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ABSTRACT: With methylthio groups flanking the
carboxyl groups, the 3,3′,5,5′-tetrakis(methylthio)biphenyl
dicarboxylate (TMBPD) linker forms a zirconium(IV)
carboxylate porous framework featuring the topology of
the UiO-67 prototype, i.e., with a face-centered-cubic array
of the Zr6O4(OH)4 clusters. Thioether functionalization
proves valuable because the ZrTMBPD crystal is found to
be exceptionally stable not only upon long-term exposure
to air but also in boiling water and a broad range of pH
conditions. The hydrophobicity of the metal−organic
framework can also be tuned by simple H2O2 oxidation, as
illustrated in the water contact-angle measurement of the
pristine and H2O2-treated ZrTMBPD solid.

The issue of stability occupies a central position in the study
and application of metal−organic frameworks (MOFs) as a

growing class of porous materials.1−7 Unlike the inorganic
zeolites that are built on robust covalent Si−O and Al−O bonds,
MOFs build on generally more labile coordination bonds
between organic linkers and metal ions and are prone to
degradation, e.g., upon exposure to water or other reagents. In
this context, zirconium(IV)-based MOFs (e.g., the UiO series
and analogues)8−13 attract great attention because of its noted
stability to water, H2S, and other acids, stability that apparently
arises from the robust zirconium(IV) carboxyl interaction and
broadens the latitude of functionalization and applications.
One outstanding issue that besets the prominent UiO-type

networks, however, is their tendency to collapse upon solvent
removal. Even though the smallest member UiO-66 (based on
terephthalic acid) is stable in the activated, solvent-free state,14,15

the expanded versions (e.g., UiO-67, based on 4,4′-biphenyldi-
carboxylic acid) become quite sensitive to solvent loss: when
taken out of solvents (N,N-dimethylformamide, acetonitrile, or
water), the crystallinity can largely degrade within just a few
hours.16−18 Certain solvent-exchange treatments (e.g., with
acetone) mitigate the problem,17 but better stability remains
highly pertinent, as is illustrated by Lillerud’s recent reports on a
binaphthyl analogue of UiO-67 that sustains direct drying from
water19 and on a bipy-functionalized UiO-67.20

Building on the long-standing studies on the sulfur chemistry
of open frameworks,21−26 we here report the dramatic stability

improvement imparted by symmetrically attaching thioether
groups onto the zirconium-based network of UiO-67 [see the
3,3′,5,5′-tetrakis(methylthio)biphenyl dicarboxylic acid
(H2TMBPD) molecule in Figure 1]. Besides remaining highly

crystalline even after being stored in air for years in the activated,
solvent-free state, the ZrTMBPD framework can also withstand
the harsh conditions of wide-ranging pH conditions and boiling
water. We will also describe the oxidation of thioether groups of
ZrTMBPD for tuning the hydrophilicity properties of this robust
porous solid.
The linker molecule H2TMBPD was synthesized in a reliable

and economical protocol. Specifically, the tetrakis(fluoro)-
biphenyl precursor (molecule S3, Scheme S1) was obtained in
74% yield by a nickel-mediated homocoupling reaction at 50 °C.
Facile substitution on S3with sodium thiomethoxide produced a
tetrakis(methylthio)biphenyl diester compound (S4) in ex-
cellent yield (90%), which was then hydrolyzed to afford
H2TMBPD. Notably, the synthetic route involves no palladium
or other noble-metal catalysts and only requires earth-abundant
metal elements such as nickel and zinc for the coupling reaction.
Hydrothermally reacting H2TMBPD with ZrCl4 reliably

produced colorless, octahedral single crystals of UiO-67-4MS
(0.1−0.3 mm; Figure 2; see also the Supporting Information for
details), which readily yields to X-ray crystallographic analysis.
The crystal structure of UiO-67-4MS adopts the space group
Fm3 ̅m (No. 225), consisting of a face-centered-cubic array of
Zr6O4(OH)4 clusters bridged by the carboxylate units of the
TMBPD linker to give the fcu topology of the prototype UiO-67
(based on 4,4′-biphenyl dicarboxylate)10 and related struc-
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Figure 1. Synthetic scheme for the ZrTMBPD crystals (photograph
shown in the right).
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tures.19 The flanking MeS− groups are densely disposed around
the zirconium oxo cluster to create significant steric shielding.
The biphenyl units are disordered over 2 times five sets of
positions around the linker axes. The extensive disorder makes it
difficult to pinpoint the ligand geometry. One possibility
compatible with chemically allowed interatomic distances points
to dihedral angles of 77° for the biphenyl units and 52.5° for
benzoic unit, with the intermolecular S−S distance among the
thioether units being 4.0 Å.
As per N2 sorption studies at 77 K, the activated sample of

ZrTMBPD displayed type I gas adsorption isotherms (Figure
S4) with a Brunauer−Emmett−Teller surface area of 1153 m2

g−1. Elemental analyses on an as-made sample of ZrTMBPD
found 36.21% carbon, 5.12% hydrogen, and 1.58% nitrogen. A
fitting formula can be determined to be Zr6O4(OH)4·
(C18H16O4S4)6·(DEF)5·(H2O)37 (formula mass = 4399), which
gives a calculated profile of 36.31% carbon, 5.25% hydrogen, and
1.59% nitrogen. The water and N,N-diethylformamide (DEF)
content of (1172/4399) × 100% = 26.6% calculated based on
elemental analyses is slightly greater than that observed in the
first step of weight loss in the thermogravimetric analysis (TGA)
plot (100% − 76% = 24%; see Figure S2). The ZrO2 (formula
mass = 123) content from Zr6O4(OH)4·(C18H16O4S4)6 (formula
mass = 3227) equals [(6 × 123)/3227] × 100% = 22.9%,
matching the residual weight percentage found in TGA: (18%/
76%) × 100% = 23.7%.
To demonstrate the water stability of the host framework, the

as-made crystals were first boiled in water for 24 h, filtered out,
and then air-dried. Powder X-ray diffraction (PXRD) indicates
retention of the host network (Figure 3, pattern e), and the N2
sorption isotherm remains largely unchanged (e.g., <15%
variation in the surface area; Figure S5). In addition, the
PXRD pattern also remains consistent (Figure S8, pattern c)
after being heated at 200 °C in air for 4 h, even though the
crystals changed from colorless to reddish brown. The long-term
stability of the activated crystals is also excellent; for example, a

sample stored in air for over 2 years shows a PXRD pattern
identical with that of the fresh sample (Figure 3, pattern d).
The stability to acids and bases is also substantial. For example,

after being immersed in 1.62 M HCl (pH = 0) for 24 h, the
PXRD pattern remained unchanged, with the individual crystals
retaining their pristine, transparent appearance. Upon immersion
in 0.01 M NaOH (measured pH = 12.6) for 24 h, a translucent
whiteness developed in the crystals, even though PXRD
indicative of the original crystalline lattice can still be obtained.
In higher basicity, e.g., at 0.1 M NaOH (measured pH = 13.8),
substantial dissolution of the crystal solid was observed, with the
remaining solid exhibiting no well-defined PXRD peaks,
indicating its amorphous nature. Such stability to varying pH is
similar to that of other robust zirconium(IV)-based MOF
solids.19,27,28 A comparison with the prototypal, unsubstituted
UiO-67 is also informative. As reported,17 acetone exchange
enhances the stability of UiO-67 in the activated (solvent-free)
state (e.g., for 1 week; see Figure S8, patterns e and f), but
treatment with boiling water or 0.1% NaF solutions readily
degrades its crystallinity (Figure S8, patterns g and h). By
comparison, the ZrTMBPD solid remains highly crystalline
under similar conditions (Figure 3, pattern e, and Figure S8,
pattern i).
The water stability of the ZrTMBPD crystals led us to explore

oxidization of the thioether groups by H2O2 solution.
25 After

treatment with 5% H2O2 (in acetic acid and water) at rt for 24 h,
the PXRD pattern was consistent with that of the fresh sample
(Figure S8). Moreover, thioethers inside the resulting network
were all oxidized, giving sulfoxide and sulfone units in an
approximately 10:3 ratio, as determined by solution 1H NMR of
the resulting solid dissolved in 4% NaF in D2O. More
interestingly, the hydrophobicity of the crystals was found to
be significantly reduced after H2O2 treatment, with the contact
angle changed from 81.65° of an activated sample to 68.17° of
the H2O2-treated sample (Figure 4). The reduced hydro-
phobicity is consistent with the more polar sulfoxide and sulfone
units, which readily hydrogen bonds with water guests. The
tuning of the hydrophobicity of MOF solids29−37 is of relevance
for gas adsorption and other guest exchange properties; for
example, the polar sulfoxide/sulfone units attract more strongly

Figure 2. Single-crystal structures of ZrTMBPD: local bonding
environment of the Zr6-oxo cluster along the (a) [1 0 0] and (b) [1 1
1] directions. (c) Unit cell of the cubic framework. Disorder of the
biphenyl and methyl units is omitted for clarity. Zirconium coordination
polyhedra are displayed in green. Atom colors: red, O; yellow, S; gray, C.

Figure 3. PXRD patterns (CuKα, λ = 1.5418 Å) of (a) a simulation from
the single-crystal structure of ZrTMBPD, (b) an as-made sample of
ZrTMBPD, (c) an activated sample of ZrTMBPD, (d) an activated
sample of ZrTMBPD after storage in air over 2 years, (e) an as-made
sample of ZrTMBPD after stirring in boiling water for 24 h, (f) an as-
made sample of ZrTMBPD after soaking in 1.62 M HCl (pH = 0) at
room temperature (rt) for 24 h, and (g) an as-made sample of
ZrTMBPD after soaking in 0.01 MNaOH (aq, pH = 12.6) at rt for 24 h.
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the quadrupole of CO2 and dipoles of SO2 and H2S molecules,
which may facilitate their separation from natural gas.
In summary, thioether groups symmetrically installed at both

ortho positions of the carboxyl unit have resulted in better
stability of the UiO-67-type network of ZrTMBPD. The dense
array of thioether groups not only sterically shields the Zr−O
cluster node from boiling water and other encroaching species
(e.g., the F− ions) but also improves the framework rigidity to
prevent collapse in the activated state. In the context of making
stable MOF solids, the use of steric shielding may help to
circumvent the dilemma between the reversible reaction for
crystallization and strong (and less reversible) coordination for
stability. Further studies, however, are needed to better account
for the stability improvement observed here; for instance, one
may install only one thioether group next to the carboxyl unit, as
a comparison with the present case. One may also compare the
water adsorption isotherms for ZrTMBPD and its sulfone/
sulfoxide derivatives, in order to highlight the tunability of this
stable, sulfur-equipped MOF solid.
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