

Tetrahedron Letters 42 (2001) 4365-4368

Addition of secondary amines to alkynylphosphonates

Anna E. Panarina, Alla V. Dogadina, Valentin I. Zakharov and Boris I. Ionin*

Laboratory of Organophosphorus Chemistry, Organic Chemistry Department, St. Petersburg State Technological Institute (Technical University), 26 Moskovskii Prospect, St. Petersburg 198013, Russia

Received 29 November 2000; revised 10 April 2001; accepted 27 April 2001

Abstract—Addition of secondary amines to alkynylphosphonates catalyzed by Cu(I) salts proceeds regio- and stereospecifically to form (*E*)-2-(dialkylamino)alkenylphosphonates. The *E*-configuration was proved by analysis of ${}^{13}C{}^{-31}P$ vicinal spin–spin coupling constants in the NMR spectra of the products and authentic model compounds. The ${}^{3}J_{PC}$ constants in the model compounds fall in the range of 6–12 Hz for the *cis* arrangement of the coupled nuclei and are equal to or higher than 16 Hz for the *trans* configuration. Related coupling constants in the addition products are around 5 Hz, that is, corresponding to *cis* coupling. © 2001 Elsevier Science Ltd. All rights reserved.

2-Dialkylaminoalkenylphosphonates can be regarded as precursors of β -aldo- and β -ketophosphonates.¹ They are also interesting as models of push–pull alkenes for both chemical and biochemical investigations.² Recently, a synthetic route to such compounds was developed by Kazankova, Beletskaya and co-workers³ who prepared diethyl 2-phenyl-2-piperidylethenephosphonate by cross-coupling of the corresponding 2-bromo-1-piperidylstyrene with triethyl phosphite in the presence of NiBr₂ in 55% yield. Herein, we report on a convenient route to 2-dialkylaminoalkenylphosphonates based on the addition of amines to the triple bond of acetylenic phosphonates.

In 1963 Saunders and Simpson prepared (E)-2-diethylaminoethenephosphonate by reaction of diethylamine with ethynylphosphonate. The reaction is exothermic and results in a high yield of the product.⁴ More recently, Acheson and co-workers noted⁵ that ethynylphosphonate reacts with secondary amines to form mixtures of E and Z isomers. Propynylphosphonate adds secondary amines to form 2-dialkylamino-1propenvlphosphonates in poor vield (10-15%)2,2-bis(dialkylamino)propanylcontaminated with phosphonate.⁶ Addition of primary and secondary amines to ethynyldiphenylphosphine oxide in the presence of butyllithium was studied in detail, and was

No.	\mathbb{R}^1	NR ² ₂		Reaction conditions	Method	Time (h)	Yield (%) ^b	Bp (mmHg)
1	Н	NEt ₂	3a	EtOH	А	0.5	42	109 (0.1) ^c
2	Н	N(CH ₂) ₅	3b	MeOH	В	12	36	112 (0.1)
3	Н	N(CH ₂) ₄ O	3c	MeOH	В	18	80	163 (0.5)
4	CH ₃	NEt ₂	3d	EtOH, Cu(I)Cl	А	2.5	38	126 (0.1)
5	CH ₃	N(CH ₂) ₅	3e	MeOH, Cu(I)Cl	В	22	41	170 (0.5)
6	CH ₃	N(CH ₂) ₄ O	3f	MeOH, Cu(I)Cl	В	26	45	180 (0.5)
7	C_2H_5	NEt ₂	3g	Et ₂ O, Cu(I)Cl	А	9.3	36	130 (0.1)
8	C_2H_5	$N(CH_2)_5$	3h	MeOH, Cu(I)Cl	В	26.5	35	156 (0.25)
9	C ₆ H ₅	NEt ₂	3i	EtOH, Cu(I)Cl	А	3.5	41	156 (0.1)
10	C_6H_5	$N(CH_2)_5$	3j	MeOH, Cu(I)Cl	В	50	40	160 (0.1)
11	C_6H_5	N(CH ₂) ₄ O	3k	MeOH, Cu(I)Cl	В	57	38	165 (0.1)

Table 1. β -Enaminophosphonates 3 (*E*)-(EtO)₂P(O)CH=C(NR²₂)R^{1a}

^a All products gave satisfactory ¹H, ³¹P, ¹³C NMR and IR spectra.

^b All products were initially formed quantitatively, but partially hydrolyzed into the ketone and decomposed during the isolation process.

^{c 13}C and ³¹P NMR and IR spectra of the product agree with the published data.⁵

^{*} Corresponding author. E-mail: bi@thesa.ru

shown to lead to the corresponding (E)-2-aminovinyldiphenylphosphine oxides.⁷ Non-catalyzed addition of primary amines to other alkynyldiphenylphosphine oxides results in the formation of mixtures of E and Zisomers.8

We found that addition of secondary amines to alkynylphosphonates proceeds much better in the presence of a Cu(I) salt. Rousselet and co-workers noted earlier⁹ that addition of primary and secondary amines to nitriles in the presence of Cu(I) salts proceeds to give high yields (80-100%) of the addition compounds.

With diethyl ethynylphosphonate, addition of secondary amines both in the presence and absence of Cu(I) salts proceeds as a *cis*-addition and leads to *E* isomers of the corresponding 2-dialkylaminoethenephosphonates, in agreement with the data published by Acheson and co-workers.⁵ With less reactive substituted ethynylphosphonates 1, the reaction in the absence of Cu(I) catalyst does not occur at a noticeable rate even on heating the reactants in an ampoule to 120°C. A catalytic amount of Cu(I) salt allows the addition to proceed regio- and stereospecifically, affording (*E*)-2-(dialkylamino)ethenylphosphonates (Table 1). The reaction was carried out in a polar solvent, such as EtOH, MeOH, or Et₂O, which have been noted to increase the reaction rate in the cases alkynylphosphine oxides⁸ and nitriles.⁹

Establishing the geometric configuration of the 2-dialkylaminoalkenephosphonates 3 is difficult and was not ascertained earlier.^{3,10} For elucidation of the configuration of enaminophosphonates 3, we used the well-known steric dependence of the vicinal spin-spin coupling constant. The angular dependence of ${}^{3}J$ coupling was first established for H–H pairs¹¹ and confirmed, in part, by our investigations for ${}^{1}H{-}^{31}P^{12}$ and ${}^{31}P{-}^{31}P^{13}$ couplings. However, steric variations of ${}^{3}J$ coupling for the ${}^{31}P-{}^{13}C$ pair, which could be useful in our case, has scarcely been studied.14,15

Therefore, we performed the synthesis and study of the ¹³C NMR spectra of several model compounds with rigorously defined structures.

A comparison of the NMR parameters of the β -enaminophosphonates obtained and certain model compounds (Table 2), together with the use of the well-known appearance of ${}^{3}J$ constants in alkenes, which is normally greater in *trans* derivatives,¹⁶ allowed the unambiguous assignment of the *E* configuration (*cis* addition of amine) for the compounds **3**.

Additionally, we proved the structures by ¹H NMR experiments with lanthanide shift reagents. For the β-enaminophosphonates obtained from propynylphosphonate we succeeded in identifying the allylic spin-spin

Table 2.	Parameters of	¹³ C NMR s	spectra of a	model	compounds and	l β-enamino	phosphonates	$3 (C_2H_5O)_2P(O)$	$CH=C(X)R^{1}$
----------	---------------	-----------------------	--------------	-------	---------------	-------------	--------------	---------------------	----------------

No.	\mathbb{R}^1	Х	Isomer	Chemical $(C_2H_5O)_2I$	shifts (ppm) P(O)C ¹ H=C ² (X	$(R^{1})^{3}$	Spin-spin coupling constants (Hz)			
				$\overline{\delta_1}$	δ_2	δ_3	${}^{1}J_{\rm PC}$	$^{2}J_{\rm PC}$	$^{3}J_{\rm PC}$	
1	Me	Me	-	111.71	158.36	20.17 (Z) 27.25 (E)	189.48	10.7	6.54 (<i>Z</i>) 24.21 (<i>E</i>)	
2	Me	Н	E	116.34	148.85	19.43	188.58	4.97	23.77	
3	Me	Н	Z	116.80	148.62	15.56	188.68	5.00	10.37	
4 ^a	Me	Cl	Z	122.32	154.80	29.9	175.32	6.04	19.3	
5	Ph	Н	E	113.46	147.73	134.50	191.55	6.7	23.67	
6	Ph	Н	Z	115.54	147.29	134.28	184.16	5.86	7.0	
7	Ph	Cl	Z	112.67	149.57	136.62	199.05	3.17	16.4	
8	t-Bu	Н	Z	113.26	161.22	33.33	186.21	4.73	6.24	
9	t-Bu	Н	Ε	110.97	161.92	33.69	188.01	3.52	20.08	
10	t-Bu	Cl	Z	111.51	163.24	40.66	196.88	2.5	12.53	
11 ^a	t-Bu	Cl	Z	119.36	167.38	41.30	160.54	7.54	14.90	
3b	Н	$N(CH_2)_5$	Ε	72.44	153.48	_	209.2	20.1	-	
3c	Н	$N[(CH_2)_2]O$	E	75.50	153.62	_	201.31	19.32	_	
3d	Me	NEt ₂	Ε	72.97	158.75	17.15	217.34	21.0	5.0	
3e	Me	$N(CH_2)_5$	E	76.02	160.06	17.42	212.7	19.33	3.57	
3f	Me	N[(CH ₂) ₂]O	Ε	79.19	160.64	16.95	212.9	19.17	2.82	
3g	Et	NEt ₂	E	72.54	164.43	22.33	217.33	21.6	5.1	
3h	Et	$N(CH_2)_5$	E	75.63	165.99	23.46	215.7	21.72	5.18	
3i	Ph	NEt ₂	E	76.60	161.18	135.2	217.82	17.1	5.6	
3j	Ph	N(CH ₂) ₅	E	81.19	164.05	136.45	214.4	17.36	4.07	
3k	Ph	N[(CH ₂) ₂]O	Ε	83.93	163.77	135.24	212.6	16.31	4.07	

^a Phosphonic dichloride.

coupling constant ${}^{4}J_{\rm HP}$, which was found to be equal to 1.5 Hz. This value corresponds to the *cisoid* allylic coupling, while the corresponding *transoid* constant has been determined in the range 0–0.5 Hz.¹²

We also found that the required β -(dialkylamino)alkenylphosphonates can also be prepared from the corresponding β -chloroalkenylphosphonates **4**, the same *E* isomers being obtained. However, the chloroalkenylphosphonates initially eliminate hydrogen chloride to form acetylenic compounds **1**, which add amine **2** in the second step. Formation of acetylenes was monitored by ¹H NMR spectroscopy. ${}^{3}J_{\rm HH} = 14.8$ Hz, ${}^{3}J_{\rm HP} = 14.8$ Hz, CH); 13 C NMR (50 MHz): 16.27 (CH₃), 42.9 (CH₂-N), 60.88 (CH₂-O), 65.97 (CH₂-O, morph.), 75.5 (d, {}^{1}J_{\rm PC} = 201.31 Hz, CH), 153.62 (d, {}^{2}J_{\rm PC} = 19.32 Hz, =C–N); 31 P NMR (80 MHz): 27.59; IR (KBr): 2970, 1600, 1200, 1020 cm⁻¹.

(E)-Diethyl-2-N-diethylaminoprop-1-enylphosphonate

(3d): mp 126°C (0.1 mmHg); ¹H NMR (200 MHz): 0.84 (t, 6H, CH₃), 1.01 (t, 6H, CH₃), 1.92 (d, 3H, ⁴ J_{HP} =1.6 Hz, CH₃), 2.95 (q, 4H, CH₂-N), 3.46 (d, 1H, ² J_{HP} =9.81 Hz, CH), 3.71 (q, 4H, CH₂-O); ¹³C NMR (50 MHz): 12.66 (CH₃), 16.31 (CH₃), 17.15 (d, ³ J_{PC} =5.0 Hz, CH₃), 43.79 (CH₂-N), 60.45 (CH₂-O), 72.97 (d, ¹ J_{PC} =217.34 Hz, CH), 158.75 (d, ² J_{PC} =21.0 Hz, =C–N); ³¹P NMR (80

$$(RO)_{2}P(O)CH=CCIR^{1}+R^{2}_{2}NH \rightarrow [(RO)_{2}P(O)C=CR^{1}] \rightarrow (E)-(RO)_{2}P(O)CH=C(NR^{2}_{2})R^{1}R=Et$$

$$R^{1}=Me: R^{2}=Et$$

The β -(dialkylamino)alkenylphosphonates obtained are easily hydrolyzed with water to form β -ketophosphonates **5**. The latter are interesting as reagents for Horner– Emmons synthesis¹ and also are known as effective metal extractors.¹⁷

MHz): 27.46; IR (KBr): 2970, 1558, 1213, 1029 cm^{-1} .

(*E*)-Diethyl-2-piperidinoprop-1-enylphosphonate (3e): mp 170°C (0.5 mmHg); ¹H NMR (200 MHz): 1.1 (t, 6H,

$$(RO)_2 P(O)CH = C(NR^2_2)R^1 + H_2 O \rightarrow (RO)_2 P(O)CH - C(=O)R^1$$

Experimental

General procedure for the preparation of 2-(dialkylamino)alkenylphosphonates 3. Method A. A 20 ml flask equipped with a reflux condenser and magnetic stirrer was purged with dry argon and the corresponding solvent (10 ml), alkynylphosphonate 1 (8.5 mmol) and amine (9.4 mmol) were added, and in some cases Cu(I)Cl 50 mg was added as a catalyst. The reaction mixture was stirred under reflux for several hours and monitored by ¹H NMR spectroscopy. After completion of the reaction, the mixture was filtered to separate the catalyst, the solvent was removed in vacuo and the residue was distilled in a vacuum at 0.1 mmHg. Method B. Alkynylphosphonate (8.5 mmol) and amine (9.4 mmol) were sealed in an ampoule with 2 ml of methanol and, in some experiments, with 50 mg of Cu(I)Cl catalyst. The mixture was heated on a bath for several hours at 100-110°C. Then the product was isolated by distillation in a vacuum (see Table 1).

(*E*)-Diethyl-2-piperidinoeth-1-enylphosphonate (3b): mp 112°C (0.1 mmHg); ¹H NMR (200 MHz): 1.28 (t, 6H, CH₃), 1.54 (m, 6H, CH₂ piper.), 3.11 (t, 4H, CH₂-N), 3.97 (q, 4H, CH₂-O), 4.14 (d, 1H, ${}^{2}J_{HP} = 6$ Hz, CH), 6.93 (t, 1H, ${}^{3}J_{HH} = 14.5$ Hz, ${}^{3}J_{HP} = 15.25$ Hz, CH); ${}^{13}C$ NMR (50 MHz): 15.92 (CH₃), 23.83 (*p*-CH₂, piper.), 24.27 (*m*-CH₂, piper), 48.75 (CH₂-N), 60.33 (CH₂-O), 72.44 (d, ${}^{1}J_{PC} = 209.2$ Hz, CH), 153.44 (d, ${}^{2}J_{PC} = 20.1$ Hz, =C–N); ${}^{31}P$ NMR (80 MHz): 29.45.

(*E*)-Diethyl-2-morpholinoeth-1-enylphosphonate (3c): mp 163° C (0.5 mmHg); ¹H NMR (200 MHz): 1.53 (t, 6H, CH₃), 3.08 (t, 4H, CH₂-N), 3.61 (t, 4H, CH₂-O), 3.94 (q, 4H, CH₂-O), 4.18 (d, 1H, ²J_{HP}=12 Hz, CH), 6.9 (t, 1H,

CH₃), 1.38 (m, 6H, CH₂ piper.), 1.98 (d, 3H, ${}^{4}J_{HP}$ =1.0 Hz, CH₃), 3.02 (t, 4H, CH₂-N), 3.87 (d, 1H, ${}^{2}J_{HP}$ =9.75 Hz, CH), 3.88 (q, 4H, CH₂-O); ${}^{13}C$ NMR (50 MHz): 15.8 (CH₃), 17.42 (d, ${}^{3}J_{PC}$ =3.57 Hz, CH₃), 23.65 (*p*-CH₂, piper.), 24.7 (*m*-CH₂, piper), 46.69 (CH₂-N), 60.11 (CH₂-O), 76.02 (d, ${}^{1}J_{PC}$ =212.7 Hz, CH), 160.06 (d, ${}^{2}J_{PC}$ =19.33 Hz, =C–N); ${}^{31}P$ NMR (80 MHz): 27.85; IR (KBr): 2970, 1560, 1220, 1029 cm⁻¹.

(*E*)-Diethyl-2-morpholinoprop-1-enylphosphonate (3f): mp 180°C (0.5 mmHg); ¹H NMR (200 MHz): 1.12 (t, 6H, CH₃), 2.02 (d, 3H, ⁴ J_{HP} =2.0 Hz, CH₃), 2.98 (t, 4H, CH₂-N), 3.53 (t, 4H, CH₂-O), 3.8 (d, 1H, ² J_{HP} =9.0 Hz, CH), 3.85 (q, 4H, CH₂-O); ¹³C NMR (50 MHz): 15.8 (CH₃), 16.95 (d, ³ J_{PC} =2.82 Hz, CH₃), 45.7 (CH₂-N), 60.29 (CH₂-O), 65.71 (CH₂-O, morph.), 79.19 (d, ¹ J_{PC} = 212.9 Hz, CH), 160.64 (d, ² J_{PC} =19.17 Hz, =C–N); ³¹P NMR (80 MHz): 26.04; IR (KBr): 2970, 1560, 1213, 1024 cm⁻¹.

(E)-Diethyl-2-N-diethylaminobut-1-enylphosphonate

(3g): mp 130°C (0.1 mmHg); ¹H NMR (200 MHz): 0.90 (t, 6H, CH₃), 0.93 (t, 3H, CH₃), 1.07 (t, 6H, CH₃), 2.4 (q, 2H, CH₂), 3.0 (q, 4H, CH₂-N), 3.48 (d, 1H, ${}^{2}J_{HP}$ =9.8 Hz, CH), 3.79 (q, 4H, CH₂-O); ¹³C NMR (50 MHz): 12.91 (CH₃), 13.96 (CH₃, Et), 16.37 (CH₃), 22.33 (d, {}^{3}J_{PC}=5.1 Hz, CH₂, Et), 43.3 (CH₂-N), 60.45 (CH₂-O), 72.54 (d, {}^{1}J_{PC}=217.33 Hz, CH), 164.43 (d, {}^{2}J_{PC}=21.6 Hz, =C–N); ³¹P NMR (80 MHz): 27.17; IR (KBr): 2970, 1546, 1213, 1029 cm⁻¹.

(*E*)-Diethyl-2-piperidinobut-1-enylphosphonate (3h): mp 156°C (0.25 mmHg); ¹H NMR (200 MHz): 1.21 (t, 6H, CH₃), 1.25 (t, 3H, CH₃), 1.5 (m, 6H, CH₂ piper.), 2.57 (q, 2H, CH₂, Et), 3.08 (m, 4H, CH₂-N), 3.85 (d, 1H,

 ${}^{2}J_{HP}$ =10.3 Hz, CH), 3.93 (q, 4H, CH₂-O); 13 C NMR (50 MHz): 13.02 (CH₃), 16.77 (CH₃), 23.46 (d, ${}^{3}J_{PC}$ = 5.18 Hz, CH₃), 25.14 (CH₂, piper), 47.07 (CH₂-N), 60.39 (CH₂-O), 75.63 (d, ${}^{1}J_{PC}$ =215.7 Hz, CH), 165.99 (d, ${}^{2}J_{PC}$ =21.72 Hz, =C-N); 31 P NMR (80 MHz): 27.25; IR (KBr): 2973, 1629, 1233, 1013 cm⁻¹.

(E)-Diethyl-2-N-diethylaminophenyleth-1-enylphospho-

nate (3i): mp 156°C (0.1 mmHg); ¹H NMR (200 MHz): 0.75 (m, 12H, CH₃), 2.28 (q, 4H, CH₂-N), 3.42 (q, 4H, CH₂-O), 3.87 (d, 1H, ${}^{2}J_{HP}$ =10.3 Hz, CH), 7.0 (m, 5H, arom.); ¹³C NMR (50 MHz): 11.7 (CH₃), 15.16 (CH₃), 42.71 (CH₂-N), 59.3 (CH₂-O), 76.6 (d, ${}^{1}J_{PC}$ =217.82 Hz, CH), 126.65–127.54 (m, *p*-CH-arom.), 128.15 (*o*-CH-arom.), 135.2 (d, ${}^{3}J_{PC}$ =5.6 Hz, C-*ipso*, arom.), 161.18 (d, ${}^{2}J_{PC}$ =17.1 Hz, =C–N); ³¹P NMR (80 MHz): 24.14; IR (KBr): 2970, 1533, 1200, 1029 cm⁻¹. MS (EI) 310; *m*/*z* (%): 29 (77.9), 72 (51.7), 103 (51.3), 131 (34.4), 174 (100), 282 (29.3), 310 (60.7).

(E)-Diethyl-2-piperidinophenyleth-1-enylphosphonate

(3j): mp 160°C (0.1 mmHg); ¹H NMR (200 MHz): 1.06 (t, 6H, CH₃), 1.55 (m, 6H, CH₂ piper.), 3.0 (m, 4H, CH₂-N), 4.11 (q, 4H, CH₂-O), 4.36 (d, 1H, ²J_{HP}=9.8 Hz, CH), 7.35 (m, 5H, arom.); ¹³C NMR (50 MHz): 15.82 (*m*-CH₂, piper.), 15.85 (CH₃), 25.23 (*p*-CH₂, piper.), 48.62 (*o*-CH₂, piper.), 60.34 (CH₂-O), 81.19 (d, ¹J_{PC}=214.4 Hz, CH), 127.63 (*m*-CH-arom.), 128.33 (*p*-CH-arom.), 128.99 (*o*-CH-arom.), 136.45 (d, ³J_{PC}=4.07 Hz, C-*ipso*, arom.), 164.05 (d, ²J_{PC}=17.36 Hz, =C-N); ³¹P NMR (80 MHz): 24.6; IR (KBr): 2970, 1540, 1220, 1029 cm⁻¹.

(*E*)-Diethyl-2-morpholinophenyleth-1-enylphosphonate

(3k): mp 165°C (0.1 mmHg); ¹H NMR (200 MHz): 0.97 (t, 6H, CH₃), 2.87 (t, 4H, CH₂-N), 3.55 (t, 4H, CH₂-O, morph.), 3.67 (q, 4H, CH₂-O), 4.37 (d, 1H, ${}^{2}J_{HP}=9.2$ Hz, CH), 7.27 (m, 5H, arom.); 13 C NMR (50 MHz): 15.67 (CH₃), 47.59 (CH₂-N), 60.38 (CH₂-O), 65.94 (CH₂-O, morph.), 83.93 (d, ${}^{1}J_{PC}=212.6$ Hz, CH), 127.57 (*m*-CH-arom.), 128.75 (*p*-CH-arom.), 128.89 (*o*-CH-arom.), 135.24 (d, ${}^{3}J_{PC}=4.07$ Hz, C-ipso, arom.),

163.77 (d, ${}^{2}J_{PC}$ = 16.31 Hz, =C–N); ${}^{31}P$ NMR (80 MHz): 23.12; IR (KBr): 2970, 1540, 1220, 1020 cm⁻¹.

References

- 1. Walker, B. J. Organophosphorus Reagents in Organic Synthesis; Academic Press: London, 1979; pp. 155–206.
- Lee, S.-L.; Hepburn, T. W.; Swartz, M. H.; Ammon, H. L.; Mariano, P. S.; Dunaway-Mariano, D. J. Am. Chem. Soc. 1992, 114, 7346–7354.
- Kazankova, M. A.; Trostyanskaya, I. G.; Lutsenko, S. V.; Efremova, I. V.; Beletskaya, I. P. Zh. Obshch. Khim. 1999, 35, 452–458.
- Saunders, B. C.; Simpson, P. J. Chem. Soc. 1963, 3351– 3357.
- Acheson, R. M.; Ansel, P. J.; Murray, J. R. J. Chem. Res. (S) 1986, 378–379.
- Pudovik, A. N.; Khusainova, N. G.; Ageeva, A. G. Zh. Obshch. Khim. 1964, 34, 3938–3942.
- Maerkl, G.; Merkl, B. Tetrahedron Lett. 1983, 24, 5865– 5868.
- Portnoy, N. A.; Morrow, C. J.; Chatta, M. S.; Williams, J. C.; Aguiar, Jr., A. M. *Tetrahedron Lett.* 1971, 1397– 1400.
- Rousselet, G.; Capdeville, P.; Maumy, M. Tetrahedron Lett. 1993, 34, 6395–6398.
- Kazankova, M. A.; Trostyanskaya, I. G.; Lutsenko, S. V.; Beletskaya, I. P. *Tetrahedron Lett.* 1999, 40, 559–572.
- 11. Karplus, M. J. Chem. Phys. 1959, 30, 11.
- 12. Petrov, A. A.; Ionin, B. I.; Ignat'ev, V. M. Tetrahedron Lett. 1968, 15–16.
- Timofeeva, T. N.; Ignat'ev, V. M.; Ionin, B. I.; Petrov, A. A. Dokl. Akad. Nauk SSSR 1969, 189, 1052–1054.
- 14. Palocios, F.; Aparicio, D.; Garcia, J. *Tetrahedron* **1996**, *52*, 9609–9628.
- Palocios, F.; Ochoa de Retana, A.na M. *Tetrahedron* 1999, 55, 3091–3104.
- Duncan, M.; Gallagher, M. J. Org. Magn. Res. 1981, 15, 37–42.
- 17. Richard, J. J.; Banks, C. V. J. Org. Chem. 1963, 28, 123.