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ABSTRACT: Fluorocarbons and chlorocarbons are common volatile organic compounds that pose serious risk to the environment
and human health and therefore need to be effectively captured. Herein, we report a series of highly fluorinated metal−organic
frameworks with high porosity (Brunauer−Emmett−Teller surface area ∼3000 m2/g) and stability. They show exceptionally high
capacity and good recyclability toward the adsorption of fluorocarbons and chlorocarbons.

Metal−organic frameworks (MOFs) are particularly
attractive for their potential use in molecular adsorption

and capture in light of their high porosity, tunable pore
structure, and functionality.1−6 While fluorinated MOFs are
appealing as adsorbents for the adsorption and capture of
fluorocarbons and chlorocarbons because of their fluorophilic
character and resistance toward moisture,7,8 their preparation
is generally challenging especially for those with high
porosity.9−14 A few fluorinated MOFs with high porosity
have been reported; however, the syntheses of fluorine-rich
organic ligands are rather complicated and often air-sensitive,
which can often be accomplished only under an inert
atmosphere such as inside a glovebox. In addition, activation
of these MOFs is usually quite difficult because they generally
suffer from fragile structures.15

Over the past decade, the emerging zirconium-based MOFs
(Zr-MOFs) have largely addressed the stability issue. Having
relatively strong Zr−O bonds and robust hexanuclear inorganic
building units, Zr-MOFs show significantly enhanced thermal
and moisture resistance, with some of which approaching the
stability level of traditional inorganic adsorbents.16−20 This
suggests that, guided by reticular chemistry, Zr-MOFs with
high porosity, stability, and fluorophilicity that are specifically
suitable for capture of fluorocarbons and chlorocarbons may
well be achievable. In this context, we use highly fluorinated
organic linkers to construct Zr-MOFs in order to (1) increase
their hydrophobicity and consequently their resistance toward
moisture and (2) enhance their interaction with fluorocarbons
and chlorocarbons. As expected, the Zr-MOFs synthesized
using these ligands exhibit strong hydrophobicity and possess
the highest porosity among all fluorinated MOFs reported to
date. Also, they display high adsorption capability toward
fluorocarbons and chlorocarbons.
Guided by reticular chemistry, we have successfully

constructed three robust Zr-MOFs having the same metal
building unit (Zr6), connectivity (12), and structural topology
(fcu). The three fluorinated dicarboxylic acids used to build
these structures, H2tpdc-F4, H2tpdc-(CF3)2, and H2qpdc-F8
(Figure 1), were synthesized through Suzuki coupling reactions
between fluorinated phenyl or biphenyl fragments and 4-

methoxycarbonylphenylboronic acid (see the Supporting
Information for the detailed synthesis of organic ligands).
Solvothermal reactions between zirconium salts (ZrCl4 or
ZrOCl2·8H2O) and the corresponding organic ligands in N,N-
dimethylformamide with the addition of benzoic acid or acetic
acid as modulators yielded three new compounds with
formulas of Zr6O4(OH)4(tpdc-F4)6 (1), Zr6O4(OH)4(tpdc-
(CF3)2)6 (2), and Zr6O4(OH)4(qpdc-F8)6 (3), respectively
(see the experimental section for the detailed synthesis of
MOFs). The materials were obtained as octahedral crystals
(Figure S4).
Single-crystal X-ray diffraction analysis reveals that all three

compounds crystallize in the cubic crystal system with space
groups of Fm3̅m for compounds 1 and 2 and Fd3̅m for
compound 3 (see Tables S1−S3 for detailed crystallographic
data). All three compounds feature connectivity similar to that
of the UiO family.18 They are built on 12-connected
hexanuclear units, Zr6O4(OH)4(COO)12, which are propa-
gated through organic linkers, forming three-dimensional
frameworks with fcu topology. Similar to other fcu-type
compounds, the structure contains two types of cages with
tetrahedral and octahedral geometries that are decorated by
fluorine atoms from the organic ligands (Figure 1). Defects
(missing linkers) are commonly observed for UiO-type Zr-
MOFs and are observed in these compounds also. For
compound 3, which has the highest defect ratio (27%)
among the three compounds, a defect model was used for
refinement of its structure, where the ligands missing are
replaced by water.
The phase purities of the Zr-MOFs have been confirmed by

powder X-ray diffraction (PXRD) analysis (Figures S6−S8).
Thermogravimetric analysis (TGA) reveals that compounds
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1−3 lose weight below 200 °C and reach a plateau before
400−500 °C, indicating high thermal stability (Figures S9−
S11). The amount of weight loss is 40%, 10%, and 30% for 1−
3, respectively. Previous studies have shown that fluorinated-
ligand-based Cu-MOFs suffer from relatively lower thermal
stability as a consequence of the weaker metal−ligand
coordination.15 However, this is not the case for the title
compounds because their structures are built on robust Zr6
secondary building units with strong metal−ligand coordina-
tion as well as high connectivity. The decomposition
temperatures of compounds 1−3 are comparable to those of
nonfluorinated analogues.21 The notably smaller weight loss of
compound 2 compared to the other two analogous structures
suggests its higher hydrophobicity. This has been commonly
observed for hydrophobic MOFs that are synthesized in
hydrophilic solvents.22 It is also noteworthy that the activated
sample of compound 2 shows essentially no weight gain upon
exposure to air for 2 days (Figure S12), suggesting that it does
not adsorb any water from air. A parallel experiment was
carried out to compare the relative hydrophobicity of the three
compounds: when 20 mg of each sample was dispersed in 5
mL of water for 10 h, compounds 1 and 3 partially settled
down at the bottom of the vial, while compound 2 remained
floating at the surface of water (Figure S13). This is consistent
with the TGA results and confirms the superior hydrophobicity
of compound 2. This behavior is not surprising because the
trifluoromethyl functional groups render additional hydro-
phobicity to the framework, which has been demonstrated in
other trifluoromethyl-functionalized MOFs.23 To quantita-
tively assess the hydrophobicity of compound 2, we performed
water adsorption measurements. As expected, this material

shows negligible water adsorption despite its exceptional
porosity, confirming its hydrophobic nature (Figure S14).
Nitrogen sorption measurements were performed at 77 K to

evaluate the porosity of these materials. The saturated uptake
of nitrogen for compounds 1−3 are 12, 31, and 34 mmol/g,
yielding Brunauer−Emmett−Teller (BET) surface areas of
1012, 2819, and 3108 m2/g and pore volumes of 0.42, 1.06,
and 1.11 cm3/g, respectively (Figures 2 and S15 and S16). The

obviously lower porosity for compound 1 may be attributed to
incomplete activation and partial structural degradation upon
heating, as confirmed by the broadened peaks of the PXRD
pattern of the activated sample (Figure S6). Tremendous
efforts have been made to optimize the activation conditions
for compound 1. However, it appears that its stability is
noticeably lower than that of the other two compounds. Its
structure is fragile and tends to collapse upon guest removal. In

Figure 1. Construction of compounds 1−3. Color code: Zr, cyan polyhedra; O, red; C, gray; F, green. Hydrogen atoms are omitted for clarity.

Figure 2. Nitrogen adsorption−desorption isotherms at 77 K for
compound 2. The inset shows the pore-size distribution.
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addition, the presence of defects is not leading to a decrease in
the structural stability or appearance of noticeable meso-
porosity. The BET surface areas of compounds 2 and 3 are
comparable to those of other reported UiO-68 analogues with
similar structural connectivity.21 The values are, to the best of
our knowledge, the highest among all fluorinated porous
materials reported to date.15 The density functional theory
pore-size distribution from nitrogen adsorption isotherms
reveals that compounds 2 and 3 possess two types of pores,
with diameters of 11 and 16 Å for compound 2 and 13 and 18
Å for compound 3. This is consistent with their crystal
structures, which possess a smaller tetrahedral cage and a larger
octahedral cage.
Because of its high porosity and exceptional hydrophobicity,

exploration of the adsorption of fluorocarbons and chlor-
ocarbons has been focused on compound 2. The adsorption
measurements have been evaluated with representative
fluorocarbons and chlorocarbons molecules: perfluorohexane
(PFH), trichloroethylene (TCE), and perchloroethylene
(PCE). PFH is a greenhouse species with a 100-year global
warming potential (GWP) that is 3−4 orders of magnitude
higher than that of carbon dioxide.24 It is widely used in
industry for the electronic cooling process. PCE and TCE are
widely used as solvents for processes such as metal degreasing,
dry cleaning, and the manufacture of plastics. Through leakage
and spillage, they are released to the environment and are
regarded as two of the most ubiquitous groundwater
contaminants, and their toxicity and persistence are of great
concern.25,26

The adsorption experiments were performed with a
homemade gravimetric adsorption analyzer modified from a
Q50 unit (TA Instruments).27 The adsorption capacity was
measured at 30 °C with partial pressures of 150, 50, and 15
Torr for PFH, TCE, and PCE, respectively. As shown in Figure
3, the adsorption capacities for PFH, TCE, and PCE are 142,
108, and 143 wt % for 2, respectively. The adsorption is fast
and reaches saturation within a couple of minutes. Material
stability toward the adsorption−desorption process was
evaluated by a cycle test. After 10 repeated adsorption−
desorption cycles, the adsorption capacity of PCE on
compound 2 remains the same, indicating high stability of
the material (Figures 4 and S7). To investigate how the partial
pressure of the adsorbate would affect the adsorption capacity,
we have performed an adsorption experiment at lower
concentration. The result displays that compound 2 adsorbs
96 wt % of TCE at a partial pressure of 2.5 Torr (Figure S18),
only slightly lower than the value at 50 Torr (108 wt %). The
adsorbed TCE can be removed completely from the MOF
simply by nitrogen purging. To learn whether the trifluor-
omethyl functionalization is contributing to the high
adsorption capacity of compound 2, we performed adsorption
measurements on pristine UiO-68, the parent structure of
compound 2. UiO-68 adsorbs 92 wt % of TCE at 30 °C and 50
Torr, notably lower than that of compound 2 (108 wt %)
under identical conditions (Figures S19−S21). Considering
the higher surface area of the former (3652 m2/g) than that of
the latter (2819 m2/g), it is fair to conclude that the
functionalization of trifluoromethyl groups contributes to the
high hydrophobicity of the MOF, which further enhances its
adsorption capacity.23 In addition, we collected the adsorp-
tion−desorption isotherm of TCE on compound 2 with a
volumetric adsorption analyzer, and the results agree well with
the gravimetric adsorption results (Figure S22). Adsorption of

the selected fluorocarbons and chlorocarbons on compounds 1
and 3 was also tested (Figure S17). The adsorption capacities
of 1 are substantially lower than those of 2 and 3. This is not
surprising because the measured porosity of compound 1 is
lower. Compound 3 also exhibits a high adsorption capacity for
the selected analytes, which is comparable to that of 2. It is
noteworthy that the amounts of PCE adsorbed in 2 and 3 are
the highest among all previously reported adsorbents (Table
S4).28−31

Figure 3. Adsorption uptake of the selected fluorocarbons and
chlorocarbons for compound 2. Red and black curves represent data
collected under adsorbate vapors and pure nitrogen, respectively.

Figure 4. Adsorption−desorption cycles of PCE on compound 2.
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In summary, we have demonstrated the utilization of
reticular chemistry on fcu Zr-MOFs to develop fluorinated
MOFs with high stability and porosity. The materials obtained
show high adsorption capability toward fluorocarbons and
chlorocarbons and are fully recyclable. This strategy can be
used for the development of fluorinated MOFs with tailored
pore structures for the effective capture of targeted molecules.
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