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The first total synthesis of the naturally occurring benzofurans,

moracins O and P was achieved using a Sonogashira cross

coupling reaction followed by in situ cyclization, and the

absolute configuration of natural moracin O was established.

Mori Cortex Radicis, the root bark of someMorus species, has

been used in oriental medicine as an antidiabetic, a diuretic,

an expectorant and a laxative agent.1 Various prenylated

flavonoids, benzofurans and other phenolic compounds2 with

biological activities, including cytotoxicity,3 COX-1 and 2

inhibition,4 and NO production,5 have been isolated from

these species.

In search of small molecule inhibitors against hypoxia-

inducible factor (HIF)-1,6 which is a master regulator of

the adaptation process of cancer cells to tumor hypoxia, a

bioassay-guided fractionation study with a hypoxia response

element (HRE) reporter assay on natural products has

been conducted. Some moracins were found to exhibit

potent inhibitory effects in cell-based HRE assays in human

hepatocarcinoma Hep3B cell lines. (�)-Moracin O (1; Fig. 1)

exhibited the strongest inhibitory activity (IC50 = 0.14 nM),

while (�)-moracin P (2) had an IC50 value of 0.65 nM.7

Moracins O and P were first isolated in 1998 from an

acetone extract of cortex and phloem tissues of Morus alba

shoots infected with Fusarium solani f. sp. mori, and their

spectra were reported.8 Interesting biological properties with a

novel biosynthetic pathway made these phytochemicals an

attractive synthetic target. Syntheses using simple strategies

for moracin M9 and an efficient route to moracin C have been

reported.10 To the best of our knowledge, there are no reports

concerning the synthesis of moracins O or P. Emerging interest

in the field of HIF inhibitors, together with the considerable

biological activity of moracins O and P, have provided the

motivation to complete an adaptable and scalable total

synthesis of these compounds. However, the absolute

configuration of moracin O has still not been confirmed.

In this communication, we first report efficient synthesis

of (�)-moracins O and P via ortho-prenylated phenolic

intermediate 6 as a common precursor. The asymmetric

synthesis of (R)- and (S)-moracin O will be introduced, and

the absolute configuration of bioactive natural moracin O is

also demonstrated.

A retrosynthetic analysis for (�)-moracins O and P through

the disconnection of the benzo[b]furan nucleus of these two

compounds can be constructed by Sonogashira cross coupling

with acetylene 9 and 14 and subsequent in situ cyclization

(Scheme 1). The substituted acetylene, 1,3-bis-(tert-butyldi-

methylsilanyloxy)-5-ethynylbenzene (9) can be derived from

commercially available 3,5-dihydroxybenzaldehyde (15).11 It

was also envisioned that nucleus 14 (a benzohydropyran in

the case of moracin P; a benzohydrofuran for moracin O)

could be synthesized from the common ortho-prenylated

phenolic intermediate, 6, which in turn can be derived from

2,4-dihydroxybenzaldehyde (3).

Our synthesis started with the iodination of 3 in the

presence of iodine monochloride to produce 2,4-dihydroxy-5-

iodobenzaldehyde (4; Scheme 2). In this reaction, however, we

Fig. 1 Natural moracins.

Scheme 1 Retrosynthetic approach.
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obtained the undesired regioisomer 2,4-dihydroxy-3-iodobenz-

aldehyde as a side product in an inseparable 1 : 2 ratio. This

mixture was confirmed by the 1H NMR spectrum, leading us to

believe that we in fact had two regioisomers. This crude mixture

was protected with a Boc group using Boc2O and K2CO3. At

this stage the two isomers could be easily separated by column

chromatography and the doubly protected iodobenzaldehyde,

5, was obtained in an overall yield of 49% over two steps from

3. The reduction of 5 with NaBH4 in THF–H2O (19 : 1)

afforded an intermediate benzyl alcohol, which, after work

up, but with no additional purification, was allowed to react

with 2-methylpropenyl magnesium bromide to provide the

prenylated derivative, 612 in a 38% yield over two steps. This

compound served as a common intermediate for the synthesis

of both moracin O and moracin P.

For the synthesis of (�)-moracin P, in situ epoxidation with

m-CPBA, followed by [6-endo-trig]-closure under acidic

conditions (p-TSA), furnished Boc-protected benzohydropyran

7 in a 70% yield (Scheme 3). During initial trials of the

Boc deprotection of 7 under HCl–dioxane conditions, we

observed simultaneous de-iodination,13 but under mild

conditions, i.e. with ZnBr2,
14 8 was readily obtained in an

80% yield. The reaction of 8 with alkyne 9 under Sonogashira

cross coupling conditions, followed by in situ cyclization in

dioxane, afforded benzo[b]furan intermediate 10 in a 36%

yield. Early attempts to remove the TBDMS groups of

compound 10 with TBAF, stirred overnight, yielded mixtures

of products, possibly due to the strong basic conditions

and/or the long reaction time, which either permitted group

migration15 or opening of the pyran ring. The same deprotection

reaction with HF–pyridine complex afforded clean removal of

the TBDMS groups and provided the desired racemic moracin

P (2) in a 75% yield.

After completion of the synthesis of (�)-moracin P, we

turned our attention to (�)-moracin O (Scheme 4). The key

step was the construction of benzohydrofuran nucleus 12. This

compound can be distinguished from its isomer, 8, at the

Boc-deprotected stage by thin layer chromatography (TLC)

and was characterized by 1H NMR spectroscopy as the cyclic

CH2 of compound 8 undergoes geminal coupling, while the

CH2 of compound 12 lacks this coupling. In situ epoxidation

of 6, followed by [5-exo-tet]-cyclization using NaHCO3 in

CHCl3, was unsatisfactory for Boc-protected 12, because

it gave a product that was found to be significantly

contaminated with pyran 7. Accordingly, we addressed the

reaction of intermediate epoxide 11 with LiOH, which gave 12

as the sole product in good yield. The reaction of 12 with 9,

employing Sonogashira cross coupling under basic conditions

and in situ cyclization, afforded 13, which upon final deprotec-

tion with HF–pyridine, provided (�)-moracin O (1) in a 75%

yield. The NMR spectra of synthetic (�)-1 and (�)-2 were

identical to the spectra of the corresponding natural products.8b

Furthermore, in order to determine the absolute configuration

of natural moracin O, the asymmetric syntheses of (R)- and

Scheme 2 Reagents and conditions: (a) ICl, AcOH, rt; (b) Boc2O, K2CO3,

49% over steps; (c) (i) NaBH4, THF, H2O; (ii) (2-methylprop-1-enyl)-

magnesium bromide, THF, �78 1C to rt.

Scheme 3 Reagents and conditions: (a) m-CPBA, p-TSA, rt, 70%;

(b) ZnBr2, DCM, rt, 80%; (c) 9, Pd(PPh3)2Cl2, CuI, Et3N, dioxane,

85 1C, 36.9%; (d) HF–Py, THF–Py 0 1C to rt, 75%.

Scheme 4 Reagents and conditions: (a) m-CPBA, EtOAc, 0 1C;

(b) LiOH, MeOH, 56.7% over 2 steps; (c) 9, Pd(PPh3)2Cl2, CuI,

Et3N, dioxane, 85 1C, 31%; (d) HF–Py, THF–Py, 0 1C to rt, 74.8%.

Scheme 5 Reagents and conditions: (a) AD-mix-a, methanesulfonamide,

t-BuOH–H2O for 17a; AD-mix-b, methanesulfonamide, t-BuOH–H2O

for 17b; (b) (i) tosyl chloride, pyridine, (ii) K2CO3, methanol; (c) Pd

black, 1,2-cyclohexadiene, EtOH; (d) ICl, AcOH; (e) 9, Pd(PPh3)2Cl2,

CuI, Et3N, dioxane, 85 1C; (f) HF–Py, THF–Py, 0 1C to rt.
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(S)-moracin O were conducted as shown in Scheme 5.

Through three steps,16 3 provided benzyl-protected prenylated

derivative 16. The Sharpless asymmetric dihydroxylation of 16

using commercially available catalyst AD-mix-a or b17,18

yielded diols (S)-17a or (R)-17b in 90% and 95% ee,

respectively (determined by chiral HPLC).19 The selective

tosylation of the diols (S)-17a or (R)-17b using tosyl chloride,

followed by basic treatment of the resulting tosylated

compound, led to exclusive formation of the desired epoxides,

(R)-18a or (S)-18b, in a 45% overall yield. Debenzylation of

the requisite enantiomers (R)-18a or (S)-18b using palladium

black and 1,4-cyclohexadiene as a hydrogen donor,20 provided

the corresponding benzofuran compounds, (R)-19a or (S)-19b.

Introduction of the iodo group at the ortho position of

benzofuran derivative (R)-19a or (S)-19b by using iodine

monochloride furnished optically active benzofurans (R)-20a

or (S)-20b in good yields. This key intermediate reacted with

protected ethynyl benzene compound 9 through a Sonogashira

reaction by using palladium catalyst to afford chiral moracin

O precursors (R)-21a or (S)-21b in moderate yields. Finally,

deprotection with hydrogen fluoride in pyridine produced

target compounds (R)- and (S)-moracin O in good yields.

The spectroscopic data of (R)-moracin O were in accordance

with that reported for the natural moracin O.19b The specific

rotation of (R)-moracin O ([a]28D = �4.45 (c 0.05, MeOH))

was matched to that of natural moracin O ([a]25D = �4.02
(c 0.04, MeOH)), thereby validating the full configurational

assignment of natural moracin O.

The synthetically generated racemic compounds (�)-1 and

(�)-2, as well as (R)-(�)-1 and (S)-(+)-1, were evaluated for

their effects on hypoxia-induced HIF activation by a cell-based

HRE-reporter assay in Hep3B cell lines. (�)-1, (�)-2 and

(R)-(�)-1 exhibited potent inhibition, with IC50 values of

6.76, 10.7 and 0.19 nM, respectively, without cytotoxicity

(Table 1).

In summary, we have developed a simple and efficient

protocol for the first total syntheses of (�)-moracin

O (1) and (�)-moracin P (2) in overall yields of 2.21% and

2.27%, respectively. In addition, the enantioselective syntheses

of (R)- and (S)-moracin O have been achieved from

2,4-dihydroxybenzaldehyde. The absolute stereochemistry

was introduced by employing Sharpless’ AD reaction.
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