Selective σ-Bond Metathesis in Alkyl–Aryl and Alkyl–Benzyl Yttrium Complexes. New Aryl– and Benzyl–Hydrido Yttrium Derivatives Supported by Amidopyridinate Ligands

D. M. Lyubov,[†] G. K. Fukin,[†] A. V. Cherkasov,[†] Andrei S. Shavyrin,[†] A. A. Trifonov,^{*,†} L. Luconi,[‡] C. Bianchini,[‡] A. Meli,[‡] and G. Giambastiani^{*,‡}

G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 603950 Nizhny Novgorod, Russia, and Istituto di Chimica dei Composti Organometallici (ICCOM - CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy

Received October 30, 2008

Yttrium dialkyl complexes coordinated by 6-aryl-substituted amidopyridinate ligands undergo selective intramolecular sp² or sp³ C–H bond activation. Upon treatment with PhSiH₃ of the resulting Y–C(alkyl, aryl) or Y–C(alkyl,benzyl) systems, a σ -bond metathesis reaction takes place selectively at the Y–C(alkyl) bond, generating rare dimeric aryl–hydrido or benzyl–hydrido yttrium complexes, respectively.

Rare-earth-metal hydrides currently attract a great deal of attention due to the variety of their unique structural and chemical properties.¹ These compounds have proved to be promising catalysts in several olefin transformations² and have demonstrated extremely high reactivity in stoichiometric reactions, including C–F bond activation.³ Rare-earth-metal hydrides are generally constituted by sandwich-¹ and half-sandwich-type ("constrained geometry")⁴ complexes, and very few classes of cyclopentadienyl-free analogues have been systematically explored up to now.⁵

The reactivity of rare-earth-metal compounds is known to be defined by both the metal electrophilicity and the free coordination sites at the metal center and can be substantially

(2) (a) Edelmann, F. T. Top. Curr. Chem. 1996, 179, 247–262. (b) Anwander, R. In Applied Homogeneous Catalysis with Organometallic Compounds; Cornils, B., Hermann, W. A., Eds.; Wiley-VCH: Weinheim, Germany, 2002; p 974. (c) Jeske, G.; Lauke, H.; Mauermann, H.; Swepston, P. N.; Schumann, H.; Marks, T. J. J. Am. Chem. Soc. 1985, 107, 8091–8103. (d) Jeske, G.; Schock, L. E.; Swepston, P. N.; Schumann, H.; Marks, T. J. J. Am. Chem. Soc. 1985, 107, 8103–8110. (e) Desurmont, G.; Li, Y.; Yasuda, H.; Maruo, T.; Kanehisa, N.; Kai, Y. Organometallics 2000, 19, 1811–1813. (f) Desurmont, G.; Tokomitsu, T.; Yasuda, H. Macromolecules 2000, 33, 7679–7681. (g) Giardello, M. A.; Conticello, V. P.; Brard, L.; Gagne, M. R.; Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10241–10254. (h) Fu, P.-F.; Brard, L.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 7157–7168.

(4) (a) Arndt, S.; Okuda, J. *Chem. Rev.* **2002**, *102*, 1593–1976. (b) Okuda, J. *Dalton Trans.* **2003**, 2367–2378.

modulated by tuning the electronic and steric properties of the ligand framework. This issue makes the design of new coordination environments crucial for generating a rational balance between the kinetic stability and the high reactivity of the resulting complexes. Recently the use of bulky amidopyridinate ligands has allowed us to synthesize and characterized a novel class of rare-earth alkyl-hydrido clusters containing highly reactive Ln-C and Ln-H bonds, that demonstrate an intriguing reactivity.⁶

In order to explore the potential of such a class of nitrogencontaining ligands for the synthesis of new alkyl and/or hydrido rare-earth complexes, we focused our attention on 6-arylsubstituted aminopyridinate systems which were straightforwardly prepared by reductive alkylation⁷ of related iminopyridines (Schemes 1 and 2). The iminopyridine **1** was prepared according to a procedure reported in the literature,⁸ while the new xylyl -substituted iminopyridyl ligand **2** was synthesized on a multigram scale through the five-step synthesis shown in Scheme 1.

All our attempts to synthesize yttrium bis(alkyl) species via monoalkane elimination by reacting $Y(CH_2SiMe_3)_3(THF)_2^9$ with the aminopyridine N₂H^{ph} (**3**) in *n*-hexane at 0 °C resulted in

^{*} To whom correspondence should be addressed. Fax: (+7)8314621497 (A.A.T.). E-mail: trif@iomc.ras.ru (A.A.T.); giuliano.giambastiani@ iccom.cnr.it (G.G.).

 $^{^{\}dagger}$ G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences.

^{*} Istituto di Chimica dei Composti Organometallici (ICCOM - CNR). (1) (a) Ephritikhine, M. *Chem. Rev.* **1997**, *97*, 2193–2242. (b) Hou, Z.; Nishiura, M.; Shima, T. *Eur. J. Inorg. Chem.* **2007**, 2535–2545, and references therein.

^{(3) (}a) Werkema, E. L.; Messines, E.; Perrin, L.; Maron, L.; Eisenstein, O.; Andersen, R. A. *J. Am. Chem. Soc.* **2005**, *127*, 7781–7795. (b) Maron, L.; Werkema, E. L.; Perrin, L.; Eisenstein, O.; Andersen, R. A. *J. Am. Chem. Soc.* **2005**, *127*, 279–292.

^{(5) (}a) Trifonov, A. A. *Russ. Chem. Rev.* **2007**, *76*, 1051–1072. (b) Trifonov, A. A.; Skvortsov, G. G.; Lyubov, D. M.; Skorodumova, N. A.; Fukin, G. K.; Baranov, E. V.; Glushakova, V. N. *Chem. Eur. J.* **2006**, *12*, 5320–5327, and references cited therein. (c) Ruspiv, C.; Spielman, J.; Harder, S. *Inorg. Chem.* **2007**, *46*, 5320–5326. (d) Concol, M.; Spaniol, T. P.; Okuda, J. *Dalton. Trans.* **2007**, 4095–4102. (e) Konkol, M.; Okuda, J. *Coord. Chem. Rev.* **2008**, *252*, 1577–1591.

⁽⁶⁾ Lyubov, D. M.; Döring, C.; Fukin, G. K.; Cherkasov, A. V.; Shavyrin, A. S.; Kempe, R.; Trifonov, A. A. *Organometallics* **2008**, *27*, 2905–2907.

^{(7) (}a) Gibson, V. C.; Redshaw, C.; White, A. J. P.; Williams, D. J. J. Organomet. Chem. 1998, 550, 453–456. (b) Bruce, M.; Gibson, V. C.; Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D. J. Chem. Commun. 1998, 2523–2524. (c) Britovsek, G. J. P.; Gibson, V. C.; Mastroianni, S.; Oakes, D. C. H.; Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D. J. Eur. J. Inorg. Chem. 2001, 431–437.

^{(8) (}a) Bianchini, C.; Sommazzi, A.; Mantovani, G.; Santi, R.; Masi, F. U.S. Patent 6,916,931 B2. (b) Bianchini, C.; Giambastiani, G.; Mantovani, G.; Meli, A.; Mimeau, D. J. Organomet. Chem. 2004, 689, 1356. (c) Bianchini, C.; Giambastiani, G.; Guerrero Rios, I.; Mantovani, G.; Meli, A.; Segarra, A. M. Coord. Chem. Rev. 2006, 250, 1391–1418, and references cited therein. (d) Bianchini, C.; Gatteschi, D.; Giambastiani, G.; Guerrero Rios, I.; Ienco, A.; Laschi, F.; Mealli, C.; Meli, A.; Sorace, L.; Toti, A.; Vizza, F. Organometallics 2007, 26, 726. (e) Barbaro, P.; Bianchini, C.; Giambastiani, G.; Guerrero, I. R.; Meli, A.; Oberhauser, W.; Segarra, A. M.; Sorace, L.; Toti, A. Organometallics 2007, 26, 4639–4651. (f) Bianchini, C.; Giambastiani, G.; Guerrero, I. R.; Meli, A.; Oberhauser, W.; Sorace, L.; Toti, A. Organometallics 2007, 26, 5066–5078.

⁽⁹⁾ Lappert, M. F.; Pearce, R. J. J. Chem. Soc., Chem. Commun. 1973, 126–127.

^{*a*} Legend: (i) *t*-BuLi, *N*,*N*-dimethylacetamide, Et₂O, -78 °C; (ii) ethylene glycol, *p*-toluenesulfonic acid, benzene, reflux 12 h, Dean–Stark apparatus; (iii) Kumada coupling conditions, Me₂(C₆H₃)MgBr, NiCl₂(PCy₃)₂ cat., THF, 50 °C, 72 h and then HCl 2 M, 85 °C, 2 h; (iv) *i*Pr₂(C₆H₃)NH₂, HCOOH cat., MeOH, reflux 62 h.

the quantitative generation of the metallacyclic compound **5** as a result of an intramolecular sp²-CH bond activation at one of the ortho positions of the phenyl substituent (Scheme 3). The ¹H and ¹³C{¹H} NMR spectra for complex **5** were consistent with the expected yttrium coordination sphere. The ¹H NMR spectrum of **5**, which contains both Y–C(alkyl) and Y–C(aryl) bonds, shows one clear doublet centered at -0.54 ppm (²J_{YH} = 3.0 Hz), attributed to the hydrogen atoms of the methylene group attached to the yttrium. The ¹³C{¹H} NMR spectrum contains a doublet for the sp³ carbon atom centered at 30.3 ppm (¹J_{YC} = 39.5 Hz), while a further doublet at 190.6 ppm (¹J_{YC} = 41.2 Hz) is readily assigned to the sp² carbon of the phenyl ring σ -bonded to the metal center.

Unexpectedly, the xylyl-substituted aminopyridine system N_2H^{Xyl} (4) did not allow us to generate dialkyl species due to an intramolecular activation of the sp³-hybridized C-H bond of one methyl group (Scheme 3). The reaction actually gave the mononuclear metallacyclic monoalkyl complex 6, where the yttrium atom turned out to be five-coordinated by a tridentate aminopyridinate ligand, a residual (trimethylsilyl)methylene fragment, and a THF molecule.

Unlike the case for **5**, the ¹H NMR spectrum of **6** shows two sets of diastereotopic protons, one for the methylene group of the residual alkyl fragment attached to the yttrium atom (doublet of doublets at -0.92 and -0.76 ppm (${}^{2}J_{\text{HH}} = 10.8$ Hz, ${}^{2}J_{\text{YH}} =$ 3.0 Hz, respectively)) and one for the "benzylic" methylene Me(C₆H₃)CH₂Y group (doublet of doublets at 1.81 and 2.00 ppm (${}^{2}J_{\text{HH}} = 5.5$ Hz, ${}^{2}J_{\text{YH}} = 2.0$ Hz, respectively)). The corresponding ${}^{13}C{}^{1}$ H} NMR spectrum contains a broad doublet centered at 27.3 ppm (${}^{1}J_{\text{YC}} = 43.3$ Hz) attributable to the Me₃SiCH₂Y group, while a doublet at 49.2 ppm (${}^{1}J_{\text{YC}} = 22.8$ Hz) is assigned to the "benzylic" sp³ carbon. The two isopropyl fragments as well as the two methyl groups at the sp³ carbon are not magnetically equivalent and show ¹H NMR and ${}^{13}C{}^{1}$ H} NMR spectra distinguished by a set of eight distinct signals for the methyl groups and for the methyne protons, the latter providing two well-separated septets at 3.18 and 4.50 ppm, respectively. Such a situation reflects the existence of two possible conformations for **6** differing from each other in the location of the benzylic CH_2 group: above or below the amidopyridinate ligand plane, respectively.

Although inter- and intramolecular metalations of sp^2 - and sp^3 -hybridized C–H bonds have been previously documented for cyclopentadienyl¹⁰ and cyclopentadienyl-free¹¹ lanthanide alkyl and hydride complexes, they still attract considerable interest for their ability to activate inert chemical bonds.

Crystallization by slow cooling of a concentrated *n*-hexane solution of 6 to -20 °C resulted in the formation of single crystals suitable for X-ray diffraction analysis. The molecular structure of the monomeric complex 6 is shown in Figure 1. The coordination environment of the yttrium atom is set up by two nitrogen atoms of the chelating aminopyridinate ligand, one sp³ carbon atom from the residual alkyl group, one further sp³ carbon atom from the "benzylic" group, and one oxygen atom from a THF molecule. Moreover, a close contact (2.9421(17) Å) between the yttrium and the ipso carbon on the "benzylic" group is finally observed, which increases the coordination number to 6. The Y– C_{Alkyl} bond length (2.4139(17) Å) is comparable to the values reported for related yttrium systems (2.410(8)-2.439(3) Å),¹² while the Y-C_{Bn} distance (2.4520(18) Å) is slightly longer than that measured for analogous C-H activation products $(Ap'(Ap_{-H}')Y(thf)]$ (2.420(11) Å).¹³ It is worth noting that the covalent Y-N bond (2.2015(14) Å) is evidently shorter than that measured in analogous sixcoordinated yttrium complexes containing amidopyridinate ligands with a shorter backbone $(2.273(3) \text{ Å}).^{14}$

The most common synthetic route to rare-earth hydrido complexes is the reaction of alkyl derivatives with either dihydrogen¹⁵ or phenylsilane.¹⁶ We have found that, by treat-

(11) (a) Duchateau, R.; Van Wee, C. T.; Meetsma, A.; Teuben, J. H.
J. Am. Chem. Soc. 1993, 115, 4931–4932. (b) Emslie, D. J. H.; Piers, W. E.;
Parvez, M.; McDonald, R. Organometallics 2002, 21, 4226–4240. (c)
Sigiyama, H.; Gambarotta, S.; Yap, G. P. A.; Wilson, D. R.; Thiele,
S. K.-H. Organometallics 2004, 23, 5054–5061. (d) Duchateau, R.;
Tuinstra, T.; Brussee, E. A. C.; Meetsma, A.; Van Duijnen, P. T.; Teuben,
J. H. Organometallics 1997, 16, 3511–3522. (e) Fryzuk, M. D.; Haddad,
T. S.; Rettig, S. J. Organometallics 1991, 10, 2026–2036. (f) Emslie,
D. J. H.; Piers, W. E.; Parvez, M. Dalton Trans. 2003, 2615–2620.

(12) (a) Wang, D.; Cui, D.; Miao, M.; Huang, B. Dalton Trans. 2007, 4576–4581. (b) Liu, X.; Shang, X.; Tang, T.; Hu, N.; Pei, F.; Cui, D.; Chen, X.; Jing, X. Organometallics 2007, 26, 2747–2757. (c) Cai, C.-X.; Toupet, L.; Lehmann, C. W.; Carpentier, J.-F. J. Organomet. Chem. 2003, 683, 131–136. (d) Bambirra, S.; Meetsma, A.; Hessen, B.; Teuben, J. H. Organometallics 2001, 20, 782–785.

(13) Skvortsov, G. G.; Fukin, G. K.; Trifonov, A. A.; Noor, A.; Döring, C.; Kempe, R. *Organometallics* **2007**, *26*, 5770–5773.

(14) Kretschmer, W. P.; Meetsma, A.; Hessen, B.; Schmalz, T.; Qayyum,S.; Kempe, R. *Chem. Eur. J.* **2006**, *12*, 8969–8978.

(15) (a) Jeske, G.; Lauke, H.; Mauermann, H.; Swepston, P. N.; Schumann, H.; Marks, T. J. *J. Am. Chem. Soc.* **1985**, *107*, 8091–8103. (b) Jeske, G.; Schock, L. E.; Swepston, P. N.; Schumann, H.; Marks, T. J. *J. Am. Chem. Soc.* **1985**, *107*, 8103–8110.

^{(10) (}a) Okuda, J. Dalton Trans. 2003, 2367–2378. (b) Watson, P. L. J. Chem. Soc., Chem. Commun. 1983, 276–277. (c) Watson, P. L.; Parshall, G. B. Acc. Chem. Res. 1985, 18, 51–56. (d) Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.; Nolan, M. C.; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. J. Am. Chem. Soc. 1987, 109, 203–219. (e) den Haan, K. H.; Wiestra, Y.; Teuben, J. H. Organometallics 1987, 6, 2053–2060. (f) Watson, P. L. J. Am. Chem. Soc. 1983, 105, 6491–6493. (g) Duchateau, R.; van Wee, C. T.; Teuben, J. H. Organometallics 1996, 15, 2291–2302. (h) Mu, Y.; Piers, W. E.; MacQuarrie, D. C.; Zaworotko, M. J.; Young, V. G. Organometallcs 1996, 15, 2720–2726. (i) Evans, W. J.; Champagne, T. M.; Ziller, J. W. J. Am. Chem. Soc. 2006, 128, 14270–14271. (j) Evans, W. J.; Perotti, J. M.; Ziller, J. W. J. Am. Chem. Soc. 2005, 127, 1068–1069. (k) Booij, M.; Kiers, N. H.; Meetsma, A.; Teuben, J. H.; Smeets, W. J. J.; Spek, A. L. Organometallics 1989, 8, 2454–2461.

ment with an equimolar amount of PhSiH₃ in *n*-hexane at 0 °C, 5 and 6 undergo rapid σ -bond metathesis of the residual Y-CH₂SiMe₃ bonds to give selectively the novel aryl-hydrido and benzyl-hydrido complexes 7 and 8 (Scheme 4). Surprisingly, the Y-C(Aryl) and Y-C(Bn) bonds in 5 and 6 did not react with PhSiH₃, even after 24 h at room temperature and in the presence of a 2-fold excess of silane. In fact, complexes 7 and 8 were recovered in the same yield with no appreciable decomposition. Complexes 5 and 6 were finally reacted with H_2 (1 bar) in toluene with the aim of exploring whether 7 and 8 were obtainable through this alternative way. All our attempts to react 5 and 6 with H₂ resulted in their decomposition with formation of an off-white material that does not contain any amidopyridinate ligand and is insoluble in common organic solvents. This result proves the effectiveness of phenylsilane as a highly selective reagent for the synthesis of hydride species 7 and 8.

The ¹H and ¹³C{¹H} NMR spectra of **7** and **8** (20 °C, C₆D₆) are consistent with binuclear species distinguised by an internal mirror plane. The hydride signals in **7** and **8** appear, in the ¹H NMR spectrum, as sharp, well-resolved triplets at 7.76 ppm (¹ $J_{YH} = 27.4$ Hz) and at 7.37 ppm (¹ $J_{YH} = 26.5$ Hz),

Figure 1. ORTEP diagram (30% probability thermal ellipsoids) of complex **6** showing the numbering scheme. Hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (deg): Y(1)-N(1) = 2.2015(14), Y(1)-O(1) = 2.3422(13), Y(1)-C(29) = 2.4139(17), Y(1)-N(2) = 2.4200(14), Y(1)-C(28) = 2.4520(18), Y(1)-C(26) = 2.9421(17); C(29)-Y(1)-C(28) = 117.20(6), N(1)-Y(1)-N(2) = 70.00(5), C(28)-Y(1)-C(26) = 29.47(5).

respectively, thus indicating the coupling of each hydride with two equivalent ⁸⁹Y nuclei. The ¹³C{¹H} NMR signals of the carbon atoms bonded to yttrium appear as two doublets centered at 193.1 ppm (${}^{1}J_{YC} = 46.2$ Hz) and 51.3 ppm (${}^{1}J_{YC} = 24.9$ Hz) for complexes **7** and **8**, respectively.

Yellow single crystals of 7, suitable for X-ray analysis, were prepared by slow cooling of an *n*-hexane solution of 7 down to -20 °C. The molecular structure of 7 is illustrated in Figure 2. The complex adopts a binuclear structure with two sixcoordinate yttrium atoms. The metal coordination sphere is determined by the two nitrogen and one carbon atoms from the tridentate amidopyridinate ligand, two bridging hydrido ligands, and one oxygen atom from a residual THF molecule. The tetranuclear Y₂H₂ core is not planar; the dihedral angle between the Y(1)H(1)H(1A) and Y(1A)H(1)H(1A) planes is 20.1°. The Y-H bond lengths are 2.15(2) Å. It should be noted that N(1), N(2), and C(26) atoms lie in the same plane, though the entire chelating ligand is not planar.

The Y–C bond length in 7 (2.469(2) Å) is in good agreement with previously reported distances for similar six-coordinate yttrium aryl species,¹⁷ while the Y–Y distance (3.5787(4) Å)

⁽¹⁶⁾ Voskoboinikov, A. Z.; Parshina, I. N.; Shestakova, A. K.; Butin, K. P.; Beletskaya, I. P.; Kuz'mina, L. G.; Howard, J. A. K. *Organometallics* **1997**, *16*, 4041–4055.

^{(17) (}a) Rabe, G. W.; Zhang-Presse, M.; Riederer, F. A.; Yap, G. P. A. *Inorg. Chem.* 2003, 42, 3527–3533. (b) Rabe, G. W.; Bérubé, C. D.; Yap, G. P. A.; Lam, K.-C.; Concolino, T. E.; Rheingold, A. L. *Inorg. Chem.* 2002, 41, 1446–1453. (c) Fryzuk, M. D.; Jafarpour, L.; Kerton, F. M.; Love, J. B.; Patrick, B. O.; Rettig, S. J. *Organometallics* 2001, 20, 1387–1396.

Figure 2. ORTEP diagram (30% probability thermal ellipsoids) of complex **7** showing the numbering scheme. Hydrogen atoms, 2,6-diisopropylphenyl fragments, and methylene groups of the THF molecules are omitted for clarity. Selected bond distances (Å) and angles (deg): Y-H = 2.15(2), Y(1)-N(1) = 2.2205(18), Y(1)-O(1) = 2.3609(15), Y(1)-N(2) = 2.4252(17), Y(1)-C(26) = 2.469(2), Y(1)-Y(1A) = 3.5780(4); N(1)-Y(1)-N(2) = 68.24(6), N(1)-Y(1)-C(26) = 130.34(7), N(2)-Y(1)-C(26) = 68.43(7).

is significantly shorter than those measured in related binuclear yttrium hydrides.^{5a,18}

In conclusion, we have reported the synthesis of new yttrium dialkyl complexes stabilized by amidopyridinate ligands which rapidly undergo intramolecular sp2 or sp3 C-H bond activation with the formation of alkyl-aryl or alkyl-benzyl complexes. We have also found that the residual Y-C(alkyl) bonds undergo selective σ -bond metathesis upon treatment with PhSiH₃, while the Y-C(aryl) and Y-C(benzyl) bonds do not react with the silane under analogous conditions. As a result, rare¹⁹ binuclear aryl-hydrido and benzyl-hydrido yttrium complexes have been synthesized and characterized. Polymerization tests with both Y-alkyl and Y-hydrido complexes using ethylene and propene as monomer feeds are currently under investigation in our laboratories. Preliminary results for ethylene polymerization under standard conditions (10 bar of C₂H₄, 25 mL of toluene, 30 °C) indicate that both precursors do not generate very active catalytic systems, as the highest turnover frequency observed was 870 mol of C_2H_4 converted (mol of metal)⁻¹ h⁻¹.

Experimental Section

General Considerations. All air- and/or water-sensitive reactions were performed under either nitrogen or argon in flame-dried flasks using standard Schlenk-type techniques. THF was purified by distillation from sodium/benzophenone ketyl, after drying over KOH. Et₂O, benzene, *n*-hexane, and toluene were purified by distillation from sodium/triglyme benzophenone ketyl or were obtained by means of a MBraun solvent purification system, while MeOH was distilled over Mg prior to use. C₆D₆ was dried over sodium/benzophenone ketyl and condensed in vacuo prior to use, while CD₂Cl₂ and CDCl₃ were dried over activated 4 Å molecular sieves. Literature methods were used to synthesize the iminopyridine ligand N₂^{Ph} (1).⁸ Y(CH₂SiMe₃)₃(THF)₂ was prepared according to literature procedures.² All the other reagents and solvents were used as purchased from commercial suppliers. ¹H and ¹³C{¹H} NMR spectra were obtained on either a Bruker ACP 200 (200.13 and 50.32 MHz, respectively) or a Bruker Avance DRX-400 (400.13 and 100.62 MHz, respectively). Chemical shifts are reported in ppm (δ) relative to TMS, referenced to the chemical shifts of residual solvent resonances (¹H and ¹³C), and coupling constants are given in Hz. IR spectra were recorded as Nujol mulls or KBr plates on FSM 1201 and Bruker-Vertex 70 instruments. Lanthanide metal analyses were carried out by complexometric titration. The C, H elemental analyses were carried out in the microanalytical laboratory of the IOMC or at the ICCOM by means of a a Carlo Erba Model 1106 elemental analyzer with an accepted tolerance of ± 0.4 unit on carbon (C), hydrogen (H), and nitrogen (N). Melting points were determined by using a Stuart Scientific SMP3 melting point apparatus.

Synthesis of 1-(6-Bromopyridin-2-yl)ethanone.²⁰ To a stirred solution of 2,6-dibromopyridine (7.11 g, 30.0 mmol) in Et₂O (130 mL) at -78 °C was added dropwise a 1.7 M solution of tBuLi (18.8 mL, 30.0 mmol) in n-pentane over 10 min. After 30 min of stirring at -78 °C, N,N-dimethylacetamide (3.1 mL, 33.0 mmol) was added and stirring maintained for 1.5 h. The resulting mixture was warmed to room temperature and treated with water (30 mL). The formed layers were separated, and the organic phase was washed with water (2 \times 30 mL). The aqueous layer was extracted with Et₂O (3 \times 30 mL). The combined organic layers were dried over Na₂SO₄. Removal of the solvent under reduced pressure gave a yellow oil that was dissolved in petroleum ether and cooled to -20 °C. After 6 h, small yellow pale crystals were separated by filtration (yield 90%). Mp: 44 °C. IR (KBr): v 1695 cm⁻¹ (C=O). ¹H NMR (200 MHz, CDCl₃, 293 K): δ 2.70 (s, 3H, C(O)Me), 7.68 (m, 2H, CH), 7.98 (dd, J = 6.5, 2.1, 1H, CH). ¹³C{¹H} NMR (50 MHz, CDCl₃, 293 K): δ 26.4 (1C, C(O)Me), 121.1 (1C, CH), 132.4 (1C, CH), 139.8 (1C, CH), 142.0 (1C, C), 154.9 (1C, C), 198.5 (1C, C(O)Me). Anal. Calcd for C₇H₆BrNO (200.03): C, 42.03; H, 3.02; N, 7.00. Found: C, 42.09; H, 2.90; N, 7.02.

Synthesis of 6-Bromo-2-(2'-methyl-1',3'-dioxolan-2'-yl)pyri**dine.**²¹ A solution of 1-(6-bromopyridin-2-yl)ethanone (1.0 g, 5 mmol), 1,2-ethanediol (0.34 mL, 6 mmol), and p-toluenesulfonic acid hydrate (PTSA, 0.1 g, 0.5 mmol) in 15 mL of distilled benzene was heated for 24 h under reflux in a Dean-Stark apparatus. The mixture was cooled to room temperature and then treated with 5 mL of 0.5 M aqueous NaOH solution. The layers that formed were separated. The aqueous phase was washed with Et_2O (2 × 5 mL), and the combined organic extracts were dried over NaSO₄. After removal of the solvent under reduced pressure a white solid was obtained in pure form (yield >99%). Mp: 40-42 °C. ¹H NMR (200 MHz, CDCl₃, 293 K): δ 1.80 (s, 3H, Me), 3.95-4.20 (m, 4H, CH₂), 7.49 (dd, J = 7.7, 1.3, 1H, CH Ar), 7.58–7.65 (2H, m, CH Ar). ¹³C{¹H} NMR (50 MHz, CDCl₃, 298 K): δ 25.6 (1C, Me); 65.6 (2C, CH₂); 108.5 (1C, C Ar); 118.9 (1C, CH Ar); 128.1 (1C, CH Ar); 139.6 (1C, CH Ar); 142.5 (1C, CH Ar); 163.0 (1C, CH Ar). Anal. Calcd for C₉H₁₀BrNO₂ (244.09): C, 44.29; H, 4.13; N, 5.74. Found: C, 44.09; H, 4.22; N, 5.69.

^{(18) (}a) Emslie, D. J. H.; Piers, W. E.; Parvez, M.; McDonald, R. Organometallics 2002, 21, 4226–4240. (b) Harder, S. Organometallics 2005, 24, 373–379. (c) Lyubov, D. M.; Bubnov, A. M.; Fukin, G. K.; Dolgushin, F. M.; Antipin, M. Yu.; Pelcé, O.; Schappacher, M.; Guillaume, S. M.; Trifonov, A. A. Eur. J. Inorg. Chem. 2008, 2090–2098.

⁽¹⁹⁾ For examples of alkyl-hydrido complexes see: (a) Tardif, O.;
Nishiura, M.; Hou, Z. Organometallics 2003, 22, 1171-1173. (b) Voskoboinikov, A. Z.; Parshina, I. N.; Shestakova, A. K.; Butin, K. P.;
Beletskaya, I. P.; Kuz'mina, L. G.; Howard, J. A. K. Organometallics 1997, 16, 4690-4700. (c) Voskoboinikov, A. Z.; Shestakova, A. K.; Beletskaya, I. P. Organometallics 2001, 20, 2794-2801. (d) Stern, D.; Sabat, M.; Marks, T. J. J. Am. Chem. Soc. 1990, 112, 9558-9575. (e) Evans, W. J.; Perotti, J. M.; Ziller, J. W. Inorg. Chem. 2005, 44, 5820-5825. (f) Evans, W. J.; Ulibarri, T. A.; Ziller, J. W. Organometallics 1991, 10, 134-142.

⁽²⁰⁾ Bolm, C.; Ewald, M.; Schilingloff, G. *Chem. Ber.* 1992, *125*, 1169.
(21) Constable, E. C.; Heirtzler, F.; Neuburger, N.; Zehnder, M. J. Am. *Chem. Soc.* 1997, *119*, 5606.

Synthesis of 1-(6-(2,6-Dimethylphenyl)pyridin-2-yl)ethanone.²² To a solution of 6-bromo-2-(2'-methyl-1',3'-dioxolan-2'yl)pyridine (1.5 g, 6.14 mmol) in dry and degassed THF (40 mL) was added NiCl₂(PCy₃)₂ (0.29 g, 0.43 mmol) in one portion. A 1 M THF solution of (2,6-Me₂C₆H₃)MgBr (7.4 mL, 7.4 mmol) was then added dropwise, and the resulting red solution was stirred at 50 °C for 72 h. Afterward, the mixture was cooled to room temperature and then treated with 30 mL of a saturated aqueous NH₄Cl solution. The layers that formed were separated, the aqueous phase was washed with Et₂O (3 \times 25 mL), and the combined organic extracts were dried over NaSO₄. After removal of the solvent under reduced pressure a brown oil was obtained, and it was used in the next step without any further purification. The oil was then suspended in HCl 2 M (15 mL) and stirred at 80-85 °C for 2 h. The resulting mixture was then cooled in an ice bath, diluted with iced water (15 mL), and neutralized portionwise with solid NaHCO₃. A standard extractive workup with AcOEt $(3 \times 30 \text{ mL})$ gave, after removal of solvent, a crude slightly brown solid which was purified by filtration over a silica gel pad (AcOEt-petroleum ether, 10:90) to afford the expected compound as a pale yellow oil (yield 76%). ¹H NMR (200 MHz, CD₂Cl₂, 293 K): δ 1.98 (s, 6H, (C₆H₃)(CH₃)₂), 2.60 (s, 3H, COCH₃), 7.06-7.08 (2H, CH Ar), 7.16 (m, 1H, C_H Ar), 7.36 (dd, ${}^{3}J_{HH} = 7.8$ Hz, 1H, CH Ar), 7.85 (t, ${}^{3}J_{HH}$ = 7.8 Hz, 1H, CH Ar), 7.92 (dd, ${}^{3}J_{HH}$ = 7.8 Hz, 1H, CH Ar).

Synthesis of [1-(6-(2,6-Dimethylphenyl)pyridin-2-yl)ethylidene]-(2,6-diisopropyphenyl)amine (2). A solution of 1-(6-(2,6-dimethylphenyl)pyridin-2-yl)ethanone (0.94 g, 4.17 mmol), 2,6-diisopropylaniline (2.4 mL, 12.5 mmol, 3 equiv) and a few drops of formic acid in MeOH (30 mL) was refluxed for 62 h. The reaction mixture was cooled to room temperature under stirring overnight and cooled for several hours to +4 °C to afford a yellow solid, which was filtered and washed several times with cold MeOH. Recrystallization from boiling MeOH gave a yellow solid in 69% yield. ¹H NMR (200 MHz, CD₂Cl₂, 293 K): δ 1.19 (d, ${}^{3}J_{\text{HH}} = 6.9$ Hz, 12H, CH(CH₃)₂), 2.15 (s, 6H, (C₆H₃)(CH₃)₂), 2.19 (s, 3H, CNCH₃), 2.82 (sept, ${}^{3}J_{HH} = 6.9$ Hz, 2H, CH(CH₃)₂), 6.09–7.14 (m, 1H, CH Ar), 7.16-7.22 (4H, CH Ar), 7.23-7.29 (m, 1H, CH Ar), 7.38 (dd, ${}^{3}J_{\text{HH}} = 7.7$ Hz, 1H, CH Ar), 7.93 (t, ${}^{3}J_{\text{HH}} = 7.7$ Hz, 1H, CH Ar), 8.32 (dd, ${}^{3}J_{\text{HH}} = 7.7$ Hz, 1H, CH Ar). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (50 MHz, CD₂Cl₂, 293 K): δ 17.1 (1C, CNCH₃), 20.1 (2C, CH₃ Ar), 22.5 (2C, CH(CH₃)₂), 23.0 (2C, CH(CH₃)₂), 28.1 (2C, CH(CH₃)₂), 119.0 (1C, CH Ar), 122.9 (2C, CH Ar), 123.4 (1C, CH Ar), 125.7 (1C, CH Ar), 127.6 (2C, CH Ar), 127.8 (1C, CH Ar), 135.8 (1C, CH Ar), 136.0 (2C, C Ar), 136.6 (2C, C Ar), 140.4 (1C, C Ar), 146.5 (1C, C Ar), 156.3 (1C, C Ar), 158.4 (1C, C Ar), 167.5 (1C, CN). Anal. Calcd for C₂₇H₃₂N₂ (384.56): C, 84.33; H, 8.39; N, 7.28. Found: C, 84.19; H, 8.42; N, 7.39.

Synthesis of N₂H^{Ph} (3). A solution of the iminopyridine ligand N₂^{Ph} (1; 1.21 g, 3.4 mmol) in 35 mL of toluene was cooled to 0 °C in an ice bath and treated dropwise with a 2.0 M toluene solution of trimethylaluminum (TMA; 2.54 mL, 5.1 mmol). The reaction mixture was stirred at room temperature for 12 h and then was quenched with 30 mL of water. The aqueous phase was extracted with 3 × 25 mL of AcOEt, and the combined organic layers were

dried over Na₂SO₄. Removal of the solvent under reduced pressure gave the amidopyridinate ligand as a crude dark white solid. The ligand was purified by crystallization from hot MeOH, by cooling the resulting solution to 4 °C overnight to afford white crystals in 93% yield (1.18 g). ¹H NMR (400 MHz, CD₂Cl₂, 293 K): δ 1.10 (d, ${}^{3}J_{HH} = 6.8$ Hz, 12H, CH(CH₃), H^{23,24,25,26}), 1.53 (s, 6H, C(CH₃)₂, $H^{13,14}$), 3.38 (sept, ${}^{3}J_{HH} = 6.8$ Hz, 2H, CH(CH₃), $H^{21,22}$), 4.56 (bs, 1H, NH), 7,10 (bs, 3H, CH Ar, H^{17,18,19}), 7.45-7.54 (m, 4H, CH Ar, $H^{2,8,9,10}$), 7.71 (d, 1H, ${}^{3}J_{HH} = 7.5$ Hz, CH Ar, H^{4}), 7.81 (t, 1H, ${}^{3}J_{\text{HH}} = 7.5$ Hz, CH Ar, H³), 8.14–8.16 (m, 2H, CH Ar, H^{7,11}). $^{13}C{^{1}H}$ NMR (100 MHz, C₆D₆, 293 K): δ 23.7 (CH(CH₃)₂, C^{23,24,25,26}), 28.2 (CH(CH₃)₂, C^{21,22}), 28.9 (C(CH₃)₂, C^{13,14}), 59.4 (C(CH₃)₂; C¹²), 117.7 (C^{2,4}), 122.9 (C^{17,19}), 124.4 (C¹⁸), 126.8 (C^{7,11}), 128.6 (C^{8,10}), 128.8 (C⁹), 137.2 (C³), 139.5 (C⁶), 140.5 (C^{16,20}), 146.8 (C15), 155.4 (C5), 167.8 (C1). Mp: 107.8 °C. Anal. Calcd for C₂₆H₃₂N₂ (372.55): C, 83.82; H, 8.66; N, 7.52. Found: C, 83.91; H, 8.62; N, 7.37.

Synthesis of $N_2 H^{Xyl}$ (4). A solution of the iminopyridine ligand N₂^{Xyl} (2; 0.85 g, 2.2 mmol) in 20 mL of toluene was cooled to 0 °C in an ice bath and treated dropwise with a 2.0 M toluene solution of trimethylaluminum (TMA; 1.65 mL, 3.3 mmol). The reaction mixture was stirred at room temperature for 12 h and then was quenched with 20 mL of water. The aqueous phase was extracted with 3×25 mL of AcOEt, and the combined organic layers were dried over Na₂SO₄. Removal of the solvent under reduced pressure gave the amidopyridinate ligand as a crude dark white solid. The ligand was purified by crystallization from hot MeOH, by cooling the resulting solution to -20 °C overnight to afford white crystals in 89% yield (0.79 g). ¹H NMR (400 MHz, CD_2Cl_2 , 293 K): δ 1.07 (d, 12H, ${}^{3}J_{\text{HH}} = 6.8$ Hz, CH(CH₃), H^{23,24,25,26}), 1.49 (s, 6H, $C(CH_3)_2$, H^{13,14}), 2.12 (s, 6H, C(CH₃), H^{27,28}), 3.23 (sept, ${}^{3}J_{HH} =$ 6.8 Hz, 2H, CH(CH₃), H^{21,22}), 4.14 (bs, 1H, NH), 7,08 (bs, 3H, CH Ar, H^{17,18,19}), 7.14-7.17 (m, 4H, CH Ar, H^{2,8,9,10}), 7.57 (dd, 1H, ${}^{3}J_{\text{HH}} = 7.9$ Hz, ${}^{3}J_{\text{HH}} = 0.9$ Hz, CH Ar, H⁴), 7.80 (t, 1H, ${}^{3}J_{\text{HH}}$ = 7.9 Hz, CH Ar, H³). ¹³C{¹H} NMR (100 MHz, C₆D₆, 293 K): δ 20.1 (C(CH₃)₂, C^{13,14}), 23.7 (CH(CH₃)₂, C^{23,24,25,26}), 28.1 (CH(CH₃)₂, C^{21,22}), 29.1 (C(CH₃), C^{27,28}), 58.9 (C(CH₃)₂; C¹²), 116.9 (C²), 122.1 (C⁴), 122.9 (C^{17,19}), 124.2 (C¹⁸), 127.4 (C^{8,10}), 127.6 (C⁹), 135.9 (C⁶), 136.5 (C^{16,20}), 140.8 (C³), 141.0 (C¹⁵), 146.3 (C^{7,11}), 158.3 (C⁵), 168.5 (C¹). Mp: 109.6 °C. Anal. Calcd for $C_{28}H_{36}N_2$ (400.6): C, 83.95; H, 9.06; N, 6.99. Found: C, 83.7; H, 8.97; N, 7.02.

Synthesis of N₂^{Ph}Y(CH₂SiMe₃)(THF)₂ (5). A solution of N₂^{Ph}H (3; 0.182 g, 0.49 mmol) in n-hexane (15 mL) was added to a solution of (Me₃SiCH₂)₃Y(THF)₂ (0.242 g, 0.49 mmol) in *n*-hexane (10 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h. The solution was concentrated under vacuum and was kept overnight at -20 °C. Complex 5 was isolated as a yellow microcrystalline solid in 87% yield (0.294 g). ¹H NMR (400 MHz, C_6D_6 , 293 K): $\delta - 0.54$ (d, ${}^2J_{YH} = 3.0$ Hz, 2H, YCH₂), 0.22 (s, 9H, Si(CH₃)), 1.07 (m, 8H, β -CH₂ THF), 1.21 (d, ${}^{3}J_{\text{HH}} = 6.8$ Hz, 6H, CH(CH₃); H^{23,24,25,26}), 1.31 (d, ${}^{3}J_{HH} = 6.8$ Hz, 6H, CH(CH₃), $H^{23,24,25,26}$), 1.44 (s, 6H, C(CH₃)₂, $H^{13,14}$), 3.55 (m, 8H, α -CH₂ THF), 3.80 (sept, ${}^{3}J_{HH} = 6.8$ Hz, 2H, CH(CH₃), H^{21,22}), 6.76 (d, ${}^{3}J_{HH} =$ 7.9 Hz, 1H, CH Ar, H²), 7.19 (m, together 2H, CH Ar, H^{3,18}), 7.27 (m, together 3H, CH Ar, $H^{10,17,19}$), 7.39 (t, ${}^{3}J_{HH} = 7.3$ Hz, 1H, CH Ar, H⁹), 7.45 (d, ${}^{3}J_{\text{HH}} = 7.5$ Hz, 1H, CH Ar, H⁴), 7.79 (d, ${}^{3}J_{\text{HH}} =$ 8.0 Hz, 1H, CH Ar, H¹¹), 8.15 (d, ${}^{3}J_{HH} = 6.8$ Hz, 1H, CH Ar, H⁸). ¹³C{¹H} NMR (100 MHz, C₆D₆, 293 K): δ 4.6 (s, Si(CH₃)₃), 23.8 (s, $CH(CH_3)_2$, $C^{23,24,25,26}$), 24.7 (s, β -CH₂, THF), 27.5 (s, CH(CH₃)₂, $C^{3,24,25,26}$), 27.6 (s, CH(CH₃)₂, $C^{21,22}$), 30.3 (d, ¹J_{YC} = 39.5 Hz, YCH₂), 32.1 (s, C(CH₃)₂, C^{13,14}), 68.5 (s, C(CH₃)₂; C¹²), 69.6 (s, α-CH₂ THF), 115.2 (s, C⁴), 117.7 (s, C²), 122.9 (s, C¹¹), 123.6 (s, C^{17,19}), 123.7 (s, C¹⁸), 125.3 (s, C¹⁰), 127.9 (s, C⁹), 138.0 (s, C⁸), 138.6 (s, C³), 145.3 (s, C⁶), 147.6 (s, C¹⁵), 150.2 (s, C^{16,20}), 164.6 (s, C⁵), 175.8 (s, C¹), 190.6 (d, ${}^{1}J_{YC} = 41.2$ Hz, YC, C⁷). Anal. Calcd for C₃₈H₅₇N₂O₂SiY (690.86): C, 66.06; H, 8.32; N, 4.05; Y, 12.87. Found: C, 66.38; H, 8.52; N, 4.09; Y, 12.64.

^{(22) (}a) Scott, N. M.; Schareina, T.; Tock, O.; Kempe, R. *Eur. J. Inorg. Chem.* **2004**, 3297–3304. (b) Labonne, A.; Kribber, T.; Hintermann, L. *Org. Lett.* **2006**, *8*, 5853–5856.

Synthesis of N2XylY(CH2SiMe3)(THF) (6). A solution of N2XyH (4; 0.215 g, 0.54 mmol) in n-hexane (15 mL) was added to a solution of (Me₃SiCH₂)₃Y(THF)₂ (0.266 g, 0.54 mmol) in *n*-hexane (10 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h. The solution was concentrated under vacuum and kept overnight at -20 °C. Complex 6 was isolated as an orange crystalline solid in 79% yield (0.274 g). ¹H NMR (400 MHz, C₆D₆, 293 K): δ -0.92 $(dd, {}^{2}J_{HH} = 10.8 \text{ Hz}, {}^{2}J_{YH} = 3.0 \text{ Hz}, 1\text{H}, \text{YC}H_{2}\text{SiMe}_{3}), -0.76 (dd,$ ${}^{2}J_{\text{HH}} = 10.8 \text{ Hz}, {}^{2}J_{\text{YH}} = 3.0 \text{ Hz}, 1\text{H}, \text{YCH}_{2}\text{SiMe}_{3}$), 0.23 (s, 9H, Si(CH₃)₃), 0.96 (d, ${}^{3}J_{\text{HH}} = 6.3$ Hz, 3H, CH(CH₃), H^{23,24,25,26}), 1.02 (br m, β -CH₂ THF), 1.15 (m, together 6H, CH(CH₃)₂ and C(CH₃)₂, $H^{13,14,23,24,25,26}$, 1.38 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, CH(CH₃)₂, $H^{23,24,25,26}$), 1.39 (d, ${}^{3}J_{\text{HH}} = 6.8$ Hz, 3H, CH(CH₃)₂, H^{23,24,25,26}), 1.81 (dd, d, ${}^{2}J_{\rm HH} = 5.5$ Hz, ${}^{2}J_{\rm YH} = 2.0$ Hz, 1H, ArCH₂Y, H²⁸), 1.89 (s, 3H, ArCH₃, C²⁷), 2.00 (dd, d, ${}^{2}J_{HH} = 5.5$ Hz, ${}^{2}J_{YH} = 2.0$ Hz, 1H, ArCH₂Y, H²⁸), 2.20 (s, 3H, C(CH₃)₂, C^{13,14}), 3.00 (br m, 2H, α-CH₂, THF), 3.11 (br m, 2H, α -CH₂ THF), 3.18 (sept, ${}^{3}J_{\text{HH}} = 6.8$ Hz, 1H, CH(CH₃), H^{21,22}), 4.50 (sept, ${}^{3}J_{HH} = 6.3$ Hz, 1H, CH(CH₃), $H^{21,22}$), 6.74 (d, ${}^{3}J_{HH} = 8.0$ Hz, 1H, CH Ar, H^{2}), 6.80 (m, 2H, CH Ar, $H^{4,8}$), 6.98 (d, ${}^{3}J_{HH} = 7.8$ Hz, 1H, CH Ar, H^{10}), 7.05–7.22 (m, 5H, CH, $H^{3,9,17,18,19}$). ¹³C{¹H} NMR (100 MHz, C₆D₆, 293 K): δ 4.7 (s, Si(CH₃)₃), 21.5 (s, C(CH₃)₂, C^{13,14}), 24.1 (s, CH(CH₃)₂, C^{23,24,25,26}), 24.8 (s, β -CH₂ THF), 24.9 (s, C(CH₃)₂, C^{13,14}), 25.6 (s, CH(CH₃)₂, C^{23,24,25,26}), 26.7 (s, CH(CH₃)₂, C^{23,24,25,26}), 27.2 (s, CH(CH₃)₂, C^{23,24,25,26}), 27.3 (d, ¹J_{YC} = 41.4 Hz, YCH₂Si), 27.4 (s, CH(CH₃)₂, C^{23,24,25,26}), 27.3 (d, ¹J_{YC} = 41.4 Hz, YCH₂Si), 27.4 (s), CH(CH₃)₂, C^{21,22}), 28.1 (s, CH(CH₃)₂, C^{21,22}), 40.8 (s, ArCH₃, C²⁷), 49.2 (d, ${}^{1}J_{YC} = 23.1$ Hz, YCH₂, C²⁸), 65.4 (s, C(CH₃)₂, C¹²), 69.5 (s, α -CH₂ THF), 115.5 (s, Ar, C⁴), 119.8 (s, Ar, C²), 122.8 (s, Ar, C¹⁰), 123.5 (s, Ar, C^{17,19}), 123.6 (s, Ar, C^{17,19}), 123.7 (s, Ar, C¹⁸), 124.0 (s, Ar, C⁸), 130.5 (s, Ar, C⁹), 136.5 (s, Ar, C¹¹), 139.0 (s, Ar, C³), 145.6 (s, Ar, C⁶), 149.3 (s, Ar, C¹⁵), 150.0 (s, Ar, C^{16,20}), 150.2 (s, Ar, C^{16,20}) 150.6 (s, Ar, C⁷), 158.3 (s, Ar, C⁵), 176.0 (s, Ar, C¹). Anal. Calcd for C₃₆H₅₃N₂OSiY (646.30): C, 66.85; H, 8.26; N, 4.33; Y, 13.76. Found: C, 66.63; H, 8.03; N, 4.29; Y, 13.64.

Synthesis of [N2^{Ph}Y(µ-H)(THF)]2 (7). PhSiH3 (0.035 g, 0.318 mmol) was added to a solution of 5 (0.220 g, 0.318 mmol) in *n*-hexane (25 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h and kept overnight at room temperature. The solution was concentrated under vacuum and was kept overnight at -20°C. Complex 7 was isolated as a yellow microcrystalline solid in 69% yield (0.117 g). ¹H NMR (400 MHz, C₆D₆, 293 K): δ 1.03 (br s, 8H, β -CH₂ THF), 1.18 (br m, 12H, CH(CH₃); H^{23,24,25,26}), 1.35 (br m, 12H, CH(CH₃), H^{23,24,25,26}), 1.55 (s, 12H, C(CH₃)₂, $H^{13,14}$), 3.21 (br m, together 12H, α -CH₂ THF and CH(CH₃), $H^{21,22}$), 6.84 (d, ${}^{3}J_{HH} = 7.6$ Hz, 2H, CH Ar, H²), 6.95 (d, ${}^{3}J_{HH} = 7.5$ Hz, 2H, CH Ar, H¹⁸), 7.04 (d, ${}^{3}J_{\text{HH}} = 7.5$ Hz, 4H, CH Ar, C^{17,19}), 7.23 (m, together 4H, CH Ar, $H^{3,10}$), 7.36 (t, ${}^{3}J_{HH} = 7.0$ Hz, 2H, CH Ar, H⁹), 7.47 (d, ${}^{3}J_{HH} = 8.0$ Hz, 2H, CH Ar, H⁴), 7.76 (t, ${}^{1}J_{YH} = 27.7$ Hz, 2H, Y(μ -H)), 7.85 (d, ${}^{3}J_{\text{HH}} = 7.8$ Hz, 2H, CH Ar, H¹¹), 8.07 (d, ${}^{3}J_{\text{HH}} = 6.5$ Hz, 2H, CH Ar, H⁸). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (100 MHz, C₆D₆, 293 K): δ 24.8 (s, β-CH₂ THF), 25.6 (s, CH(CH₃)₂, C^{23,24,25,26}), 27.5 (s, CH(CH₃)₂, C^{23,24,25,26}), 28.3 (s, CH(CH₃)₂, C^{21,22}), 29.2 (s, C(CH₃)₂, C^{13,14}), 66.2 (s, C(CH₃)₂, C¹²), 70.0 (s, α-CH₂ THF), 115.2 (s, C²), 115.5 (s, C⁴), 122.2 (s, C¹⁸), 122.8 (s, C^{17,19}), 123.1 (s, C¹¹), 125.1 (s, C¹⁰), 126.9 (s, C⁹), 138.0 (s, C⁸), 138.6 (s, C³), 147.8 (s, C⁶), 148.1 (s, C¹⁵), 148.9 (s, C^{16,20}), 164.0 (s, C⁵), 176.0 (s, C¹), 193.1 (d, $^{1}J_{YC} = 46.2$ Hz, YC). Anal. Calcd for C₆₀H₇₈N₄O₂Y₂ (1065.10): C, 67.66; H, 7.38; N, 5.26; Y, 16.69. Found: C, 67.23; H, 7.42; N, 5.15; Y, 16.43.

Synthesis of [N₂^{Xyl}Y(µ-H)(THF)]₂ (8). PhSiH₃ (0.048 g, 0.444 mmol) was added to a solution of 6 (0.287 g, 0.444 mmol) in n-hexane (25 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h and kept overnight at room temperature. The solution was concentrated under vacuum and was kept overnight at -20°C. Complex 8 was isolated as an orange microcrystalline solid in 63% yield (0.157 g). ¹H NMR (400 MHz, C₆D₆, 293 K): δ 1.03 (d, ${}^{3}J_{\text{HH}} = 6.3$ Hz, 6H, CH(CH₃), H^{23,24,25,26}), 1.08 (d, ${}^{3}J_{\text{HH}} = 6.3$ Hz, 6H, CH(CH₃), H^{23,24,25,26}), 1.13 (m, together 12H, CH(CH₃)₂ and C(CH₃)₂, H^{13,14,23,24,25,26}), 1.27 (br m, together 14H, CH(CH₃)₂ and β -CH₂ THF, H^{23,24,25,26}), 1.76 (d, ²J_{HH} = 5.5 Hz, 2H, ArCH₂Y, H⁸), 1.87 (d, ${}^{2}J_{\rm HH} = 5.5$ Hz, 2H, ArCH₂Y, H²⁸), 2.15 (s, 6H, $C(CH_3)_2$, $C^{13,14}$), 2.18 (s, 6H, ArCH₃, H²⁷) 2.83 (sept, ${}^{3}J_{HH} = 6.5$ Hz, 2H, CH(CH₃), H^{21,22}), 2.92 (br m, 4H, α-CH₂ THF), 3.17 (br m, 4H, α -CH₂ THF), 4.33 (sept, ${}^{3}J_{HH} = 6.5$ Hz, 2H, CH(CH₃), $H^{21,22}$), 6.32 (d, ${}^{3}J_{HH} = 6.5$ Hz, 2H, CH Ar, H^{2}), 6.76 (d, ${}^{3}J_{HH} =$ 8.5 Hz, 2H, CH Ar, H⁴), 6.81 (m, 4H, CH Ar, H^{9,10}), 6.88 (d, ³J_{HH} = 7.8 Hz, 2H, CH Ar, H^8), 7.06 (m, 4H, CH Ar, $H^{17,19}$), 7.15 (m, 4H, CH Ar, H^{3,18}), 7.37 (t, ${}^{1}J_{YH} = 26.5$ Hz, 2 H, YH). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, C₆D₆, 293 K): δ 21.3 (s, C(CH₃)₂, C^{13,14}), 24.6 (s, CH(CH₃)₂, C^{23,24,25,26}), 24.5 (s, CH(CH₃)₂, C^{23,24,25,26}), 25.2 (s, $C(CH_3)_2$, $C^{13,14}$), 25.4 (s, $CH(CH_3)_2$, $C^{23,24,25,26}$), 25.5 (s, β - CH_2 THF), 26.3 (s, CH(CH₃)₂, C^{23,24,25,26}), 26.9 (s, CH(CH₃)₂, C^{21,22}), 27.7 (s, $CH(CH_3)_2$, $C^{21,22}$), 43.3 (s, $ArCH_3$, C^{27}), 51.3 (d, ${}^{1}J_{YC} =$ 24.9 Hz, YCH₂), 63.6 (s, C(CH₃)₂, C¹²), 69.3 (s, α-CH₂ THF), 113.1 (s, C⁴), 118.0 (s, C²), 122.0 (s, C¹⁰), 122.9 (s, C^{17,19}), 123.0 (s, C^{17,19}), 123.2 (s, C¹⁸), 123.7 (s, C⁸), 128.7 (s, C⁹), 134.5 (s, C³), 137.8 (s, C¹¹), 146.7 (s, C⁶) 147.8 (s, C¹⁵), 148.5 (s, C^{16,20}), 148.7 (s, C^{16,20}), 150.8 (s, C7), 159.0 (s, C5), 176.0 (s, C1). Anal. Calcd for C₆₄H₈₆N₄O₂Y₂ (1121.20): C, 68.56; H, 7.73; N, 5.00; Y, 15.86. Found: C, 68.41; H, 7.33; N, 4.92; Y, 15.76.

Acknowledgment. This work has been supported by the Russian Foundation for Basic Research (Grant Nos. 08-03-00391-a, 06-03-32728). Thanks are also due to the European Commission (NoE IDECAT, NMP3-CT-2005-011730) and the Ministero dell'Istruzione, dell'Università e della Ricerca of Italy (NANOPACK - FIRB project no. RBNE03R78E) for support.

Supporting Information Available: Tables and CIF files giving crystallographic data for the compounds $N_2^{Xyl}Y(CH_2SiMe_3)(THF)$ (6) and $[N_2^{Ph}Y(\mu-H)(THF)]_2$ (7). This material is available free of charge via the Internet at http://pubs.acs.org.

OM801044H