefin metathesis reaction.[7] We have also re-
ported on a rhenium-catalyzed ring-expansion reaction
through the insertion of terminal alkynes into a carbon–
carbon single bond of cyclic b-keto esters [Eq. (1)],[8] and its
application to the regioselective synthesis of multi-substitut-
ed aromatic compounds.[9] In this reaction, the addition of
isocyanide is important to promote the ring-expansion reac-
tion. Recently, we have found that 4-� molecular sieves
(4 �-MS) are also effective in promoting the reaction.[10]

As described previously, a rhenium complex, [ReBr(CO)3ACHTUNGTRENNUNG(thf)]2, worked well as a catalyst for the ring-expansion reac-
tion. Use of the rhenium catalyst along with a benzyl isocya-
nide additive provided ring-expanded products for the inser-
tion of aryl, furyl, alkenyl, and alkyl acetylenes in good to
excellent yields.[8] Instead of isocyanide, 4 �-MS proved to
be an effective additive to promote the ring-expansion reac-
tion, and the ring-expanded products were obtained in
almost the same yields as the previous report (Table 1, en-
tries 1–10).

As a result of transition metals of the fourth row being
abundant and cheap compared with those of the fifth and
sixth rows, it would be desirable to replace rhenium (higher-
row metal) catalysts with manganese (lower-row metal) ana-
logues. Thus, we next examined the catalytic activity of
MnBr(CO)5. Reactions between cyclic b-keto ester 1 a and
aryl acetylenes 2 a–2 c in the presence of a catalytic amount
of MnBr(CO)5 at 80 8C for 24 h under solvent-free condi-
tions gave eight-membered-ring products 3 a–3 c in excellent
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yields (Table 1, entries 1–3). On the other hand, aromatic al-
kynes containing an electron-withdrawing group, 2 d and 2 e,
provided the corresponding eight-membered-cyclic com-
pounds, 3 d and 3 e, in low yields (Table 1, entries 4 and 5).

Although the eight-membered-ring product 3 f was formed
in 74 % yield by using [ReBr(CO)3ACHTUNGTRENNUNG(thf)]2, the yield of 3 f de-
creased when MnBr(CO)5 was used as a catalyst (Table 1,
entry 6). An eight-membered-ring product 3 g was obtained
quantitatively by using enyne 3 g (Table 1, entry 7). In con-
trast with the ring-enlargement reactions of 1 a with conju-
gated alkynes, those with alkyl acetylenes did not proceed
well under the manganese catalysis (Table 1, entries 8–10).

Studies on the scope of the ring-expansion reactions of
cyclic 1,3-dicarbonyl compounds are summarized in Table 2.
The results indicate that the rhenium and manganese com-
plexes, [ReBr(CO)3 ACHTUNGTRENNUNG(thf)]2 and MnBr(CO)5, have similar re-
activities for 1,3-dicarbonyl compounds. That is, although
both catalysts worked well for cyclic b-keto esters, the yields
of ring-expanded products decreased when cyclic 1,3-dike-
tones were employed (Table 2). The details of these investi-
gations are described below. A nine-membered b-keto ester
3 k was produced at 40 8C in the presence of a catalytic
amount of benzyl isocyanide from a seven-membered cyclic
ester 1 b in excellent yield (Table 2, entry 1).[11] Although
these reaction conditions were not applicable for the forma-
tion of a ten-membered ring from an eight-membered b-
keto ester, heating the reaction mixture of a cyclooctanone-
2-carboxylic acid ethyl ester (1 c) and 2 a at 90 8C in the pres-
ence of [ReBr(CO)3 ACHTUNGTRENNUNG(thf)]2 provided a ten-membered cyclic
ester 3 l in 50 % yield. The yield of the ten-membered cyclic
compound 3 l was increased to 78 % when benzyl isocyanide
was not included in the reaction mixture (Table 2, entry 2).
The use of a manganese complex, MnBr(CO)5, as a catalyst,
improved the yield of 3 l (Table 2, entry 2). In contrast, the
reaction with cyclopentanone-2-carboxylic acid ethyl ester
did not afford the expected ring-expansion product, but pro-
moted the insertion of 2 a into a C�H bond of the b-keto
ester to give an alkenyl derivative 4 a.[12–14] The reaction of a
tetralone-2-carboxylic acid ethyl ester 1 d with 2 a in di-
chloromethane in the presence of 4-� molecular sieves gave
3 m, a cyclic compound connected to an aromatic ring, in
good yield (Table 2, entry 3). On the other hand, when
MnBr(CO)5 was used as a catalyst, 3 m’, which is an olefinic
isomer of 3 m was formed (Table 2, entry 3). Next, we exam-
ined the ring enlargement of cyclic 1,3-diketones with phe-
nylacetylene (2 a) in the presence of [ReBr(CO)3ACHTUNGTRENNUNG(thf)]2 or
MnBr(CO)5. At a higher temperature of 50 8C in 1,2-di-
chloroethane, rhenium-catalyzed insertion reactions of 1,3-
diketones with phenylacetylene (2 a) proceeded to give
eight-, nine-, and ten-membered cyclic compounds 3 n–p in
30–64 % yields, respectively (Table 2, entries 4–6). In the
case of MnBr(CO)5, the yields of 3 n–p slightly decreased
(Table 2, entries 4–6). However, 1,3-cyclohexanedione did
not provide the corresponding eight-membered ring product
at 50 8C for 24 h, either in 1,2-dichloroethane or in the ab-
sence of the solvent.

Modification of Reaction Conditions

The combination of the substrates and catalyst in this reac-
tion is similar to that used in the insertion of terminal al-

Abstract in Japanese:

Table 1. Rhenium- or manganese-catalyzed reactions of b-keto ester 1 a
with several alkynes 2.[a]

Entry Alkyne Yield [%][b]ACHTUNGTRENNUNG[ReBr(CO)3 ACHTUNGTRENNUNG(thf)]2

(2.5 mol %)
4�-MS (100 wt % Re-cat.)
40 8C

MnBr(CO)5

(5.0 mol %)
80 8C

1

R’=H 2a 3a 97 (98) 84 (85)
2 MeO 2 b 3b 95 (>99) 95 (>99)
3 Me 2 c 3c 93 (98) 94 (99)
4 CF3 2d 3d 88 (90)[c] 18 (18)[d]

5 Br 2e 3e 92 (96)[e] 8 (8)[e]

6

2 f 3 f 74 (87)[f] 23 (27)

7

2g 3g 99 (99) 99 (>99)

8

R= nC10H21 2h 3h 92 (94)[f] 0 (0)
9 Ph ACHTUNGTRENNUNG(CH2)2 2 i 3 i 93 (95)[f] 22 (23)

10

2j 3 j 95 (98)[g] 0 (0)[h]

[a] 2 (1.2 equiv). [b] Isolated yield. The yield determined by 1H NMR is
reported in parentheses. [c] 2d (1.5 equiv). [d] 2 d (2.0 equiv). [e] 2 e
(1.5 equiv). [f] Toluene, 80 8C. [g] 1a (2.2 equiv), 80 8C. [h] 1a (2.0 equiv),
toluene was used as a solvent.
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kynes into a C�H bond of the active methylene moieties of
b-keto esters (Scheme 1).[12]

To clarify the reason for the difference, several experi-
ments were conducted by using acyclic b-keto ester 5 a
(Table 3). When the reaction between b-keto ester 5 a and
phenylacetylene (2 a) was carried out without any additive
and solvent at 50 8C, 9 was obtained as a major product
(Table 3, entry 1). However, the selectivities of 6 a–8 a and 9
changed dramatically when the reactions were conducted in
toluene (Table 3, entry 2), in low concentrations (Table 3,

entries 3 and 4), at higher tem-
perature (Table 3, entry 5), or
by addition of THF or isocya-
nide (Table 3, entries 6–8).[15]

Based on previous work in
which the authors report that
the dinuclear rhenium complex,
[ReBr(CO)3ACHTUNGTRENNUNG(thf)]2, is cleaved to
a mononuclear rhenium com-
plex ReBr(CO)3 ACHTUNGTRENNUNG(thf)2 in
THF,[16] we are tempted to
assume that a dinuclear rheni-
um species promotes the pro-
duction of 9, and that the mix-
ture of 6 a–8 a is formed when
the mononuclear species is
present.

Carbon-Chain Extension
Reactions

Treatment of b-keto ester 5 a
and phenylacetylene (2 a) with
a catalytic amount of
[ReBr(CO)3ACHTUNGTRENNUNG(thf)]2 promoted
the insertion of an alkyne into a
carbon–carbon single bond of
the b-keto ester, and afforded a
mixture of olefinic isomers, 6 a,
7 a, and 8 a, in 10 %, 78 %, and
4 % yields, respectively
[Eq. (2)].[17] This reaction did
not proceed with other catalysts

such as RhCl ACHTUNGTRENNUNG(PPh3)3, Ir4(CO)12, Pd ACHTUNGTRENNUNG(OAc)2/PPh3 (1:2), Ni-ACHTUNGTRENNUNG(cod)2/PPh3 (1:2), AuCl3, or PtCl2.

By the reaction of a b-keto ester with a 2-phenethyl group
at the active methylene moiety, 5 b, with phenylacetylene
(2 a) in the presence of the rhenium catalyst and molecular
sieves, provided a mixture of d-keto esters, 6 b, 7 b, and 8 b
in 91 % yield (6 b/7 b/8 b= 14:84:2; Table 4, entry 1). Al-
though the reason why molecular sieves accelerate the reac-
tion remains unclear, it is notable that this reaction did not
proceed when only molecular sieves were used. d-Keto
esters 6 c–8 c were formed in moderate yields from a b-keto
ester, 5 c, without any substituents at the active methylene
moiety (Table 4, entry 2). The addition of a phenyl group at

Table 2. Reactions of 1,3-dicarbonyl compounds 1 with phenylacetylene 2a.[a]

Entry 1,3-Dicarbonyl compound Yield [%][b]ACHTUNGTRENNUNG[ReBr(CO)3 ACHTUNGTRENNUNG(thf)]2

(2.5 mol %)
4�-MS (100 wt % Re-cat.)
40 8C

MnBr(CO)5

(5.0 mol %)
80 8C

1

n= 1 1b 3k 87 (92)[c] 93 (98)
2 n= 2 1c 3 l 78 (80)[d] 87 (92)

3

1 d 3m 78 (81)[e] 3 m’ 88 (90)[f]

4

n= 1 1e 3n 61 (62)[g] 23 (25)[h]

5 n= 2 1 f 3o 64 (67)[g] 39 (49)[i]

6 n= 3 1g 3p 30 (34)[g] 23 (27)[i]

[a] 1: 0.50 mmol; 2a : 0.60 mmol (1.2 equiv). [b] Isolated yield. The yield determined by 1H NMR is reported in
parentheses. [c] Benzyl isocyanide (5.0 mol %) was added instead of 4�-MS. [d] 4 �-MS was not added. 50 8C.
[e] Dichloromethane (1.0 mL) was used as a solvent. [f] 1,2-Dichloroethane was used as a solvent. After the re-
action, tetrabutylammonium fluoride (20 mol %) was added and the mixture was stirred at 25 8C for 2 h.
[g] 100 8C. [h] 2a (2.0 equiv), 1,2-dichloroethane was used as a solvent. [i] 1,2-Dichloroethane was used as a sol-
vent.

Scheme 1. Insertion of terminal alkynes into a C�H bond of the active
methylene moieties of b-keto esters.
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the R1 position of the b-keto ester, 5 d, decreased the yield
of the resulting d-keto esters (Table 4, entry 3). However, d-
keto esters 6–8 were produced in good to excellent yields by
using arylacetylenes with an electron-donating or -withdraw-
ing group at the para-position of the phenyl group, 2 b, 2 c,
and 2 d (Table 4, entries 4–6). The corresponding d-keto
esters 6 h–8h were obtained from 1-bromo-4-ethynylbenzene
(2 e), without the loss of the bromo group (Table 4, entry 7).
Enyne 2 f and alkynes bearing a primary alkyl group, 2 g and
2 h, also afforded mixtures of d-keto esters 6–8 in good-to-
excellent yields (Table 4, entries 8–10). However, 3,3-di-
methyl-1-butyne and ethynyltrimethylsilane did not give the
corresponding d-keto esters. A manganese complex,
MnBr(CO)5, also promoted the insertion of an alkyne into a
carbon–carbon bond of b-keto esters, but the reaction did
not stop at this stage. Instead, successive intramolecular cyc-
lization proceeded and 2-pyranone derivatives were
formed.[18]

The insertion reaction of an acetylene moiety into a
carbon–carbon single bond of b-keto esters proceeds by an
intramolecular fashion [Eq. (3)]. By heating a b-keto ester
having an acetylene moiety, 10 a, under the reaction condi-
tions shown in [Eq. (3)], insertion of the acetylene moiety
into a carbon–carbon bond proceeded and cyclohexene 11 a
and methylenecyclohexane 13 a were obtained in 66 % and
16 % yields, respectively.[19,20] In this reaction, 11 a and 13 a
were produced by the insertion of the acetylene moiety into
a carbon–carbon or carbon–hydrogen bond of 10 a. The
yield and selectivity increased with the addition of 2,6-diiso-
propylphenyl isocyanide, and cyclohexene 11 a was obtained
in 84 % yield. Medium- and large-sized cyclic compounds,
11 b and 11 c, were also obtained by using b-keto esters with
a longer alkyl chain at the active methylene moieties, 10 b
and 10 c [Eq. (3)]. In these reactions, 2-pyranones 12 b and
12 c, which are formed by intramolecular cyclization of 11 b
and 11 c, were also produced [Eq. (3)].

Allenes also inserted into a carbon–carbon single bond of
1,3-dicarbonyl compounds. Treatment of 1,3-diketone 14

Table 3. Selectivities between 6a–8 a and 9.[a]

Entry Additive Solvent (conc./m) Temp [8C] Yield [%]
6 a–8 a 9

1 none neat 50 33 66
2 none toluene (2.0) 50 50 46
3 none toluene (0.50) 50 77 14
4 none toluene (0.25) 50 85 9
5 none toluene (0.50) 80 92 <1
6 THF neat 50 48 48
7[b] THF neat 50 65 34
8 2,6-iPr2C6H3NC neat 50 76 15

[a] 2a (1.2 equiv). [b] THF (20 mol %).

Table 4. Reactions between b-keto esters 5 and alkynes 2.[a]

Entry b-Keto ester Alkyne[a] Yield [%][b] (6+ 7+8) [6 :7:8]

1[c]

5 b 2a 6 b–8 b 88 (91)ACHTUNGTRENNUNG[14:84:2]

2[d] 2a

5 c 6 c–8 c 72 (75)ACHTUNGTRENNUNG[33:67:<1]

3[d] 2a

5 d 6 d–8 d 51 (54)ACHTUNGTRENNUNG[15:78:7]

4

5 a
R =MeO (2b) 6 e–8 e 88 (90)ACHTUNGTRENNUNG[17:80:3]

5 Me (2 c) 6 f–8 f 85 (88)ACHTUNGTRENNUNG[10:89:1]
6[f] CF3 (2d) 6 g–8 g 90 (93)ACHTUNGTRENNUNG[9:86:5]
7[f] Br (2e) 6 h–8 h 87 (90)ACHTUNGTRENNUNG[8:86:6]

8 5 a

2 f 6 i–8 i 92 (94)ACHTUNGTRENNUNG[27:67:6]

9[g] 5 a

2g 6 j–8 j 86 (89)ACHTUNGTRENNUNG[35:51:14]

10[h] 5 a

2h 6 k–8 k 73 (76)ACHTUNGTRENNUNG[29:53:18]

[a] 2 (1.2 equiv). [b] Isolated yield. The yield in parentheses (6+7 +8)
and the ratio [6 :7:8] were determined by 1H NMR. The structures of the
regioisomers are not determined. [c] 4�-MS (100 wt % Re-cat.), 100 8C.
[d] 2,6-iPrC6H3NC (5.0 mol %), 4�-MS (100 wt % Re-cat.). [e] 4�-MS
(200 wt % Re-cat.), 100 8C. [f] 4 �-MS (100 wt % Re-cat.). [g] 2,6-
iPrC6H3NC (5.0 mol %), 4 �-MS (200 wt % Re-cat.). [h] 4�-MS
(200 wt % Re-cat.).
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with allene 15 in the presence of a catalytic amount of a rhe-
nium complex, Re2(CO)10, produced unsaturated 1,5-dike-
tone 16 in 63 % yield [Eq. (4)]. The result for the 1,3-dike-
tones was in sharp contrast to the reactions by using b-keto
esters, in which cyclopentene derivatives were formed with
the rhenium catalyst.[21] In the case of the reactions between
acyclic 1,3-dicarbonyl compounds and alkynes, the products
were obtained as a mixture of olefinic isomers.ACHTUNGTRENNUNG(see ACHTUNGTRENNUNG[Eq. (2)]
and Table 4) From this viewpoint, the reaction in [Eq. (4)] is
useful because the allene 15 only produced a single product.

Proposed Mechanism

Although the alkenyl derivative 4 b,[12] which is formed by
the insertion of phenylacetylene (2 a) into a C�H bond of
the b-keto esters 1 a, was exposed to similar reaction condi-
tions, the ring expansion and carbon-chain extension reac-
tions did not proceed and the starting material was recov-
ered completely. This result indicates that the ring expansion
and chain extension does not occur via alkenyl derivatives.
In addition, an increase in reaction time led to a decrease in
the yield of d-keto ester 6 but an increase of the yield of the
d-keto ester 7. This result indicates that isomerization of 6
proceeded and 7 was formed under the reaction conditions.
Isomerization of an olefin moiety may be caused by the
thermal stability of the products as compared with the inter-
mediates, which are not isomerized. Our proposed mecha-
nism for the reaction of cyclic and acyclic b-keto esters with
terminal alkynes is illustrated in Scheme 2 and is described
by the following steps: 1) The formation of a rhenacyclopen-
tene or manganacyclopentene intermediate by the reaction
of a rhenium or manganese catalyst, a b-keto ester, and a
terminal alkyne.[8] After formation of the rhenacyclopentene
or manganacyclopentene intermediate, there are two possi-
ble pathways; the difference between them depends on the
timing of reductive elimination, outlined as follows: Path A:
2 a) Ring opening by a retro-aldol reaction; 3 a) reductive
elimination; and 4) isomerization; Path B: 2 b) Reductive
elimination;[22] 3 b) ring opening by a retro-aldol reaction;
and 4) isomerization of the olefin moiety.[8] In 2007, we re-

ported on rhenium-catalyzed [2+2] cycloaddition reactions
of norbornenes with alkynes.[23] A rhenacyclopentene, which
is postulated in the first step of the mechanism of this
carbon-chain extension reaction, could be generated from
[ReBe(CO)3 ACHTUNGTRENNUNG(thf)]2, norbornene, and an alkyne in the [2+2]
cycloaddition reaction. In addition, we observed that the
rhenium complex [ReBe(CO)3ACHTUNGTRENNUNG(thf)]2 could promote retro-
Claisen condensation, a kind of a retro-aldol reaction which
is postulated in the cleavage of a carbon–carbon bond.[24]

Another possible mechanism is that the reaction proceeds
via: 5) The formation of an alkenyl-rhenium or -manganese
intermediate;[25] 6) intramolecular nucleophilic cyclization;
7) ring opening by a retro-aldol reaction; and 8) isomeriza-
tion of the olefin moiety.

Conclusions

We have succeeded in the insertion of alkynes into a
carbon–carbon single bond of cyclic 1,3-dicarbonyl com-
pounds and acyclic b-keto esters catalyzed by a rhenium
complex, [ReBr(CO)3ACHTUNGTRENNUNG(thf)]2, or a manganese complex,
MnBr(CO)5. As a result, medium-sized cyclic and acyclic
keto esters were obtained. These reactions proceed via the
formation of a rhenacyclopentene or manganacyclopentene
intermediate, carbon–carbon bond cleavage by a retro-aldol
reaction, isomerization, and reductive elimination. There
have only been a few examples of the insertion of a molecu-
lar unit into a non-strained C�C bond. Therefore, we hope
that these highly atom-economical transformations will pro-
vide a useful concept for synthetic organic chemistry.

Scheme 2. Proposed mechanism for the formation of cyclic and acyclic d-
keto esters.
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Experimental Section

General

All reactions were carried out under an argon atmosphere. Dichlorome-
thane, 1,2-dichloroethane, and toluene were purchased from Kanto
Kagaku Co. and were dried and degassed before use. [ReBr(CO)3 ACHTUNGTRENNUNG(thf)]2

was prepared by heating a THF solution of ReBr(CO)5 at reflux temper-
ature for 16 h. MnBr(CO)5 was prepared by stirring a solution of
Mn2(CO)10 and bromine in cyclohexane at room temperature for 7 h. Cy-
cloheptanone-2-carboxylic acid ethyl ester (1 b),[26] cyclooctanone-2-car-
boxylic acid ethyl ester (1 c),[26] ethyl 1,2,3,4-tetrahydro-1-oxonaphtha-
lene-2-carboxylate (1d),[26] 1-bromo-4-ethynylbenzene (2 e),[26] ethyl 2-
methyl-3-oxo-3-phenylpropionate (5d),[26] ethyl 2-acetyloct-7-ynoate
(10),[27] and 5-phenylpentane-1,2-diene (15)[28] were prepared according
to the literature method. Other b-keto esters, 1,3-diketone, other alkynes,
and benzyl isocyanide were purchased from Wako Pure Chemical Indus-
tries, Tokyo Kasei Kogyo Co., and Aldrich Co. and used as received. 4-�
molecular sieves in powder form were purchased from Nacalai Tesque
Inc., and used without further activation.
1H (400 MHz) and 13C (100 MHz) NMR spectra were recorded using a
JEOL JNM-LA400 spectrometer. Proton chemical shifts are reported rel-
ative to Me4Si (CDCl3) at d= 0.00 ppm or the residual solvent peak
(CDCl3 at d=7.26 ppm). Carbon chemical shifts are reported relative to
CDCl3 at d=77.00 ppm. IR spectra were recorded on a Nicolet Prot�g�
460.

General Procedure for the Reaction of Cyclic b-Keto Esters with Terminal
Alkynes

A mixture of cyclohexanone-2-carboxylic acid ethyl ester (1a, 85.1 mg,
0.500 mmol), phenylacetylene (2a, 61.3 mg, 0.600 mmol), [ReBr(CO)3ACHTUNGTRENNUNG(thf)]2 (10.6 mg, 0.0125 mmol), and benzyl isocyanide (2.9 mg,
0.0250 mmol) was stirred at 40 8C for 24 h under solvent-free conditions.
The product was isolated by column chromatography on silica gel to give
the eight-membered-ring product 3a in 97 % yield (132 mg, 0.485 mmol).

Ethyl (Z)-4-oxo-2-phenyl-1-cyclooctenecarboxylate (3 a): IR (neat): ñ=

3026, 2948, 2859, 1700, 1493, 1403, 1389, 1225, 1095, 1030, 944, 918, 869,
767, 702, 639, 550, 520, 452 cm�1; 1H NMR (400 MHz, CDCl3): d =0.82 (t,
J =7.2 Hz, 3 H), 1.86–1.95 (m, 4H), 2.56–2.58 (m, 2H), 2.61–2.63 (m,
2H), 3.56 (s, 2H), 3.87 (q, J =7.2 Hz, 2H), 7.14 (d, J =7.2 Hz, 2H), 7.24–
7.31 ppm (m, 3H); 13C NMR (100 MHz, CDCl3): d=13.3, 24.4, 27.3, 29.6,
41.9, 50.4, 60.3, 126.7, 127.4, 128.1, 132.6, 140.2, 142.3, 169.9, 210.1 ppm;
elemental analysis calcd (%) for C17H20O3: C 74.97, H 7.40; found:
C 74.76, H 7.30.

Ethyl (Z)-2-(4-methoxyphenyl)-4-oxo-1-cyclooctenecarboxylate (3 b): IR
(neat): ñ =2936, 2859, 2834, 1701, 1608, 1512, 1464, 1368, 1292, 1249,
1179, 1140, 1108, 1067, 1033, 836, 666 cm�1; 1H NMR (400 MHz, CDCl3):
d=0.91 (t, J=7.0 Hz, 3 H), 1.85–1.89 (m, 4 H), 2.54–2.61 (m, 4 H), 3.54 (s,
2H), 3.78 (s, 3H), 3.92 (q, J =7.1 Hz, 2H), 6.83 (d, J =8.7 Hz, 2 H),
7.09 ppm (d, J= 8.7H, 2H); 13C NMR (100 MHz, CDCl3): d=13.5, 24.5,
27.3, 29.9, 41.9, 50.4, 55.1, 60.3, 113.5, 128.1, 132.1, 134.5, 139.5, 159.0,
170.3, 210.3 ppm; elemental analysis calcd (%) for C18H22O4: C 71.50,
H 7.33; found: C 71.24, H 7.43.

Ethyl (Z)-4-oxo-2-(4-methylphenyl)-1-cyclooctenecarboxylate (3 c): IR
(neat): ñ=3024, 2936, 2866, 1764, 1721, 1513, 1368, 1239, 1097, 1032, 824,
767, 547 cm�1; 1H NMR (400 MHz, CDCl3): d=0.88 (t, J=7.2 Hz, 3 H),
1.86–1.92 (m, 4 H), 2.33 (s, 3H), 2.54–2.63 (m, 4 H), 3.55 (s, 2H), 3.90 (q,
J =7.2 Hz, 2 H), 7.04 (d, J= 8.1 Hz, 2 H), 7.10 ppm (d, J =8.1 Hz, 2H);
13C NMR (100 MHz, CDCl3): d =13.5, 21.1, 24.6, 27.3, 29.8, 42.0, 50.5,
60.4, 126.7, 128.9, 132.3, 137.3, 139.3, 140.2, 170.3, 210.8 ppm; elemental
analysis calcd (%) for C18H22O3: C 75.50, H 7.74; found: C 75.43, H 7.65.

Ethyl (Z)-2-[4-(trifluoromethyl)phenyl]-4-oxo-1-cyclooctenecarboxylate
(3 d): IR (neat): ñ =2927, 2857, 1771, 1733, 1616, 1576, 1540, 1465, 1410,
1371, 1066, 1017, 850, 605 cm�1; 1H NMR (400 MHz, CDCl3): d=0.83 (t,
J =7.2 Hz, 3H), 1.88–1.93 (m, 4H), 2.60–2.64 (m, 4 H), 3.55 (s, 2H), 3.89
(q, J=7.2 Hz, 2H), 7.27 (d, J=8.1 Hz, 2H), 7.58 ppm (d, J =8.1 Hz, 2H);
13C NMR (100 MHz, CDCl3): d =13.2, 24.3, 27.3, 29.5, 42.2, 50.3, 60.6,
123.9 (J =271 Hz), 125.2 (J =3.6 Hz), 127.2, 129.5 (J =30.6 Hz), 133.7,

139.2, 146.1, 169.2, 209.4 ppm; elemental analysis calcd (%) for
C18H19F3O3: C 63.52, H 5.63; found: C 63.40, H 5.61.

Ethyl (Z)-2-(4-bromophenyl)-4-oxo-1-cyclooctenecarboxylate (3 e): IR
(neat): ñ =2987, 2936, 2861, 1701, 1635, 1587, 1486, 1392, 1368, 1239,
1142, 1101, 1070, 1031, 1009, 831, 761, 717, 685 cm�1; 1H NMR (400 MHz,
CDCl3): d=0.89 (t, J=7.0 Hz, 3 H), 1.83–1.92 (m, 4 H), 2.55–2.60 (m,
4H), 3.51 (s, 2H), 3.90 (q, J =7.0 Hz, 2H), 7.02 (d, J =8.4 Hz, 2 H),
7.42 ppm (d, J =8.4 Hz, 2H); 13C NMR (100 MHz, CDCl3): d =13.4, 24.5,
27.2, 29.6, 42.0, 50.2, 60.5, 121.4, 128.5, 131.2, 133.1, 139.0, 141.2, 169.4,
209.6 ppm; elemental analysis calcd (%) for C17H19BrO3: C 58.13, H 5.45;
found: C 57.86, H 5.40.

Ethyl (Z)-2-(2-furanyl)-4-oxo-1-cyclooctenecarboxylate (3 f): IR (neat):
ñ= 3150, 2937, 2863, 1705, 1635, 1464, 1367, 1318, 1243, 1163, 1131, 1068,
1022, 924, 886, 861, 816, 744 cm�1; 1H NMR (400 MHz, CDCl3): d=1.25
(t, J =7.2 Hz, 3 H), 1.80–1.90 (m, 4H), 2.51–2.58 (m, 4 H), 3.53 (s, 2H),
4.24 (q, J=7.2 Hz, 2H), 6.36–6.40 (m, 2H), 7.33–7.36 ppm (m, 1H);
13C NMR (100 MHz, CDCl3): d =14.1, 24.7, 27.5, 30.8, 41.2, 45.0, 60.9,
109.3, 111.4, 124.4, 130.9, 142.7, 152.2, 170.9, 210.2 ppm; HRMS (ESI):
m/z : calcd for C15H18O4Na ([M +Na]+): 285.1103; found: 285.1102.

Ethyl (1Z)-1-cyclohexenyl-4-oxo-1-cyclooctenecarboxylate (3 g): IR
(neat) ñ =3024, 2978, 2932, 2858, 2836, 1704, 1458, 1446, 1367, 1312,
1269, 1221, 1131, 1079, 1031, 920, 764, 665 cm�1; 1H NMR (400 MHz,
CDCl3): d=1.19 (t, J=7.0 Hz, 3H), 1.47–1.61 (m, 4H), 1.73 (m, 4H),
1.91–1.98 (m, 4H), 2.33–2.34 (m, 2H), 2.42–2.44 (m, 2H), 3.18 (s, 2H),
4.06 (q, J =7.1 Hz, 2 H), 5.34 ppm (s, 1H); 13C NMR (100 MHz, CDCl3):
d=14.1, 21.7, 22.3, 24.5, 25.0, 26.5, 27.4, 29.2, 41.8, 47.0, 60.2, 124.0, 130.4,
140.0, 142.6, 170.4, 210.6 ppm; elemental analysis calcd (%) for C17H24O3:
C 73.88, H 8.75; found: C 74.18, H 8.71.

Ethyl (E)-2-decyl-4-oxo-1-cyclooctenecarboxylate (3 h): IR (neat): ñ=

2926, 2855, 1701, 1458, 1367, 1194, 1078, 1030, 916, 733 cm�1; 1H NMR
(400 MHz, CDCl3): d=0.88 (t, J= 7.0 Hz, 3 H), 1.23–1.33 (m, 17H), 1.45
(m, 2 H), 1.77 (m, 4 H), 2.25–2.30 (m, 2 H), 2.42–2.46 (m, 4H), 3.27 (s,
2H), 4.21 ppm (q, J= 7.2 Hz, 2 H); 13C NMR (100 MHz, CDCl3): d=14.0,
14.2, 22.6, 24.4, 27.6, 28.0, 29.2, 29.3, 29.4, 29.5 (2C), 29.7, 31.8, 36.0, 42.2,
49.0, 60.3, 129.4, 142.9, 169.2, 210.5 ppm; HRMS (ESI): m/z : calcd for
C21H36O3Na ([M+Na]+): 359.2562; found: 359.2571.

Ethyl (E)-4-oxo-2-phenethyl-1-cyclooctenecarboxylate (3 i): IR (neat):
ñ= 3061, 3026, 2933, 2862, 1701, 1647, 1452, 1259, 1080, 1029, 912, 734,
700 cm�1; 1H NMR (400 MHz, CDCl3): d =1.30 (t, J =7.2 Hz, 3 H), 1.77
(m, 4 H), 2.46 (m, 4 H), 2.60–2.64 (m, 2 H), 2.76–2.81 (m, 2H), 3.30 (s,
2H), 4.22 (q, J =7.2 Hz, 2H), 7.16–7.22 (m, 3H), 7.25–7.30 ppm (m, 2H);
13C NMR (100 MHz, CDCl3): d =14.2, 24.2, 27.6, 29.3, 34.2, 38.0, 42.3,
49.4, 60.4, 125.9, 128.2, 128.3, 130.2, 141.2, 142.3, 168.8, 210.2 ppm;
HRMS (ESI): m/z : calcd for C19H24O3Na ([M+Na]+): 323.1623; found:
323.1601.

1-[(Z)-2-ethoxycarbonyl-7-oxocyclo-1-octenyl]-4-[(Z)-2’-ethoxycarbonyl-
7’-oxocyclo-1’-octenyl]butane (3 j): IR (neat): ñ =2922, 1700, 1456, 1377,
1165, 1034, 939, 790, 737, 648 cm�1; 1H NMR (400 MHz, CDCl3): d =1.31
(t, J=7.2 Hz, 6H), 1.50 (m, 4 H), 1.77 (m, 8 H), 2.31 (m, 4 H), 2.46 (m,
8H), 3.27 (s, 4H), 4.21 ppm (q, J =7.2 Hz, 4H); 13C NMR (100 MHz,
CDCl3): d=14.0, 24.1, 27.4, 27.8, 29.1, 35.5, 42.0, 48.8, 60.1, 129.4, 142.5,
168.7, 210.1 ppm; HRMS (ESI): m/z : calcd for C26H38O6Na ([M +Na]+):
469.2566; found: 469.2585.

Ethyl (Z)-4-oxo-2-phenylcyclo-1-nonenecarboxylate (3 k): IR (neat): ñ=

3056, 2980, 2928, 1707, 1599, 1493, 1445, 1367, 1318, 1173, 1135, 1074,
1033, 794, 766, 702 cm�1; 1H NMR (400 MHz, CDCl3): d=0.83 (t, J=

7.1 Hz, 3 H), 1.58–1.70 (m, 4H), 1.78–1.84 (m, 2H), 2.56 (t, J =6.5 Hz,
2H), 2.62 (t, J =6.3 Hz, 2H), 3.52 (s, 2H), 3.87 (q, J=7.1 Hz, 2H), 7.24–
7.32 ppm (m, 5H); 13C NMR (100 MHz, CDCl3): d=13.5, 25.1, 25.4, 26.1,
29.2, 42.6, 51.3, 60.3, 127.2, 127.4, 128.1, 134.7, 138.1, 143.1, 169.7,
211.8 ppm; elemental analysis calcd (%) for C18H22O3: C 75.50, H 7.74:
found: C 75.72, H 7.92.

Ethyl (Z)-4-oxo-2-phenylcyclo-1-decenecarboxylate (3 l): IR (nujol): ñ=

3074, 2860, 1715, 1598, 1576, 1467, 1377, 1237, 1241, 1079, 1029, 874, 856,
824, 706, 663, 628, 537 cm�1; 1H NMR (400 MHz, CDCl3): d=0.86 (t, J =

7.2 Hz, 3H), 1.42–1.49 (m, 4H), 1.58–1.61 (m, 2H), 1.77–1.80 (m, 2H),
2.54 (t, J= 6.0 Hz, 2 H), 2.71 (t, J= 6.3 Hz, 2H), 3.55 (s, 2H), 3.90 (q, J =
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7.2 Hz, 2 H), 7.22–7.33 ppm (m, 5H); 13C NMR (100 MHz, CDCl3): d=

13.6, 21.9, 23.7, 25.0, 25.9, 28.2, 37.8, 50.7, 60.4, 127.3, 127.5, 128.3, 135.6,
138.6, 142.8, 170.2, 212.1 ppm; elemental analysis calcd (%) for C19H24O3:
C 75.97, H 8.05; found: C 76.11, H 8.01.

Ethyl (Z)-5,6,9,10-tetrahydro-10-oxo-8-phenylbenzo[8]annulene-7-car-
boxylate (3 m): IR (nujol): ñ= 2923, 2853, 1713, 1675, 1597, 1418, 1376,
1266, 1239, 1129, 1095, 1071, 1046, 966, 916, 844, 766, 700, 599, 574 cm�1;
1H NMR (400 MHz, CDCl3): d=0.67 (t, J =7.2 Hz, 3H), 3.00 (t, J=

7.5 Hz, 2 H), 3.25 (t, J =7.5 Hz, 2H), 3.70 (q, J=7.2 Hz, 2 H), 3.90 (s,
2H), 6.71–6.76 (m, 2 H), 7.17–7.19 (m, 3H), 7.25 (d, J =8.1 Hz, 1H), 7.29
(t, J=12.3 Hz, 1H), 7.41–7.48 ppm (m, 2 H); 13C NMR (100 MHz,
CDCl3): d=13.2, 30.1, 33.2, 52.8, 60.3, 126.9, 127.0, 127.4, 127.5, 128.1,
130.1, 131.9, 132.4, 137.6, 138.8, 142.2, 142.5, 169.9, 203.8 ppm; elemental
analysis calcd (%) for C21H20O3: C 78.73, H 6.29; found: C 78.48, H 6.24.

Ethyl (E)-5,6,7,10-tetrahydro-10-oxo-8-phenylbenzo[8]annulene-7-car-
boxylate (3 m’): IR (nujol): ñ =2922, 2853, 1712, 1675, 1597, 1418, 1375,
1266, 1239, 1128, 1095, 1071, 1046, 967, 916, 844, 766, 701, 599, 574 cm�1;
1H NMR (400 MHz, CDCl3): d= 0.71 (t, J =7.2 Hz, 3 H), 2.24–2.33 (m,
1H), 2.48–2.56 (m, 1H), 2.96 (dt, J =13.2, 3.9 Hz, 1 H), 3.17 (dt, J =13.2,
4.8 Hz, 1H), 3.61–3.69 (m, 1H), 3.72–3.80 (m, 1H), 3.85 (dd, J =12.1,
4.8 Hz, 1H), 6.86 (s, 1 H), 7.24 (d, J=7.5 Hz, 1 H), 7.32–7.40 (m, 4H),
7.40–7.46 (m, 2H), 7.49 (t, J=7.5 Hz, 1H), 7.82 ppm (d, J =7.8 Hz, 1H);
13C NMR (100 MHz, CDCl3): d =13.3, 30.0, 33.0, 45.2, 60.7, 126.8, 127.1,
128.5, 128.9, 129.7, 130.1, 132.7, 135.0, 139.4, 139.7, 140.6, 148.5, 172.0,
193.7 ppm; elemental analysis calcd (%) for C21H20O3: C 78.73; H 6.29;
found: C 78.53, H 6.25.

4-Acetyl-3-phenyl-3-cyclooctenone (3 n): IR (neat): ñ=3079, 2931, 2860,
1700, 1575, 1492, 1444, 1353, 1325, 1232, 1124, 1076, 969, 771, 704 cm�1;
1H NMR (400 MHz, CDCl3): d=1.70 (s, 3 H), 1.84–1.92 (m, 4H), 2.54 (t,
J =5.4 Hz, 2H), 2.60 (t, J =5.3 Hz, 2H), 3.60 (s, 2 H), 7.17–7.19 (m, 2H),
7.29–7.36 ppm (m, 3H); 13C NMR (100 MHz, CDCl3): d=24.5, 27.8, 30.2,
30.8, 42.3, 50.5, 127.9, 128.5, 128.7, 138.2, 141.5, 141.7, 206.9, 210.1; ele-
mental analysis calcd (%) for C16H18O2: C 79.31, H 7.49; found: C 79.18,
H 7.42.

4-Acetyl-3-phenyl-3-cyclononenone (3 o): IR (neat): ñ= 3077, 2922, 2853,
1702, 1448, 1350, 1230, 1151, 1016, 921, 765, 702 cm�1; 1H NMR
(400 MHz, CDCl3): d =1.51–1.54 (m, 2H), 1.59–1.65 (m, 2H), 1.70 (s,
3H),1.79–1.85 (m, 2H), 2.59 (t, J =6.7 Hz, 2H), 2.67 (t, J =6.4 Hz, 2H),
3.56 (s, 2 H), 7.29–7.36 ppm (m, 5H); 13C NMR (100 MHz, CDCl3): d=

25.1, 25.2, 25.8, 30.1, 30.7, 42.8, 51.0, 128.2, 128.3, 128.6, 136.7, 142.2,
143.4, 206.9, 211.7;elemental analysis calcd (%)HRMS (ESI): m/z : calcd
for C17H20O2Na ([M+ Na]+): 279.1361; found: 279.1367.

4-Acetyl-3-phenyl-3-cyclodecenone (3 p): IR (neat): ñ =3073, 2929, 2860,
1683, 1463, 1353, 1120, 1068, 761, 704 cm�1; 1H NMR (400 MHz, CDCl3):
d=1.43–1.50 (m, 4H), 1.52–1.58 (m, 2H), 1.74 (s, 3H), 1.75–1.80 (m,
2H), 2.53 (t, J =6.4 Hz, 2 H), 2.68 (t, J=6.3 Hz, 2H), 3.58 (s, 2H), 7.25–
7.27 (m, 2H), 7.32–7.34 ppm (m, 3H); 13C NMR (100 MHz, CDCl3): d=

22.4, 24.3, 25.1, 25.8, 28.8, 31.0, 38.8, 50.5, 128.3, 128.4, 128.7, 137.0, 142.0,
144.1, 207.9, 212.4 ppm; HRMS (ESI): m/z : calcd for C18H22O2Na ([M+

Na]+): 293.1518; found: 293.1511.

General Procedure for the Reaction of Acyclic b-Keto Esters with
Terminal Alkynes

A mixture of ethyl 2-methylacetoacetate (5a, 72.1 mg, 0.500 mmol), phe-
nylacetylene (2 a, 61.3 mg, 0.600 mmol), [ReBr(CO)3 ACHTUNGTRENNUNG(thf)]2 (10.6 mg,
0.0125 mmol), and toluene (1.0 mL) was stirred at 80 8C for 24 h. The
product was isolated by column chromatography on silica gel to give the
mixture of d-keto esters 6 a–8a in 92% yield (113 mg, 0.460 mmol).

Ethyl (E)-2-methyl-5-oxo-3-phenyl-2-hexenoate (7 a): IR (neat): ñ =3057,
2982, 2926, 1717, 1701, 1491, 1356, 1259, 1129, 1027, 776, 704, 532 cm�1;
1H NMR (400 MHz, CDCl3): d=1.31 (t, J =7.2 Hz, 3H), 1.83 (s, 3H),
2.17 (s, 3H), 3.87 (s, 2H), 4.21 (q, J=7.2 Hz, 2H), 7.16–7.18 (m, 2H),
7.25–7.27 (m, 1H), 7.33–7.36 ppm (m, 2H); 13C NMR (100 MHz, CDCl3):
d=14.1, 17.2, 29.7, 51.2, 60.4, 127.0, 127.3, 127.4, 127.7, 128.3, 144.7,
168.4, 204.8 ppm; elemental analysis calcd (%) for C15H18O3: C 73.15,
H 7.37; found: C 73.12, H 7.53.

Ethyl (E)-5-oxo-2-(2-phenylethyl)-3-phenyl-2-hexenoate (7 b): IR (neat):
ñ= 3062, 3026, 2979, 2927, 1732, 1701, 1599, 1496, 1456, 1356, 1252, 1172,
1026, 911, 701 cm�1; 1H NMR (400 MHz, CDCl3): d=1.34 (t, J =7.2 Hz,
3H), 2.15 (s, 3H), 2.49 (t, J =7.8 Hz, 2H), 2.66 (t, J=7.9 Hz, 2 H), 3.81 (s,
2H), 4.24 (q, J =7.2 Hz, 2H), 6.96–7.33 ppm (m, 10H); 13C NMR
(100 MHz, CDCl3): d=14.0, 29.8, 33.1, 35.6, 51.5, 60.6, 125.8, 127.1, 127.4,
128.2, 128.4, 128.5, 128.9, 132.4, 141.4, 144.9, 168.4, 204.7 ppm; elemental
analysis calcd (%) for C22H24O3: C 78.54, H 7.19; found: C 78.44, H 7.42.

Ethyl (E)-5-oxo-3-phenyl-2-hexenoate (7 c): IR (neat): ñ=3060, 2981,
2935, 1707, 1625, 1577, 1447, 1178, 1040, 876, 767, 696, 546 cm�1;
1H NMR (400 MHz, CDCl3): d=1.30 (t, J =7.2 Hz, 3H), 2.28 (s, 3H),
4.19 (q, J =7.2 Hz, 2 H), 4.22 (s, 2H), 6.31 (s, 1H), 7.35–7.38 (m, 3H),
7.39–7.43 ppm (m, 2H); 13C NMR (100 MHz, CDCl3): d=14.2, 29.8, 46.8,
60.1, 119.4, 126.5, 128.7, 129.2, 140.8, 152.1, 166.4, 204.7 ppm; elemental
analysis calcd (%) for C14H16O3: C 72.39, H 6.94; found: C 72.26, H 7.10.

Ethyl (E)-2-methyl-5-oxo-3,5-diphenyl-2-pentenoate (7 d): IR (neat): ñ=

3080, 3060, 2981, 2928, 1732, 1707, 1598, 1492, 1448, 1365, 1332, 1128,
977, 755, 704, 621 cm�1; 1H NMR (400 MHz, CDCl3): d= 1.17 (t, J=

7.2 Hz, 3 H), 1.88 (s, 3H), 4.12 (q, J =7.2 Hz, 2H), 4.50 (s, 2H), 7.23–7.48
(m, 8H), 7.94 ppm (d, J =7.8 Hz, 2H); 13C NMR (100 MHz, CDCl3): d=

13.9, 17.3, 46.6, 60.3, 127.0, 127.1, 127.4, 127.85, 127.92, 128.2, 128.3,
128.4, 132.7, 144.7, 168.4, 196.2; elemental analysis calcd (%) for
C20H20O3: C 77.90, H 6.54, found: C 77.91, H 6.66.

Ethyl (E)-3-(4-methoxyphenyl)-2-methyl-5-oxo-2-hexenoate (7 e): IR
(neat): ñ=2980, 2935, 2907, 2838, 1729, 1606, 1515, 1093, 1029, 838, 770,
602, 542 cm�1; 1H NMR (400 MHz, CDCl3): d=1.31 (t, J=7.2 Hz, 3 H),
1.86 (s, 3H), 2.16 (s, 3H), 3.80 (s, 3 H), 3.86 (s, 2 H), 4.20 (q, J =7.2 Hz,
2H), 6.88 (d, J =9.0 Hz, 2 H), 7.11 ppm (d, J =8.7 Hz, 2 H); 13C NMR
(100 MHz, CDCl3): d=14.1, 17.3, 29.6, 51.4, 55.1, 60.3, 113.6, 128.4, 128.9,
134.7, 144.3, 158.7, 168.6, 205.1 ppm; elemental analysis calcd (%) for
C16H20O4: C 69.54, H 7.30; found: C 69.36, H 7.42.

Ethyl (E)-3-(4-methylphenyl)-2-methyl-5-oxo-2-hexenoate (7 f): IR
(neat): ñ=3022, 2982, 2926, 2871, 1728, 1623, 1512, 1447, 1042, 1021, 826,
769, 548, 519 cm�1; 1H NMR (400 MHz, CDCl3): d= 1.31 (t, J =7.2 Hz,
3H), 1.84 (s, 3H), 2.16 (s, 3 H), 2.34 (s, 3 H), 3.86 (s, 2H), 4.21 (q, J=

7.2 Hz, 2 H), 7.06 (d, J =8.1 Hz, 2 H), 7.16 ppm (d, J= 8.1 Hz, 2H);
13C NMR (100 MHz, CDCl3): d =14.2, 17.3, 21.1, 29.7, 51.4, 60.4, 127.5,
127.6, 129.6, 137.1, 139.6, 144.7, 168.7, 205.0; elemental analysis calcd
(%) for C16H20O3: C 73.82, H 7.74; found: C 73.74, H 7.91.

Ethyl (E)-3-(4-trifluoromethylphenyl)-2-methyl-5-oxo-2-hexenoate (7 g):
IR (neat): ñ =2988, 2926, 1716, 1653, 1616, 1559, 1325, 1259, 1164, 1128,
1068, 1018, 852 cm�1; 1H NMR (400 MHz, CDCl3): d= 1.32 (t, J =7.2 Hz,
3H), 1.82 (s, 3 H), 2.19 (s, 3H), 3.89 (s, 2 H), 4.23 (q, J =7.2 Hz, 2 H), 7.33
(d, J =8.1 Hz, 2H), 7.62 ppm (d, J= 8.4 Hz, 2 H); 13C NMR (100 MHz,
CDCl3): d =14.0, 17.1, 29.7, 50.7, 60.6, 123.9 (J =271 Hz), 125.3 (J=

3.6 Hz), 127.9, 128.7, 129.4 (J =30.9 Hz), 143.2, 146.4, 168.0, 204.4 ppm;
elemental analysis calcd (%) for C16H17F3O3: C 61.14, H 5.45; found:
C 61.13, H 5.47.

Ethyl (E)-3-(4-bromophenyl)-2-methyl-5-oxo-2-hexenoate (7 h): IR
(neat): ñ= 2982, 2931, 1725, 1488, 1259, 1071, 1011, 834, 768, 730,
535 cm�1; 1H NMR (400 MHz, CDCl3): d =1.31 (t, J =7.2 Hz, 3 H), 1.82
(s, 3H), 2.17 (s, 3 H), 3.85 (s, 2H), 4.21 (q, J =7.2 Hz, 2 H), 7.07 (d, J=

8.7 Hz, 2H), 7.48 ppm (d, J =8.7 Hz, 2H); 13C NMR (100 MHz, CDCl3):
d=14.1, 17.1, 29.7, 50.8, 60.5, 129.0, 129.2, 131.1, 131.4, 141.4, 143.4,
168.1, 204.5 ppm; elemental analysis calcd (%) for C15H17BrO3: C 55.40,
H 5.27, found: C 55.46, H 5.16.

Ethyl (E)-3-cyclohexenyl-2-methyl-5-oxo-2-hexenoate (7 i): IR (neat): ñ=

2982, 2931, 2858, 1725, 1707, 1355, 1265, 1118, 1028, 920, 769, 549 cm�1;
1H NMR (400 MHz, CDCl3): d=1.28 (t, J J=7.2 Hz, 3 H), 1.57–1.60 (m,
2H), 1.63–1.67 (m, 2 H), 1.92 (s, 3H), 1.96–1.99 (m, 2H), 2.05–2.08 (m,
2H), 2.17 (s, 3 H), 3.61 (s, 2 H), 4.16 (q, J =7.2 Hz, 2 H), 5.46 ppm (m,
1H); 13C NMR (100 MHz, CDCl3): d= 14.2, 16.7, 21.9, 22.5, 24.8, 26.7,
29.5, 49.0, 60.2, 124.9, 125.7, 139.1, 147.2, 168.8, 205.4 ppm; elemental
analysis calcd (%) for C15H22O3: C 71.97, H 8.86; found: C 71.96, H 8.86.

Ethyl (Z)-2-methyl-3-(2-oxopropyl)-2-tridecenoate (7 j): IR (neat,
6j+7 j): ñ =2956, 2926, 2855, 1734, 1707, 1616, 1465, 1354, 1098, 862,
768 cm�1; 1H NMR (400 MHz, CDCl3): d =0.88 (t, J =6.8 Hz, 3 H), 1.22
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(t, J= 7.2 Hz, 3H), 1.25–1.30 (m, 18 H), 1.94 (s, 3H), 2.19 (s, 3H), 3.58 (s,
2H), 4.14 ppm (q, J=7.2 Hz, 2 H); 13C NMR (100 MHz, CDCl3, 6 j +

7j): d=13.96, 14.03, 14.1, 15.0, 22.6, 26.9, 27.7, 29.2, 29.26, 29.32, 29.35,
29.43, 29.46, 29.54, 29.6, 31.77, 31.84, 34.4, 35.9, 41.4, 49.0, 60.1, 60.4,
123.5, 125.3, 145.7, 158.8, 168.5, 173.2, 198.1, 205.7 ppm; elemental analy-
sis calcd (%) for C19H34O3: C 73.50, H 11.04; found: C 73.50, H 11.28.

Ethyl (E)-2-methyl-5-oxo-3-(2-phenylethyl)-2-hexenoate (7 k): IR (neat):
ñ= 3086, 3062, 2981, 2937, 1721, 1617, 1496, 1454, 1356, 1190, 1103, 1029,
862, 748, 701 cm�1; 1H NMR (400 MHz, CDCl3): d= 1.27 (t, J =7.2 Hz,
3H), 1.89 (s, 3H), 2.18 (s, 3 H), 2.48 (t, J=7.9 Hz, 2H), 2.69 (t, J =8.0 Hz,
2H), 3.58 (s, 2H), 4.14 (q, J= 7.2 Hz, 2H), 7.16–7.19 (m, 3 H), 7.26–
7.29 ppm (m, 2H); 13C NMR (100 MHz, CDCl3): d=14.1, 15.0, 29.7, 33.0,
37.8, 49.1, 60.3, 124.2, 126.0, 126.1, 128.2, 128.4, 144.2, 168.4, 205.7 ppm;
elemental analysis calcd (%) for C17H22O3: C 74.42, H 8.08; found:
C 74.32, H 8.21.

Intramolecular Reaction of Ethyl 2-Acetyl-7-octynoate

A mixture of ethyl 2-acetyloct-7-ynoate (10 a, 105.1 mg, 0.500 mmol), 2,6-
diisopropylphenylisocyanide (4.7 mg, 0.0250 mmol), powder 4�-MS
(10.6 mg, 100 wt % Re-cat.), [ReBr(CO)3 ACHTUNGTRENNUNG(thf)]2 (10.6 mg, 0.0125 mmol),
and toluene (1.0 mL) was heated at 100 8C for 24 h. The product was iso-
lated by column chromatography on silica gel to give compound 11 a in
84% yield (88.3 mg, 0.420 mmol).

Ethyl 2-(2-oxopropyl)-1-cyclohexenecarboxylate (11 a): IR (neat): ñ=

2980, 2936, 2862, 1717, 1637, 1356, 1233, 1076, 1052, 764, 684, 589 cm�1;
1H NMR (400 MHz, CDCl3): d= 1.27 (t, J =7.2 Hz, 3 H), 1.61–1.65 (m,
4H), 2.14–2.15 (m, 2H), 2.19 (s, 3H), 2.34–2.36 (m, 2H), 3.56 (s, 2H),
4.14 ppm (q, J=7.2 Hz, 2H); 13C NMR (100 MHz, CDCl3): d=14.1,
21.96, 21.99, 26.1, 29.6, 33.4, 50.1, 59.9, 127.1, 143.9, 167.9, 205.7 ppm; ele-
mental analysis calcd (%) for C12H18O3: C 68.54, H 8.63; found: C 68.27,
H 8.41.

Ethyl 2-(2-oxopropyl)-1-cycloheptenecarboxylate (11 b): IR (neat): ñ=

2978, 2940, 2855, 1721, 1640, 1250, 1142, 1092, 1044, 769, 732, 698,
576 cm�1; 1H NMR (400 MHz, CDCl3): d =1.28 (t, J= 7.2 Hz, 3H), 1.50–
1.56 (m, 4 H), 1.78 (tt, J=6.0, 5.4 Hz, 2H), 2.19 (s, 3 H), 2.31 (t, J=

5.4 Hz, 2H), 2.53 (t, J =5.4 Hz, 2H), 3.60 (s, 2H), 4.16 ppm (q, J =7.2 Hz,
2H); 13H NMR (100 MHz, CDCl3): d=14.2, 24.7, 26.1, 29.6, 29.7, 32.2,
36.8, 51.9, 60.3, 133.9, 148.3, 169.0, 206.1 ppm; HRMS (ESI): m/z : calcd
for C13H20O3Na ([M+ Na]+): 247.1310; found: 247.1321.

Ethyl 2-(2-oxopropyl)-1-cyclopentadecenecarboxylate (11 c): IR (neat):
ñ= 2977, 2945, 2855, 1709, 1658, 1343, 1235, 1165, 1090, 1082, 855, 747,
688, 580 cm�1; 1H NMR (400 MHz, CDCl3): d=1.27 (t, J=7.2 Hz, 3 H),
1.28–1.47 (m, 22H), 2.13 (t, J =8.1 Hz, 2 H), 2.17 (s, 3H), 2.33 (t, J =

8.1 Hz, 2 H), 3.52 (s, 2H), 4.15 ppm (q, J=7.2 Hz, 2H); 13C NMR
(100 MHz, CDCl3): d=14.3, 25.3, 25.4, 25.9, 26.1, 26.2, 26.6, 26.8, 26.9,
27.4, 27.6, 27.8, 29.4, 29.6, 35.1, 49.3, 60.2, 131.3, 144.1, 169.0, 206.1 ppm;
HRMS (ESI): m/z : calcd for C21H36O3Na ([M+Na]+): 359.2562; found:
359.2575.

6,7,8,9-Tetrahydro-3-methylcyclohepta[c]pyran-1(5H)-one (12 b): IR
(nujol): ñ=3028, 2948, 2857, 1716, 1488, 1279, 1044, 946, 840, 775, 727,
690 cm�1; 1H NMR (400 MHz, CDCl3): d =1.53–1.62 (m, 4H), 1.80–1.84
(m, 2 H), 2.12 (s, 3 H), 2.53 (t, J =5.4 Hz, 2H), 2.72 (t, J= 5.4 Hz, 2H),
5.81 ppm (s, 1 H); 13C NMR (100 MHz, CDCl3): d=19.5, 25.8, 26.1, 26.3,
32.2, 35.6, 107.7, 124.2, 157.6, 158.0, 164.6; elemental analysis calcd (%)
for C11H14O2: C 74.13, H 7.92; found: C 74.08, H 7.98.

6,7,8,9,10,11,12,13,14,15,16,17-Dodecahydro-3-methylcyclopentadeca[c]-
pyran-1ACHTUNGTRENNUNG(5H)-one (12 c): IR (neat): ñ=3022, 2940, 2859, 1708, 1655, 1481,
1371, 1270, 1044, 849, 760, 713, 677 cm�1; 1H NMR (400 MHz, CDCl3):
d=1.26–1.61 (m, 22H), 2.18 (s, 3 H), 2.35 (t, J =8.1 Hz, 2H), 2.43 (t, J=

8.0 Hz, 2H), 5.80 ppm (s, 1H); 13C NMR (100 MHz, CDCl3): d =19.5,
25.2, 25.4, 25.9, 26.0, 26.4, 26.7, 26.79, 26.82, 27.1, 27.3, 27.4, 27.6, 32.6,
106.5, 122.2, 154.1, 157.8, 164.4 ppm; HRMS (ESI): m/z : calcd for
C19H30O2Na ([M+Na]+): 313.2144; found: 313.2146.

(E)-3,4-Dimethyl-5-phenethyl-3-heptene-2,6-dione (16): A mixture of 3-
methyl-2,4-pentanedione (28.5 mL, 0.250 mmol), 5-phenylpentane-1,2-
diene (72.1 mg, 0.500 mmol), Re2(CO)10 (4.1 mg, 6.3 mmol), and 1,2-di-
chloroethane (0.25 mL) was stirred at 135 8C for 12 h. After the solvent

was removed in vacuo, the product was isolated by column chromatogra-
phy on silica gel (hexane/ethyl acetate =10:1) to give 16 in 63 % yield
(40.7 mg, 0.158 mmol) as a yellow liquid. IR (nujol): ñ=3465, 3025, 2960,
1898, 1719, 1602, 1463, 1378, 1261, 1157, 1094, 962, 916, 733, 701 cm�1;
1H NMR (400 MHz, CDCl3): d=1.62 (s, 3 H), 1.74–1.78 (m, 1H), 1.81 (s,
3H), 2.07 (s, 3 H), 2.19–2.24 (m, 1H), 2.26 (s, 3H), 2.54 (t, J =7.5 Hz,
2H), 3.47 (t, J= 7.2 Hz, 1 H), 7.14–7.20 (m, 3 H), 7.28–7.29 ppm (m, 2 H);
13C NMR (100 MHz, CDCl3): d =15.3, 19.7, 29.0, 29.6, 33.1, 38.0, 55.1,
126.0 (2C), 128.35 (2C), 128.41, 134.0, 136.1, 141.3, 205.8, 207.2 ppm;
HRMS: m/z : calcd. for C17H22O2Na ([M +Na]+): 281.1518, found:
281.1506.
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