
This article was downloaded by: [University of Colorado - Health Science Library] On: 13 December 2014, At: 12:56 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



# Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: <a href="http://www.tandfonline.com/loi/gpss20">http://www.tandfonline.com/loi/gpss20</a>

Reactions with Hydrazonoyl Halides 34<sup>1</sup>: Synthesis of Some New 2,3-Dihydro-1,3,4-thiadiazoles

Omer S. Abu-Team<sup>a</sup>, Nora M. Rateb<sup>a</sup> & Abdou O. Abdelhamid<sup>a</sup> <sup>a</sup> Cairo University, Giza, Egypt Published online: 18 Jun 2010.

To cite this article: Omer S. Abu-Team , Nora M. Rateb & Abdou O. Abdelhamid (2003) Reactions with Hydrazonoyl Halides 34<sup>1</sup>: Synthesis of Some New 2,3-Dihydro-1,3,4-thiadiazoles, Phosphorus, Sulfur, and Silicon and the Related Elements, 178:11, 2363-2371, DOI: <u>10.1080/714040950</u>

To link to this article: <u>http://dx.doi.org/10.1080/714040950</u>

# PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at <a href="http://www.tandfonline.com/page/terms-and-conditions">http://www.tandfonline.com/page/terms-and-conditions</a>



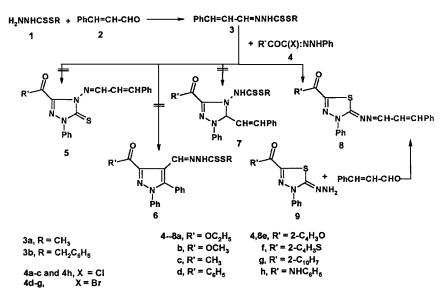
#### REACTIONS WITH HYDRAZONOYL HALIDES 34<sup>1</sup>: SYNTHESIS OF SOME NEW 2,3-DIHYDRO-1,3,4-THIADIAZOLES

Omer S. Abu-Team, Nora M. Rateb, and Abdou O. Abdelhamid Cairo University, Giza, Egypt

(Received April 5, 2003; accepted May 21, 2003)

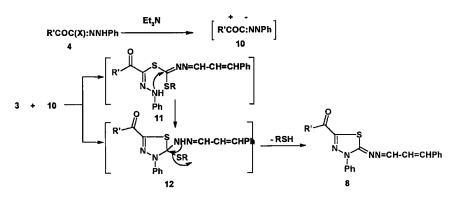
Hydrazonoyl halides **4a-h** have been caused to react with each of alkyl carbodithioates (**3**, **13–17**)**a**,**b** in the presence of triethylamine to give 2,3-dihydro-1,3,4-thiadiazoles in good yields. Structures of the new compounds were elucidated on the basis of elemental analyses, spectral data, and alternative methods of synthesis whenever possible.

*Keywords:* 1,3-dipolar cycloaddition; 1,3,4-thiadiazoles; carbodithioates; hydrazonoyl halides; unsymmetrical azines


1,3,4-Thiadiazole and its derivatives have become very useful compound in medicine, agriculture and in many fields of technology.<sup>2</sup> Although few patented compounds become marketed products, patents do give a rough indication of utility. Some of the technological uses involve dyes, lubricant compositions, optically active liquid crystals, photographic materials, epoxy resins and miner others. A large number of thiadiazoles have been patented in the agricultural filed as herbicides, insecticides, fungicides, bactericides, and anthelmintics. In the medical field they have been patents for almost every disease known to man, and quite a few of them have become commercial products. As an extension of our study<sup>3-5</sup> and as a part of our program aiming at the synthesis of different 1,3,4-thiadiazoles, here we report on the reactivity of  $\alpha$ -keto hydrazonoyl halides toward some alkyl carbodithioates.

#### **RESULTS AND DISCUSSION**

The reaction of equimolar amounts of C-ethoxycarbonyl-N-phenylhydrazonoyl chloride (**4a**) with [((1E,3E)-1-aza-4-phenylbuta-1,3-dienyl)amino]methylthiomethane-1-thione (**3a**) in ethanolic


Address correspondence to Abdou O. Abdelhamid, Department of Chemistry, Faculty of Science, Cairo University, Giza 12316, Egypt. E-mail: Abdou@main-scc.cairo.eun.eg

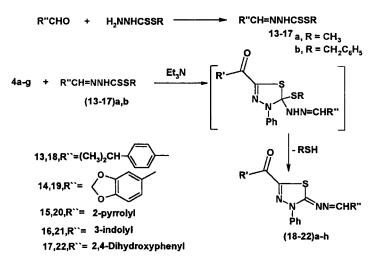
triethylamine solution furnished exclusively one product (as evidenced by TLC) and its structure is seemed to be 5-8. Elemental analyses, spectral data, and alternative synthesis are in agreement with the formation of ethyl 2-((2E,4E)-1,2-diaza-5-phenylpenta-2,4dienylidene)-3-phenyl-1,3,4-thiadiazoline-5-carboxylate (8a). Thus. the IR (cm<sup>-1</sup>) spectrum of the product revealed bands at 1710 (CO), 1618 (C=N) and 1583 (C=C). Its <sup>1</sup>H NMR ( $\delta$  ppm) showed signals at  $\delta = 1.42$  (t, 3H, CH<sub>2</sub>CH<sub>3</sub>), 4.47 (q, 2H, CH<sub>2</sub>CH<sub>3</sub>), 6.95–7.51 (m, 10H, ArH's), 7.96-8.00 (d, 2H), and 8.19-8.23 (d, 1H). Unequivocal support of the structure of 8 obtained by reaction of 2-hydrazino-2,3-dihydro-1,3,4-thiadiazole<sup>6</sup> (9) with cinnamaldehyde gave identical product in all respects (m.p., mixed m.p., and spectra) with **8a** (cf. Scheme 1). Also, **4a** reacted with **3b** in ethanolic triethylamine gave product identical in all respects (m.p., mixed m.p., and spectra) with 8a. Structures 5-7 were excluded on the basis of the previous data.



#### **SCHEME 1**

Two possible pathways can account for the formation of 8: 1) 1,3-Addition of the thiol tautomer 3 to the nitrilium imide 10a, (which prepared in situ by treatment of hydrazonoyl chloride 4a with triethylamine), can give the thiohydrazonate ester 11a, which undergoes nucleophilic cyclization to yield 12a, which affords 8a by loss of RSH; and 2) 1,3-cycloaddition of the nitrilium imide 10a to the C=S of 3a (or 3b) can give 12a directly (cf. Scheme 2).



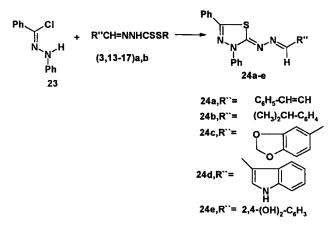

#### SCHEME 2

Similarly, the appropriate hydrazonoyl halides **4b–h** react with each of alkyl carbodithioate **3a** (or **3b**), to afford 2,3-dihydro-1,3,4-thiadiazole derivatives **8b–h** respectively.

Hydrazonoyl chloride **4a** reacts with the appropriate ({(1E)-1-aza-2-[4-(methylethyl)phenyl]vinyl}amino)methylthiomethane-1-thione (**13a**) or (methane{(1E)-1-aza-2-[4-(methylethyl)phenyl]vinyl}amino)-phenylmethylthio-1-thione (**13b**) in ethanolic triethylamine afforded, in each case, the same isolable product (m.p., mixed m.p., and spectra). Structure **18a** was assigned to the isolated products on the bases of their elemental analyses and spectral data. For example, IR spectra of **18a** revealed absorption band at 1710 cm<sup>-1</sup> due to the carbonyl group. Its <sup>1</sup>H NMR spectrum showed signals at  $\delta_{\rm H}$  1.25 (d, 6H, 2CH<sub>3</sub>), 1.40 (t, 3H, CH<sub>3</sub>CH<sub>2</sub>), 2.94 (hept., 1H, CH(CH<sub>3</sub>)<sub>2</sub>), 4.45 (q, 2H, CH<sub>2</sub>CH<sub>3</sub>), 7.25–8.02 (m, 9H, ArH's) and 8.38 (s, 1H, CH).

By similar route, the appropriate alkyl carbodithioates **13** (**a**, **b**) react with the appropriate hydrazonoyl halides **4b–h** to afford unsymmetrical azines **18b–h**, respectively (cf. Scheme 3).

Hydrazonoyl chloride **4a** reacts with each of the appropriate [((1E)-2-(2H-benzo[3,4-d]1,3-dioxolan-5-yl)-1-azavinyl)amino]methylthiomethane-1-thione (**14a**), [((1E)-2-(2H-benzo[3,4-d]1,3-dioxolan-5-yl)-1-azavinyl)amino](phenylmethylthio)methane-1-thione (**14b**), [((1E)-1-aza-2-pyrol-2-ylvinyl)amino]methylthiomethane-1-thione (**15a**), [((1E)-1-aza-2-pyrrol-2-ylvinyl)amino]phenylmethylthio)methane-1-thione (**15b**), [((1E)-1-aza-2-indol-3-ylvinyl)amino]methylthiomethane-1-thione (**16a**), [((1E)-1-aza-2-indol-3-ylvinyl)amino]phenylmethylthio)methane-1-thione (**16b**), 4-{(1E)-2-aza-2-[(methylthiothioxomethyl)-amino]vinyl}benzene-1,2-diol (**17a**), 4-{(1E)-2-aza-2-[(phenylmethylthio)thioxomethyl)-amino]vinyl}benzene-1,2-diol (**17b**), to give 2,3-dihydro-1,3,4-thiadiazoles (**19–22)a** respectively. Structures




#### **SCHEME 3**

**19–22** were confirmed on the basis of elemental analyses, spectral data, and alternative synthesis (cf. Scheme 3 and Experimental).

Analogously, the appropriate hydrazonoyl halides **4b–h**, react with the appropriate (**14–17**)**a**,**b** in ethanol containing triethylamine at room temperature to give unsymmetrical azines (**18–22**)**b–h**, respectively, in a good yields.

Moreover, *C*-phenyl-*N*-phenylhydrazonoyl chloride (**23**) reacts with the appropriate methyl carbodithioates (**3**, **13–17**)**a**, in ethanolic trietyhlamine to give the corresponding 2,3-dihydro-1,3,4-thiadiazoles **24a–e**, respectively (cf. Scheme 4).



| Dinyarotniaatazoles                                                     |
|-------------------------------------------------------------------------|
| <b>TABLE I</b> Characterization Data of the Newly Synthesized Compounds |

| Compd. | m.p., °C         | Yield | Mol. formula                                                           | % Analyses, calcd./found |                                             |                                               | und              |
|--------|------------------|-------|------------------------------------------------------------------------|--------------------------|---------------------------------------------|-----------------------------------------------|------------------|
| no.    | solvent          | (%)   | (mol. wt.)                                                             | С                        | Η                                           | Ν                                             | S                |
| 3a     | 160 - 162        | 89    | $\mathrm{C}_{11}\mathrm{H}_{12}\mathrm{N}_{2}\mathrm{S}_{2}$           | 55.90                    | 5.12                                        | 11.85                                         | 27.13            |
|        | EtOH             |       | (236.36)                                                               | 56.20                    | 5.30                                        | 12.00                                         | 27.30            |
| 3b     | 187 - 189        | 87    | $\mathrm{C_{17}H_{16}N_2S_2}$                                          | 65.35                    | 5.16                                        | 8.97                                          | 20.52            |
|        | EtOH             |       | (312.46)                                                               | 65.50                    | 5.30                                        | 9.00                                          | 20.70            |
| 8a     | 118 - 120        | 85    | $\mathrm{C}_{20}\mathrm{H}_{18}\mathrm{N}_{4}\mathrm{O}_{2}\mathrm{S}$ | 63.47                    | 4.79                                        | 14.80                                         | 8.47             |
| _      | EtOH             |       | (378.46)                                                               | 63.60                    | 4.90                                        | 15.00                                         | 8.60             |
| 8b     | 135–138          | 87    | $\mathrm{C_{19}H_{16}N_4O_2S}$                                         | 62.62                    | 4.43                                        | 15.37                                         | 8.80             |
|        | ACOH             | ~-    | (364.43)                                                               | 62.40                    | 4.40                                        | 15.10                                         | 8.60             |
| 8c     | 160-162          | 87    | $C_{19}H_{16}N_4OS$                                                    | 65.50                    | 4.63                                        | 16.08                                         | 9.20             |
|        | ACOH             |       | (348.43)                                                               | 65.30                    | 4.40                                        | 15.90                                         | 9.00             |
| 8d     | 175–176          | 90    | $C_{24}H_{18}N_4OS$                                                    | 70.22                    | 4.42                                        | 13.65                                         | 7.81             |
|        | ACOH             |       | (410.50)                                                               | 70.40                    | 4.60                                        | 13.80                                         | 8.00             |
| 8e     | 190–191          | 80    | $C_{22}H_{16}N_4O_2S$                                                  | 65.99                    | 4.03                                        | 13.99                                         | 8.01             |
|        | ACOH             | -     | (400.46)                                                               | 66.00                    | 4.20                                        | 14.00                                         | 8.20             |
| 8f     | 198-200          | 78    | $C_{22}H_{16}N_4OS_2$                                                  | 63.45                    | 3.87                                        | 13.45                                         | 15.40            |
| 0      | ACOH             |       | (416.46)                                                               | 63.20                    | 3.60                                        | 13.20                                         | 15.10            |
| 8g     | 168-170          | 75    | $C_{28}H_{20}N_4OS$                                                    | 73.02                    | 4.38                                        | 12.16                                         | 6.96             |
| 01     | ACOH             | -     | (460.56)                                                               | 73.00                    | 4.30                                        | 12.10                                         | 6.90             |
| 8h     | 200-202          | 78    | $C_{24}H_{19}N_5OS$                                                    | 67.75                    | 4.50                                        | 16.46                                         | 7.54             |
| 10     | ACOH             | 0.0   | (425.49)                                                               | 67.50                    | 4.30                                        | 16.20                                         | 7.20             |
| 13a    | 106–108<br>Evolu | 80    | $C_{12}H_{16}N_2S_2$                                                   | 57.10                    | 6.39                                        | 11.10                                         | 25.41            |
| 1.01.  | EtOH             |       | (252.40)                                                               | 57.30                    | 6.50                                        | 11.30                                         | 25.60            |
| 13b    | 65–67<br>Et OII  | 55    | $C_{18}H_{20}N_2S_2$                                                   | 65.81                    | 6.14                                        | 8.53                                          | 19.52            |
| 14-    | EtOH             | 90    | (328.50)<br>C II N O S                                                 | 66.00                    | 6.30                                        | 8.70                                          | 19.70            |
| 14a    | 199–200<br>EtOH  | 90    | ${ m C_{10}H_{10}N_2O_2S_2}\ (254.33)$                                 | 47.00                    | $\begin{array}{c} 3.92 \\ 4.10 \end{array}$ | $\begin{array}{c} 11.01 \\ 11.20 \end{array}$ | $25.21 \\ 25.40$ |
| 14b    | 180–182          | 95    | (254.55)<br>$C_{16}H_{14}N_2O_2S_2$                                    | $47.20 \\ 58.16$         | $4.10 \\ 4.27$                              | 8.48                                          | 25.40<br>19.41   |
| 140    | ACOH             | 90    | (330.43)                                                               | 58.10<br>58.30           | 4.27<br>4.40                                | 8.60                                          | 19.41            |
| 15a    | 124–124          | 95    | (530.43)<br>$C_7H_9N_3S_2$                                             | 42.19                    | $4.40 \\ 4.55$                              | 21.08                                         | 32.18            |
| 15a    | EtOH             | 90    | (199.30)                                                               | 42.19<br>42.40           | $4.55 \\ 4.80$                              | 21.08<br>21.30                                | 32.18            |
| 15b    | 130-133          | 90    | $C_{13}H_{13}N_3S_2$                                                   | $\frac{42.40}{56.70}$    | 4.80<br>4.76                                | 15.26                                         | 23.29            |
| 100    | EtOH             | 50    | (275.40)                                                               | 56.90                    | 4.90                                        | 15.20<br>15.40                                | 23.40            |
| 16a    | 193 - 196        | 95    | $C_{11}H_{11}N_3S_2$                                                   | 52.99                    | 4.30<br>4.45                                | 16.85                                         | 25.40<br>25.72   |
| 104    | EtOH             | 00    | (249.36)                                                               | 53.10                    | 4.60                                        | 17.00                                         | 25.90            |
| 16b    | 188–190          | 91    | $C_{17}H_{15}N_3S_2$                                                   | 62.74                    | 4.65                                        | 12.91                                         | 19.70            |
| 100    | EtOH             | 01    | (325.46)                                                               | 62.50                    | 4.40                                        | 12.70                                         | 19.50            |
| 17a    | 207-210          | 86    | $C_9H_{10}N_2O_2S_2$                                                   | 44.61                    | 4.16                                        | 11.56                                         | 26.46            |
| 114    | EtOH             | 00    | (242.32)                                                               | 44.80                    | 4.30                                        | 11.70                                         | 26.60            |
| 17b    | 175 - 177        | 85    | $C_{15}H_{14}N_2O_2S_2$                                                | 56.58                    | 4.43                                        | 8.80                                          | 20.14            |
|        | EtOH             | 00    | (318.42)                                                               | 56.80                    | 4.30                                        | 8.90                                          | 19.80            |
| 18a    | 85-86            | 85    | $C_{21}H_{22}N_4O_2S$                                                  | 63.94                    | 5.62                                        | 14.20                                         | 8.13             |
|        | EtOH             |       | (394.50)                                                               | 64.00                    | 5.80                                        | 14.40                                         | 8.30             |
| 18b    | 98-100           | 75    | $C_{20}H_{20}N_4O_2S$                                                  | 63.14                    | 5.30                                        | 14.73                                         | 8.43             |
|        | EtOH             |       | (380.47)                                                               | 63.30                    | 5.50                                        | 14.90                                         | 8.60             |
| 18c    | 134 - 135        | 87    | $C_{20}H_{20}N_4OS$                                                    | 65.91                    | 5.53                                        | 15.37                                         | 8.80             |
|        | ACOH             |       | (364.47)                                                               | 65.70                    | 5.30                                        | 15.10                                         | 8.60             |
|        |                  |       |                                                                        |                          |                                             | ued on ne                                     |                  |

(Continued on next page)

| Compd.              | m.p., °C        | Yield | Mol. formula                                                       | % Analyses, calcd./found |                |                                              | und             |
|---------------------|-----------------|-------|--------------------------------------------------------------------|--------------------------|----------------|----------------------------------------------|-----------------|
| no.                 | Solvent         | (%)   | (mol. wt.)                                                         | С                        | Н              | Ν                                            | S               |
| 18d                 | 145 - 147       | 89    | $\mathrm{C}_{25}\mathrm{H}_{22}\mathrm{N}_4\mathrm{OS}$            | 70.40                    | 5.20           | 13.14                                        | 7.52            |
|                     | ACOH            |       | (426.54)                                                           | 70.60                    | 5.50           | 13.30                                        | 7.70            |
| 18e                 | 163 - 165       | 85    | $\mathrm{C}_{23}\mathrm{H}_{20}\mathrm{N}_4\mathrm{O}_2\mathrm{S}$ | 66.33                    | 4.84           | 13.45                                        | 7.60            |
|                     | ACOH            |       | (416.51)                                                           | 66.10                    | 4.60           | 13.10                                        | 7.40            |
| 18f                 | 183 - 184       | 79    | $\mathrm{C}_{23}\mathrm{H}_{20}\mathrm{N}_4\mathrm{OS}_2$          | 63.86                    | 4.66           | 12.95                                        | 14.82           |
|                     | ACOH            |       | (432.56)                                                           | 63.80                    | 4.60           | 12.90                                        | 14.80           |
| 18g                 | 138–140         | 81    | $C_{29}H_{24}N_4OS$                                                | 73.08                    | 5.08           | 11.76                                        | 6.73            |
|                     | ACOH            |       | (476.60)                                                           | 73.30                    | 5.20           | 11.80                                        | 6.90            |
| 18h                 | 133-135         | 83    | $C_{25}H_{23}N_5OS$                                                | 68.00                    | 5.25           | 15.86                                        | 7.26            |
| 10                  | ACOH            |       | (441.56)                                                           | 68.20                    | 5.40           | 16.00                                        | 7.40            |
| 19a                 | 180-182         | 80    | $C_{19}H_{16}N_4O_4S$                                              | 57.57                    | 4.07           | 14.13                                        | 8.09            |
| 101                 | EtOH            | 0.0   | (396.43)                                                           | 57.80                    | 4.00           | 14.30                                        | 8.30            |
| 19b                 | 173–175         | 93    | $C_{18}H_{14}N_4O_4S$                                              | 56.54                    | 3.69           | 14.65                                        | 8.34            |
| 10                  | ACOH            | 0.0   | (382.40)                                                           | 56.70                    | 3.90           | 14.90                                        | 8.50            |
| 19c                 | 162–163         | 83    | $C_{18}H_{14}N_4O_3S$                                              | 59.01                    | 3.85           | 15.29                                        | 8.75            |
| 101                 | ACOH            | 0.0   | (366.40)                                                           | 59.30                    | 4.00           | 15.40                                        | 8.90            |
| 19d                 | 166–168         | 86    | $C_{23}H_{16}N_4O_3S$                                              | 64.47                    | 3.76           | 13.08                                        | 7.48            |
| 10.                 | ACOH            | 00    | (428.47)                                                           | 64.40                    | 3.70           | 13.00                                        | 7.40            |
| 19e                 | 243-245         | 80    | $C_{21}H_{14}N_4O_4S$                                              | 60.25                    | 3.37           | 13.39                                        | 7.66            |
| 100                 | ACOH            | 05    | (418.43)                                                           | 60.40                    | 3.50           | 13.50                                        | 7.80            |
| 19f                 | 169–170         | 85    | $C_{21}H_{14}N_4O_3S_2$                                            | 58.05                    | 3.25           | 12.98                                        | 14.76           |
| 10-                 | ACOH<br>208–210 | 89    | (434.50)<br>C II N O S                                             | $58.30 \\ 67.77$         | 3.40           | $\begin{array}{c} 13.00\\ 11.71 \end{array}$ | $15.00 \\ 6.70$ |
| 19g                 | 208–210<br>ACOH | 89    | $C_{27}H_{18}N_4O_3S$<br>(478.53)                                  | 67.77<br>67.70           | $3.79 \\ 3.70$ | 11.71<br>11.60                               | 6.70<br>6.50    |
| 19h                 | 170–172         | 90    | $C_{23}H_{17}N_5O_3S$                                              | 62.29                    | 3.70<br>3.86   | $11.00 \\ 15.79$                             | 7.23            |
| 1911                | ACOH            | 90    | (443.49)                                                           | 62.29<br>62.40           | 3.80<br>4.00   | 16.00                                        | 7.23            |
| 20a                 | 122-124         | 90    | $C_{16}H_{15}N_5O_2S$                                              | 56.29                    | 4.00<br>4.43   | 10.00<br>20.51                               | 9.39            |
| 20a                 | EtOH            | 30    | (341.40)                                                           | 56.29                    | 4.40           | 20.31<br>20.40                               | 9.30            |
| 20b                 | 159-160         | 84    | $C_{15}H_{13}N_5O_2S$                                              | 55.04                    | 4.00           | 20.40<br>21.39                               | 9.30<br>9.79    |
| 200                 | EtOH            | 01    | (327.37)                                                           | 55.04<br>55.10           | 4.10           | $21.50 \\ 21.50$                             | 10.00           |
| 20c                 | 173             | 93    | $C_{15}H_{13}N_5OS$                                                | 57.86                    | 4.21           | 21.00<br>22.49                               | 10.00           |
| 200                 | EtOH            | 00    | (311.37)                                                           | 57.80                    | 4.20           | 22.40                                        | 10.30           |
| 20d                 | 149 - 150       | 95    | $C_{20}H_{15}N_5OS$                                                | 64.33                    | 4.05           | 18.75                                        | 8.59            |
| <b>_</b> 0 <b>u</b> | EtOH            | 00    | (373.44)                                                           | 64.30                    | 4.20           | 18.90                                        | 8.70            |
| 20f                 | 160             | 93    | $C_{18}H_{13}N_5OS_2$                                              | 56.98                    | 3.45           | 18.46                                        | 16.90           |
|                     | EtOH            | 00    | (379.47)                                                           | 67.00                    | 3.40           | 18.40                                        | 16.90           |
| 20h                 | 148 - 150       | 85    | $C_{20}H_{16}N_6OS$                                                | 61.84                    | 4.15           | 21.63                                        | 8.25            |
|                     | EtOH            |       | (388.45)                                                           | 61.60                    | 4.00           | 21.40                                        | 8.00            |
| 21a                 | 218-220         | 93    | $C_{20}H_{17}N_5O_2S$                                              | 61.37                    | 4.38           | 17.89                                        | 8.19            |
|                     | EtOH            |       | (391.45)                                                           | 61.50                    | 4.50           | 17.90                                        | 8.30            |
| 21b                 | 236-236         | 98    | $C_{19}H_{15}N_5O_2S$                                              | 60.46                    | 4.01           | 18.56                                        | 8.49            |
|                     | EtOH            |       | (377.43)                                                           | 60.40                    | 4.00           | 18.50                                        | 8.50            |
| 21c                 | 218-229         | 95    | $C_{19}H_{15}N_5OS$                                                | 63.14                    | 4.18           | 19.38                                        | 8.87            |
|                     | EtOH            |       | (361.43)                                                           | 63.00                    | 4.00           | 19.10                                        | 8.60            |

(Continued on next page)

|        | Com        |
|--------|------------|
| 14     | 21d        |
| er 20  | <b>21f</b> |
| cemb   | 21h        |
| 3 Dec  | 22a        |
| 561    | 22b        |
| at 12: | 22c        |
| ary] i | 22d        |
| Libr   | 22f        |
| ience  | 24a        |
| th Sci | 24b        |
| Heal   | <b>24c</b> |
| - opi  | 24d        |
| olora  | <b>24e</b> |
| of C   |            |
| rsity  | S<br>tral  |
| ive    | tral       |
| Un     | pro        |
| ) y [  | at r       |
| ed t   | tra)       |
| oad    |            |

TABLE I Characterization Data of the Newly Synthesized Compounds (Continued)

| Compd. | m.p., °C<br>Solvent | Yield<br>(%) | Mol. formula<br>(mol. wt.)                                         | % Analyses, calcd./found |      |       |       |
|--------|---------------------|--------------|--------------------------------------------------------------------|--------------------------|------|-------|-------|
| no.    |                     |              |                                                                    | С                        | Н    | Ν     | S     |
| 21d    | 248                 | 91           | $C_{24}H_{17}N_5OS$                                                | 68.07                    | 4.05 | 16.54 | 7.57  |
|        | ACOH                |              | (423.50)                                                           | 68.20                    | 4.00 | 16.70 | 8.00  |
| 21f    | 305 - 307           | 92           | $C_{22}H_{15}N_5OS_2$                                              | 61.52                    | 3.52 | 16.30 | 14.93 |
|        | ACOH                |              | (429.53)                                                           | 61.50                    | 3.50 | 16.30 | 15.00 |
| 21h    | 277 - 280           | 85           | $C_{24}H_{18}N_6OS$                                                | 65.74                    | 4.14 | 19.16 | 7.31  |
|        | ACOH                |              | (438.51)                                                           | 65.70                    | 4.10 | 19.10 | 7.30  |
| 22a    | 200 - 203           | 87           | $\mathrm{C_{18}H_{16}N_4O_4S}$                                     | 56.24                    | 4.16 | 14.57 | 8.34  |
|        | EtOH                |              | (384.42)                                                           | 56.20                    | 4.20 | 14.50 | 8.30  |
| 22b    | 195 - 198           | 86           | $\mathrm{C}_{17}\mathrm{H}_{14}\mathrm{N}_4\mathrm{O}_4\mathrm{S}$ | 55.13                    | 3.81 | 15.13 | 8.66  |
|        | EtOH                |              | (370.39)                                                           | 55.10                    | 3.90 | 15.30 | 8.60  |
| 22c    | 217                 | 90           | $\mathrm{C}_{17}\mathrm{H}_{14}\mathrm{N}_4\mathrm{O}_3\mathrm{S}$ | 57.62                    | 3.98 | 15.81 | 9.05  |
|        | EtOH                |              | (354.39)                                                           | 57.40                    | 3.70 | 15.60 | 9.00  |
| 22d    | 218 - 220           | 89           | $C_{22}H_{16}N_4O_3S$                                              | 63.45                    | 3.87 | 13.45 | 7.70  |
|        | EtOH                |              | (416.46)                                                           | 63.60                    | 4.00 | 13.60 | 7.90  |
| 22f    | 239 - 241           | 92           | $C_{20}H_{14}N_4O_3S_2$                                            | 56.86                    | 3.34 | 13.26 | 15.18 |
|        | EtOH                |              | (422.49)                                                           | 56.80                    | 3.30 | 13.20 | 15.10 |
| 24a    | 138 - 140           | 85           | $C_{23}H_{18}N_4S$                                                 | 72.23                    | 4.74 | 14.65 | 8.38  |
|        | EtOH                |              | (382.49)                                                           | 72.00                    | 4.50 | 14.40 | 8.10  |
| 24b    | 113 - 115           | 81           | $C_{24}H_{22}N_4S$                                                 | 72.33                    | 5.56 | 14.06 | 8.05  |
|        | EtOH                |              | (398.53)                                                           | 72.30                    | 5.50 | 14.00 | 8.00  |
| 24c    | 195 - 197           | 90           | $C_{22}H_{16}N_4O_2S$                                              | 65.99                    | 4.03 | 13.99 | 8.01  |
|        | EtOH                |              | (400.46)                                                           | 66.00                    | 4.00 | 14.00 | 8.00  |
| 24d    | 210 - 212           | 85           | $C_{23}H_{17}N_5S$                                                 | 69.84                    | 4.33 | 17.71 | 8.11  |
|        | EtOH                |              | (395.49)                                                           | 69.90                    | 4.50 | 17.90 | 8.30  |
| 24e    | 235 - 238           | 87           | $C_{21}H_{16}N_4O_2S$                                              | 64.93                    | 4.15 | 14.42 | 8.25  |
|        | EtOH                |              | (388.45)                                                           | 64.90                    | 4.10 | 14.40 | 8.20  |

Structure 24 was confirmed on the basis of elemental analyses, specdata, and alternative route synthesis. Thus, 23 reacted with the appriate benzyl carbodithioates (3, 13–17)b in ethanolic triethylamine oom temperature gave identical product (m.p., mixed m.p., and specwith the corresponding **24a-e** which obtained before.

# **EXPERIMENTAL**

All melting points were determined on an Electrothermal apparatus and are uncorrected. IR spectra were recorded (KBr discs) on a Shimadzu FT-IR 8201 PC spectrophotometer. <sup>1</sup>H NMR spectra were recorded in CDCl<sub>3</sub> and (CD<sub>3</sub>)<sub>2</sub>SO on a Varian Gemini 200 MHz spectrometer and chemical shifts were expressed in  $\delta$  units using TMS as internal reference. Elemental analyses were carried out at the

| Compd. no. | $^{1}\mathrm{H}\ \mathrm{NMR}\ (\delta\ \mathrm{ppm})$                                                                           |
|------------|----------------------------------------------------------------------------------------------------------------------------------|
| 3a         | 2.66 (s, 3H), 6.94–7.79 (m, 8H) and 10.91 (s, br., 1H).                                                                          |
| 3b         | 4.47 (s, 2H), 6.88-8.10 (m, 13H) and 13.2 (s, 1H).                                                                               |
| 8b         | 3.92 (s, 3H), 7.95–8.2 (m, 13H).                                                                                                 |
| 8c         | $2.62 \ (s, 3H), \ 7.95 - 7.55 \ (m, 10H), \ 7.98 - 8.02 \ (d, 2H) \ and \ 8.19 - 8.24 \ (t, 1H).$                               |
| 8d         | 6.96–8.41 (m, aromatic protons).                                                                                                 |
| 8 <b>f</b> | 6.96–7.57 (m, 11H), 7.81 (d, 1H), 8.09 (d, 2H), 8.22 (d, 1H) and 8.38 (t, 1H).                                                   |
| 13a        | 1.28 (d, 6H), 2.66 (s, 3H), 2.97–2.97 (sep., 1H), 7.26–7.30 (d, 2H), 7.64–7.68 (d, 2H), 7.90 (s, 1H) and 10.7 (s, br., 1H).      |
| 13b        | 1.27 (d, 6H), 2.90–2.99 (sept., 1H), 4.47 (s, 2H), 7.26–7.72 (m, 9H), 8.10 (s, 1H) and 13.26 (s, br., 1H).                       |
| 14a        | 2.7 (s, 3H), 6.11 (s, 2H), 6.99–7.26 (m, 3H), 8.16 (s, 1H) and 13.25 (s, br., 1H).                                               |
| 14b        | 4.46 (s, 2H), 6.12 (s, 2H), 7.26–7.85 (m, 8H), 8.17 (s, 1H) and 13.26 (s, br. 1H).                                               |
| 18a        | 1.25 (d, 6H), 1.40 (t, 3H), 2.90–2.97 (sept., 1H), 4.45 (q, 2H), 7.25–7.71 (m, 5H), 7.91 (d, 2H), 7.97 (d, 2H) and 8.38 (s, 1H). |
| 18f        | 1.25 (d, 6H), 2.94 (sep., 1H), 7.22-8.12 (m, 12H) and 8.41 (s, 1H).                                                              |
| 19a        | 1.43 (t, 3H), 4.45 (q, 2H), 6.02 (s, 2H), 6.86-8.00 (m, 8H) and 8.30 (s, 1H).                                                    |
| 19f        | 6.02 (s, 2H), 6.80–8.40 (m, 12H).                                                                                                |
| 24a        | 7.11–7.51 (m, 15H), 7.96–8.00 (d, 2H) and 8.19 (t, 1H).                                                                          |
| 24b        | 1.28~(d,6H),2.94~(sep.,1H),7.228.12~(m,14H) and $8.31~(s,1H).$                                                                   |
| 24c        | 6.01(s,2H),7.228.12(m,13H) and $8.35(s,1H).$                                                                                     |

TABLE II <sup>1</sup>H NMR Spectra of Some Selected Synthesized Compounds

Microanalytical Center of the University of Cairo, Giza, Egypt. Hydrazonoyl halides **4a-h** and **23** were prepared according to the literature.<sup>7-14</sup>

# Synthesis of Alkyl Carbodithioates 3a,b, and (13-17)a,b

An appropriate cinnamaldehyde, cumenaldehyde, piperenal, pyrrole-2-carboxaldehyde, 3-formylindole, or 2,4-dihydroxybenzaldehyde (0.01 mol) was added to solution of the appropriate alkyl hydrazinecarboditioates<sup>15,16</sup> (0.01 mol) in 2-propanol (50 ml) while stirring at room temperature. The reaction mixture was stirred for 2 h. The solid so formed was collected and crystallized from ethanol to give **3a**,**b** and (**13–17**)**a**,**b**, yields (87–83%) respectively (cf. Tables I and II).

# Synthesis of 2,3-Dihydro-1,3,4-thiadiazole Derivatives 8a-g, (18-22)a-h, and 24a-e

# Method A

A mixture of the appropriate alkyl carbodithioates 3a,b or (13-17)a,b (0.005 mol) and the appropriate hydrazonoyl halides 4a-h or 23 and

triethylamine (0.75 ml, 0.005 mol) in ethanol (20 ml) was stirred for 30 min. The resulting product was collected and crystallized from the proper solvent to give 2,3-dihydro-1,3,4-thiadiazoles (**8**, **18–22**)**a–h** and **24a–e**, respectively, in good yield (cf. Tables I and II).

#### Method B

A mixture of 5-hydrazono-4-phenyl-4,5-dihydro-1,3,4-thiadiazole-2carboxylic acid ethyl ester (**9**) (1.3 g, 0.005 mol) and the appropriate of aldehydes (cinnamaldehyde, piperenal, cumenaldehyde, pyrrole-2-carboxaldehyde, 3-formylindole, or 2,4-dihydroxybenzaldehyde) (0.005 mmol) in ethanol (30 ml) was stirred for 2 h. The solid was collected and crystallized from the proper solvent to give in all respects (m.p., nixed m.p., and spectra) with the corresponding prepared in method A.

#### REFERENCES

- Part 33: A. O. Abdelhamid, S. A. Abdelgawad, and S. F. El-Sharnoby, *Phosphorus*, Sulfur, Silicon. Relet. Elem., **177**, 2699 (2002).
- [2] D. I. Kornis, Comperhensive Heterocyclic Chemistry, edited by A. R. Katritzky, C. W. Ress, and E. F. V. Scriven (Pergamon, Oxford, 1996), Vol. 4.
- [3] A. O. Abdelhamid, M. M. M. Sallam, and S. A. Amer, *Heteroatom Chem.*, **12**, 486 (2001).
- [4] A. O. Abdelhamid, H. F. Zohdi, and N. A. Ali, Molecules, 5, 961 (2001).
- [5] A. O. Abdelhamid, N. M. Rateb, and K. M. Dawood, Phosphorus, Sulfur, Silicon Relet. Elem., 167, 251 (2000).
- [6] H. F. Zohdi, N. M. Rateb, M. M. M. Sallam, and A. O. Abdelhamid, J. Chem. Res., (S) 742; (M) 3329 (1998).
- [7] G. Fravel, Bull. Soc. Chim. Fr., 31, 150 (1904).
- [8] N. E. Eweiss and A. Osman, Tetrahedron Lett., 1169 (1979).
- [9] A. S. Shawali and A. Osman, Tetrahedron, 27, 2571 (1971).
- [10] A. S. Shawali and A. O. Abdelhamid, Bull. Chem. Soc. Jpn., 49, 321 (1976).
- [11] A. O. Abdelhamid and F. H. H. El-Shiatey, Phosphorus, Sulfur, Silicon and Relat. Elem., 39, 45 (1988).
- [12] A. O. Abdelhamid, F. A. Attaby, F. A. Khalifa, and S. S. Ghabrial, Arch. Pharm. Res., 15, 14 (1992).
- [13] H. M. Hassaneen, A. S. Shawali, N. E. Elwan, and N. M. Abounada, *Sulfur Lett.*, 14, 41 (1992).
- [14] P. Wolkoff, Can. J. Chem., 53, 1333 (1975).
- [15] D. L. Klayman, J. F. Bartosevichm, T. S. Griffin, C. J. Mason, and J. P. Scovill, J. Med. Chem., 22, 855 (1979).
- [16] J. Korosi, Ger. Offen. 1, 934, 899 29 Jan. (1970); Chem. Abstr., 72, 100334s (1970).