

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 60 (2004) 11895-11901

Brønsted acid-mediated ring-opening reactions of methylenecyclopropanes: a dramatic counter ion effect

Li-Xiong Shao, Jin-Wen Huang and Min Shi*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

Received 23 July 2004; revised 20 September 2004; accepted 22 September 2004

Available online 19 October 2004

Abstract—We report herein two different ring-opening patterns of methylenecyclopropanes (MCPs) in the presence of two Brønsted acids heptadecafluorooctane-1-sulfonic acid ($C_8F_{17}SO_3H$) and toluene *p*-sulfonic acid (TsOH) under mild conditions: (a) the ring-opening of MCPs by H₂O and subsequent etherification give the corresponding homoallylic ethers in the presence of heptadecafluorooctane-1-sulfonic acid; (b) the direct ring-opening of MCPs by the Brønsted acid gives the corresponding homoallylic alcohol derivatives in the presence of toluene *p*-sulfonic acid.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Transition metal-catalyzed reactions of methylenecyclopropanes (MCPs) 1 have been widely explored in this area of study over the past decades.¹ The attractive feature of these compounds is their surprising stability along with a high level of strain.^{2–4} Strangely, less attention has been paid for the Lewis acid or Brønsted acid-mediated reactions of MCPs.⁵ In the continuum of Lewis acid or Brønsted acidmediated transformations of MCPs 1, we have found that MCPs 1 can react with various reagents such as alcohols, amines, and imines in a different ring-opening pattern.⁶ These progresses stimulate us to investigate further the Lewis acid or Brønsted acid-mediated ring-opening reactions of MCPs 1. Recently, Yamamoto and co-workers reported that the cyclopropyl ring of MCPs can be opened by water to give the homoallylic alcohol under severe reaction conditions, such as the use of a sealed pressure vial under an inert gas atmosphere and at higher temperature (80 °C) without organic solvent.⁷ In the recent program of Brønsted acid-mediated transformations of MCPs 1, we found that the corresponding anion (counter ion) of the employed Brønsted acid played a significant role in the ringopening reactions under milder conditions: a) the cyclopropyl ring of MCPs 1 can be opened by H₂O and subsequent etherification to give the homoallylic ethers in the presence

of heptadecafluorooctane-1-sulfonic acid ($C_8F_{17}SO_3H$) in which the corresponding anion $C_8F_{17}SO_3^-$ is a weak nucleophile; (b) the cyclopropyl ring of MCPs 1 can be opened directly by the Brønsted acid toluene *p*-sulfonic acid (TsOH) to give the homoallylic alcohol derivatives (sulfonated homoallylic alcohols) in which the corresponding anion TsO⁻ is a strong nucleophile. In this paper we wish to report the full details of these interesting results (Scheme 1).

Scheme 1. Ring-opening reactions of MCPs 1 in the presence of $C_8F_{17}SO_3H/H_2O$ and $T_8OH \cdot H_2O$.

2. Results and discussion

At the outset of our investigation, the reaction of MCP **1a** with H_2O (1 equiv) was chosen as a model reaction and carried out under various reaction conditions to confirm the optimum reaction conditions. Table 1 shows the representative results. After several trials and errors, we were pleased to find out that the reaction of MCP **1a** with H_2O in the presence of $C_8F_{17}SO_3H$ (0.1 equiv) gave the homoallylic ether **2a** in 63% yield along with the homoallylic

Keywords: Methylenecyclopropanes (MCPs); Brønsted acid; Ring-opening reaction; Toluene *p*-sulfonic acid (TsOH); Heptadecafluorooctane-1-sulfonic acid ($C_8F_{17}SO_3H$).

^{*} Corresponding author. Tel.: +86 21 64163300x342; fax: 86 21 64166128; e-mail: mshi@pub.sioc.ac.cn

^{0040–4020/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2004.09.105

Table 1. The screening of the catalysts of the ring-opening of MCPs by $\rm H_2O$ and subsequent etherification

Entry ^a	Catalyst	Time/(h)	Yield/(%) ^b	
			2a	3a
1	Zn(OTf) ₂	72	_	_
2	Cu(OTf) ₂	72	Trace	Trace
3	Eu(OTf)3	72	_	_
4	$Sc(OTf)_3$	72	Trace	_
5	Yb(OTf) ₃	72	Trace	_
6	BF ₃ OEt ₂	72	Trace	11
7	CF ₃ SO ₃ H	72	49	5
8	$Zr(OTf)_4$	72	21	Trace
9	C ₈ F ₁₇ SO ₃ H	72	63	8
10 ^c	$Zr(OTf)_4$	48	48	Trace
11 ^c	C ₈ F ₁₇ SO ₃ H	24	71	_
12 ^d	C ₈ F ₁₇ SO ₃ H	24	67	Trace
13 ^{c,e}	C ₈ F ₁₇ SO ₃ H	24	11	25
14 ^{c,f}	C ₈ F ₁₇ SO ₃ H	24	36	18

^a Otherwise specified, 0.1 equiv of catalysts were used.

^b Isolated yields.

^c 0.3 equiv of catalysts were used.

^d 1.0 equiv of catalyst was used.

^e CH₃CN as the solvent.

^f *n*-Hexane as the solvent.

alcohol 3a in 8% yield within 72 h (Table 1, entry 9). The product 2a was also obtained in somewhat lower yields, either in the catalysis of CF₃SO₃H (0.1 equiv) or Zr(OTf)₄ (0.1 equiv) (Table 1, entries 7 and 8). Investigation into other catalysts showed that $Zn(OTf)_2$, $Cu(OTf)_2$, $Eu(OTf)_3$, $Sc(OTf)_3$, $Yb(OTf)_3$ and $BF_3 \cdot OEt_2$ were not effective promoters for this reaction (Table 1, entries 1-6). Further screening showed that this reaction can complete within 24 h to give 2a as a sole product in 71% yield when 0.3 equiv of C₈F₁₇SO₃H was used (Table 1, entry 11) and increasing the amount of $C_8F_{17}SO_3H$ to 1.0 equiv gave 2a in comparable yield also as a sole product (Table 1, entry 12). In addition, product 2a was obtained in somewhat lower yields along with 3a when CH₃CN and *n*-hexane were used as the solvents (Table 1, entries 13 and 14). Of the solvents screened, 1,2-dichloroethane (DCE) proved to be a suitable solvent, giving the best results.

The equivalents of H_2O were investigated for this ringopening reaction of MCPs. The results are summarized in Table 2. As can be seen from Table 2, the best result was obtained when 1.0 equiv H_2O was used (Table 2, entry 1). Increasing the amount of H_2O to 2.0–4.0 equiv gave product **2a** in somewhat lower yields along with the formation of

Table 2. The effects of the amount of water used

Entry ^a	H ₂ O (equiv)	Yield	l (%) ^b
		2a	3 a
1	1.0	71	_
2	2.0	62	4
3	3.0	46	14
4	4.0	28	9
5	5.0	Trace	Trace
6	90.0	_	_

^a All reactions were carried out for 24 h.

^b Isolated yields.

Table 3. Reaction of MCPs 1 with H₂O (1.0 equiv) under the catalysis of $C_8F_{17}SO_3H$ (0.3 equiv) in DCE

Entry	R^1/R^2	Time/h	Yield	(%) ^a
			2	3
1	1b , p -MeOC ₆ H ₄ / p -MeOC ₆ H ₄	1	2b , 52	_
2	1c, p -MeOC ₆ H ₄ /C ₆ H ₅	2	2c , 60	Trace
3	1d, p -MeC ₆ H ₄ / p -MeC ₆ H ₄	4	2d, 56	_
4	1e, o -ClC ₆ H ₄ /C ₆ H ₅	24	2e , 63	3e , 9
5	1f, p -ClC ₆ H ₄ / p -ClC ₆ H ₄	24	2f , 42	_
6	1g , p -FC ₆ H ₄ / p -FC ₆ H ₄	24	2g , 94	3g , 6

^a Isolated yields.

homoallylic alcohol **3a** (Table 2, entries 2–4). Traces of **2a** and **3a** were obtained when 5.0 equiv of H_2O was used and no reaction took place when 90.0 equiv of H_2O was used (Table 2, entries 5, 6). Thus, these optimized reaction conditions were 1.0 equiv of H_2O as the reagent, 0.3 equiv of $C_8F_{17}SO_3H$ as the catalyst and DCE as the solvent.

In the following series of reactions, we examined the reactivity of a variety of MCPs 1 under these optimized conditions to surrey the generality of this reaction. The results are shown in Table 3. We were delighted to find out that the reactions proceeded smoothly to give the corresponding homoallylic ether 2 as a sole product in good to excellent yields in most cases except for MCP 1e and 1g in which less than 10% of the homoallylic alcohol were obtained (Table 3, entries 4 and 6). For MCPs 1b, 1c and 1d, in which electron-donating groups on the phenyl ring, the reaction time was dramatically reduced (Table 3, entries 1–3). For the unsymmetric MCPs 1c and 1e, only one isomer of the product 2 were obtained and we cannot explain these phenomena at present stage (Table 3, entries 2 and 4) (see their ¹H and ¹³C NMR spectra in Supporting Information).

Interestingly, we found that the ring of MCPs 1 can be opened by the corresponding anion when toluene *p*-sulfonic acid monohydrate (TsOH \cdot H₂O) was used as the Brønsted acid reagent in 1,2-dichloroethane (DCE). The results are shown in Table 4. As can be seen from Table 4, all reactions

Table 4. The reaction of toluene-4-sulfonic acid with various MCPs 1

Entry	R^1/R^2	Time/min	Yield/% ^a , 4 (<i>E</i> / <i>Z</i>)
1	$1a, C_6H_5/C_6H_5$	4	98
2	1b , p -MeOC ₆ H ₄ / p -MeOC ₆ H ₄	5	96
3 ^b	1c, p -MeOC ₆ H ₄ /C ₆ H ₅	5	99 (1:1)
4	1d, p -MeC ₆ H ₄ / p -MeC ₆ H ₄	5	77
5 ^b	1e, o -ClC ₆ H ₄ /C ₆ H ₅	25	93 (7.8:1)
6	1f , p -ClC ₆ H ₄ / p -ClC ₆ H ₄	20	92
7	$1g, p-FC_6H_4/p-FC_6H_4$	30	96
8 ^b	1h , p -EtOC ₆ H ₄ /Me	5	97 (2.5:1)

^a Isolated yields.

^b Mixtures of (Z)- and (E)-isomers.

11897

Scheme 2. Plausible reaction mechanism.

proceeded smoothly to give the homoallylic alcohol derivatives **4** in excellent yields within 30 min. In this case, the ambient H₂O did not participate in the ringopening reaction. For the unsymmetric MCPs **1b**, **1e** and **1h**, the products **4b**, **4e** and **4h** were obtained as mixtures of *Z*and *E*-isomers (Table 4, entries 3, 5 and 8). Using MeCN as the solvent, a Ritter reaction product was obtained as the by-product (Scheme 2).⁸

The structures of products 2, 3 and 4 were determined by ¹H NMR and ¹³C NMR spectroscopic data, microanalysis and HRMS.

A plausible mechanism for these two different ring-opening reactions of MCPs 1 is shown in Scheme 2. The initial protonation of MCPs 1 with Brønsted acid gives the intermediate A. The cyclopropylmethyl cation intermediate A is further stabilized by two substituents on the double bond.⁹ The intermediate A is attacked by H_2O if the corresponding anion of the Brønsted acid is a weak nucleophile (in the case of $C_8F_{17}SO_3^-$) to give product **3**. Subsequent ring-opening nucleophilic attack of 3 to another cation intermediate A gives product 2. The intermediate A can also be attacked by the corresponding anion of the Brønsted acid if it is a strong nucleophile (in the case of TsO^{-}) to furnish product 4. In the case of MeCN as the solvent, the cation intermediate A will be attacked by the solvent (MeCN) to give the cation intermediate **B** which is quenched by H₂O to give the Ritter-type by-product (Scheme 2).

3. Conclusion

In conclusion, we have found two different ring-opening patterns of MCPs **1** in different Brønsted acid-mediated systems. The nucleophilicity of the anion of the employed Brønsted acid has dramatic effect on the ring-opening modes of MCPs 1: the cyclopropyl ring of MCPs 1 can be opened by water when the corresponding anion is a weak nucleophile such as heptadecafluorooctane-1-sulfonic acid ($C_8F_{17}SO_3H$) as the Brønsted acid mediator; and the cyclopropyl ring of MCPs 1 also can be opened by the corresponding anion when it is a strong nucleophile such as toluene *p*-sulfonic acid (TsOH) as the Brønsted acid mediator. Other Brønsted acids will be investigated in this ring-opening system in the near future. In addition, efforts are underway to elucidate the mechanistic details and subsequent transformation thereof. Work along these lines is currently in progress.

4. Experimental

4.1. General remarks

¹H NMR spectra were recorded on a 300 MHz spectrometer in CDCl₃ using tetramethylsilane as the internal standard. Infrared spectra were measured on a PERKIN-ELMER 983 spectrometer. Mass spectra were recorded with a HP-5989 instrument and HRMS was measured by a Finnigan MA⁺ mass spectrometer. Satisfactory CHN microanalyses were obtained with a Carlo-Erba 1106 analyzer. Melting points are uncorrected. All reactions were monitored by TLC with Huanghai GF₂₅₄ silica gel coated plates. Flash Column Chromatography was carried out using 300–400 mesh silica gel.

4.2. General procedure for the ring-opening of MCPs by H_2O and subsequent etherification in the catalysis of heptadecafluorooctane-1-sulfonic acid ($C_8F_{17}SO_3H$)

Under an argon atmosphere, MCPs 1 (0.30 mmol), H_2O (0.30 mmol) and $C_8F_{17}SO_3H$ (0.1 mmol), were added into a

flame-dried Schlenk tube with freshly distilled 1,2-dichloroethane (DCE) (1.0 mL). The obtained white solid suspended reaction mixture was stirred at room temperature. The solvent was removed under reduced pressure and then the residue was purified by a flash column chromatography.

4.2.1. Di(4,4-diphenyl-but-3-en-1-yl) ether (2a). A white solid, Mp: 103–106 °C; IR (neat): ν 3078, 3054, 3023, 2856, 2778, 1945, 1889, 1734, 1597, 1494, 1443 cm⁻¹; ¹H NMR (CDCl₃, TMS, 300 MHz): δ 2.43 (dt, *J*=6.3, 7.2 Hz, 4H), 3.51 (t, *J*=6.3 Hz, 4H), 6.61 (t, *J*=7.2 Hz, 2H), 7.20–7.39 (m, 20H, Ar). ¹³C NMR (CDCl₃, 75 MHz, TMS): δ 30.4, 70.4, 126.0, 126.90, 126.93, 127.2, 128.0, 128.2, 129.9, 139.9, 142.5, 143.1. MS (%) *m/z* 430 (M⁺, 0.25), 237 (50.68), 206 (75.71), 91 (100). HRMS Calcd. for C₃₂H₃₀ONa⁺ (Maldi)¹⁰: 453.2201, Found: 453.2189 (M+Na⁺).

4.2.2. 4,4-diphenyl-but-3-en-1-ol (3a). A colorless liquid; IR (neat): ν 3344, 3055, 2926, 1493, 1443, 1047, 1031 cm⁻¹. ¹H NMR (CDCl₃, TMS, 300 MHz): δ 2.40 (dt, *J*=6.6, 7.5 Hz, 2H), 3.72 (t, *J*=6.6 Hz, 2H), 6.11 (t, *J*=7.5 Hz, 1H), 7.17–7.40 (m, 10H, Ar). ¹³C NMR (CDCl₃, 75 MHz, TMS): δ 33.3, 62.6, 125.2, 127.07, 127.09, 127.2, 128.1, 128.2, 129.8, 139.8, 142.4, 144.2. MS (%) *m*/*z* 224 (M⁺), 193, 178, 165, 115. HRMS Calcd. for C₁₆H₁₆O (EI): 224.1201, Found: 224.1215.

4.2.3. Di[4,4-bis(4-methoxyphenyl)-but-3-en-1-yl] ether (2b). A colorless liquid, IR (CH₂Cl₂): ν 3002, 2956, 2933, 2907, 2836, 2052, 1730, 1645, 1604, 1510, 1462, 1248 cm⁻¹. ¹H NMR (CDCl₃, TMS, 300 MHz): δ 2.39 (dt, *J*=6.6, 6.9 Hz, 4H), 3.48 (t, *J*=6.6 Hz, 4H), 3.78 (s, 3H, CH₃O), 3.81 (s, 3H, CH₃O), 5.99 (t, *J*=6.9 Hz, 2H), 6.77 (d, *J*= 8.7 Hz, 4H, Ar), 6.87 (d, *J*=8.7 Hz, 4H, Ar), 7.10 (d, *J*= 8.7 Hz, 4H, Ar), 7.14 (d, *J*=8.7 Hz, 4H, Ar). ¹³C NMR (CDCl₃, 75 MHz, TMS): δ 30.4, 55.17, 55.21, 70.5, 113.3, 113.4, 113.5, 124.0, 128.38, 131.0, 132.2, 142.0, 158.4, 162.8. MS (%) *m*/*z* 550 (M⁺, 0.55), 266 (66.78), 236 (100). HRMS Calcd. for C₃₂H₃₀ONa⁺ (Maldi): 573.2615, Found: 573.2612 (M+Na⁺).

4.2.4. Di{4,4-[1-phenyl-1-(4-methoxyphenyl)]-but-3en-1-yl} ether (2c). A colorless liquid, IR (CH₂Cl₂): ν 3054, 3030, 3003, 2955, 2935, 2904, 2859, 2837, 2793, 2548, 2311, 2059, 1893, 1719, 1654, 1606, 1575, 1510, 1493 cm⁻¹. ¹H NMR (CDCl₃, TMS, 300 MHz): δ 2.31 (dt, *J*=6.6, 7.5 Hz, 4H), 3.36–3.44 (m, 4H), 3.69 (s, 3H, CH₃O), 3.72 (s, 3H, CH₃O), 5.96 (t, *J*=7.5 Hz, 1H), 6.00 (t, *J*=7.5 Hz, 1H), 6.68 (d, *J*=9.0 Hz, 2H, Ar), 6.80 (d, *J*=8.4 Hz, 2H, Ar), 7.16–7.40 (m, 14H, Ar). ¹³C NMR (CDCl₃, 75 MHz, TMS): δ 30.4, 30.5, 55.16, 55.19, 70.46, 70.49, 113.4, 113.5, 124.2, 125.7, 126.8, 126.9, 127.3, 128.0, 128.1, 128.3, 129.8, 131.0, 132.2, 135.3, 140.2, 142.5, 142.7, 143.0, 158.5, 158.7. MS (%) *m*/z 490 (M⁺, 0.50), 267 (20.58), 236 (100). HRMS Calcd. for C₃₄H₃₄O₃Na⁺ (Maldi): 513.2429, Found: 513.2400 (M+Na⁺).

4.2.5. Di[4,4-bis-(4-methylphenyl)-but-3-en-1-yl] ether (2d). A colorless liquid, IR (CH₂Cl₂): ν 3023, 2946, 2920, 2865, 2733, 1900, 1719, 1656, 1608, 1511, 1449, 1278 cm⁻¹. ¹H NMR (CDCl₃, TMS, 300 MHz): δ 2.30–2.46 (m, 16H), 3.51 (t, *J*=6.9 Hz, 4H), 6.61 (t, *J*=7.2 Hz, 2H), 7.04–7.20 (m, 16H, Ar). ¹³C NMR (CDCl₃, 75 MHz, TMS): δ 21.1, 21.2, 30.4, 70.5, 124.9, 125.7, 127.2, 128.7, 128.8, 129.8, 136.5, 137.1, 140.0, 142.8. MS (%) *m*/*z* 486 (M⁺, 1.5), 265 (28.11), 234 (100). HRMS Calcd. for C₃₆H₃₈ONa⁺ (Maldi): 509.2817, Found: 509.2815 (M+Na⁺).

4.2.6. Di{4,4-[1-phenyl-1-(2-chlorophenyl)]-but-3-en-1-yl} ether (2e). A yellow liquid, IR (CH₂Cl₂): ν 3080, 3055, 3024, 2947, 2858, 2791, 1937, 1800, 1730, 1597, 1494, 1473, 1445, 1434, 1360 cm⁻¹. ¹H NMR (CDCl₃, TMS, 300 MHz): δ 2.14 (dt, J=6.9, 7.5 Hz, 4H), 3.39 (t, J=6.9 Hz, 4H), 6.23 (t, J=7.5 Hz, 2H), 7.09–7.21 (m, 16H, Ar), 7.33–7.36 (m, 2H, Ar). ¹³C NMR (CDCl₃, 75 MHz, TMS): δ 30.4, 69.9, 126.1, 126.7, 127.0, 127.1, 128.2, 128.6, 129.7, 131.7, 133.8, 138.5, 140.1, 140.3. MS (%) m/z 498 (M⁺, 0.20), 271 (83.66), 201 (100). HRMS Calcd. for C₃₂H₂₈Cl₂ONa⁺ (Maldi): 521.1416, Found: 521.1409 (M+Na⁺).

4.2.7. 1-Phenyl-1-(2-chlorophenyl)-but-3-en-1-ol (3e). A yellow liquid, IR (CH₂Cl₂): ν 3321, 3056, 3024, 2928, 2881, 1945, 1712, 1594, 1560, 1494, 1473, 1445, 1434 cm⁻¹. ¹H NMR (CDCl₃, TMS, 300 MHz): δ 2.19 (dt, *J*=6.6, 7.2 Hz, 2H), 3.65 (t, *J*=6.6 Hz, 2H), 6.23 (t, *J*=7.2 Hz, 1H), 7.12–7.25 (m, 8H, Ar), 7.37–7.40 (m, 1H, Ar). ¹³C NMR (CDCl₃, 75 MHz, TMS): δ 33.4, 62.1, 126.17, 126.24, 126.5, 126.8, 127.3, 128.3, 128.8, 129.7, 131.6, 133.7, 138.4, 140.0 MS (%) *m*/*z* 258 (M⁺, 46.87), 227 (100). HRMS Calcd. for C₁₆H₁₅ClONa⁺ (Maldi): 281.0733, Found: 281.0704 (M+Na⁺).

4.2.8. Di[4,4-bis(4-chlorophenyl)-but-3-en-1-yl] ether (2f). A bright yellow liquid, IR (CH₂Cl₂): ν 3044, 2857, 2785, 1893, 1778, 1586, 1491, 1405 cm⁻¹. ¹H NMR (CDCl₃, TMS, 300 MHz): δ 2.38 (dt, J=6.6, 7.5 Hz, 4H), 3.49 (t, J=6.6 Hz, 4H), 6.12 (t, J=7.5 Hz, 2H), 7.095 (d, J=7.8 Hz, 4H, Ar), 7.103 (d, J=7.8 Hz, 4H, Ar), 7.21 (d, J=7.8 Hz, 4H, Ar), 7.31 (d, J=7.8 Hz, 4H, Ar), 7.31 (d, J=7.8 Hz, 4H, Ar). ¹³C NMR (CDCl₃, 75 MHz, TMS): δ 30.4, 70.2, 127.2, 128.3, 128.4, 128.5, 131.2, 133.0, 133.1, 137.8, 140.6, 141.0. MS (%) m/z 566 (M⁺, 0.20), 305 (41.37), 275 (10.83), 125 (100). HRMS Calcd. for C₃₂H₂₇Cl₄O⁺ (Maldi): 567.0815, Found: 567.0811 (M+H⁺).

4.2.9. Di[4,4-bis(4-fluorophenyl)-but-3-en-1-yl] ether (2g). A colorless liquid, IR (CH₂Cl₂): v 3045, 2955, 2863. 2778, 2030, 1893, 1782, 1715, 1656, 1601, 1508, 1401, 1225 cm⁻¹. ¹H NMR (CDCl₃, TMS, 300 MHz): δ 2.39 (dt, J=6.0, 6.9 Hz, 4H), 3.51 (t, J=6.9 Hz, 4H), 6.07 (t, J=6.0 Hz, 2H), 6.92 (d, J=6.9 Hz, 4H, Ar), 6.97 (d, J=6.9 Hz, 4H, Ar), 7.03 (d, J = 6.9 Hz, 4H, Ar), 7.07–7.18 (m, 4H, Ar). ¹³C NMR (CDCl₃, 75 MHz, TMS): δ 30.4, 70.3, 115.0 (d, $J_{C-F}=21.60$ Hz), 115.2 (d, $J_{C-F}=20.25$ Hz), 126.3, 127.4 (d, J_{C-F} =7.28 Hz), 128.7 (d, J_{C-F} =7.58 Hz), 131.4 (d, J_{C-F} =7.28 Hz), 135.6 (d, J_{C-F} =3.68 Hz), 138.6 (d, $J_{C-F}=3.08$ Hz), 141.2, 161.9 (d, $J_{C-F}=246.68$ Hz), 162.1 (d, J_{C-F} =244.65 Hz). MS (%) *m*/*z* 502 (M⁺, 0.15), 273 (27.26), 242 (60.00), 109 (100). HRMS Calcd. for $C_{32}H_{26}F_4ONa^+$ (Maldi): 525.1805, Found: 525.1812 $(M + Na^+).$

4.2.10. Di[4,4-bis(fluorophenyl)-but-3-en-1-ol (3g). A yellow liquid, IR (CH₂Cl₂): ν 3341, 3045, 2928, 2881,

1893, 1719, 1602, 1508, 1409, 1225 cm⁻¹. ¹H NMR (CDCl₃, TMS, 300 MHz): δ 2.31 (dt, *J*=6.3, 7.2 Hz, 2H), 3.66 (t, *J*=6.3 Hz, 2H), 5.98 (t, *J*=7.2 Hz, 1H), 6.85–7.13 (m, 8H, Ar). ¹³C NMR (CDCl₃, 75 MHz, TMS): δ 33.2, 62.5, 115.0 (d, *J*_{C-F}=21.15 Hz), 115.3 (d, *J*_{C-F}=42.9 Hz), 125.6, 128.8 (d, *J*_{C-F}=7.88 Hz), 131.4 (d, *J*_{C-F}=8.03 Hz), 135.4 (d, *J*_{C-F}=3.75 Hz), 142.2, 162.0 (d, *J*_{C-F}=244.95 Hz), 162.1 (d, *J*_{C-F}=244.80 Hz). MS (%) *m*/z 260 (M⁺, 29.31), 229 (100). HRMS Calcd. for C₁₆H₁₄F₂O (EI): 260.1013, Found: 260.0989.

4.3. The direct ring-opening of MCPs by toluene *p*-sulfonic acid (TsOH)

Under an argon atmosphere, MCPs 1 (0.50 mmol) and toluene *p*-sulfonic acid (TsOH·H₂O) (0.55 mmol) were added into a Schlenk tube with 1,2-dichloroethane (DCE) (2.0 mL). After gentle heating to make TsOH soluble in DCE, the reaction mixture was stirred at room temperature. The solvent was removed under reduced pressure and then the residue was purified by a flash column chromatography.

4.3.1. Toluene-4-sulfonic acid 4,4-diphenyl-but-3-en-1-yl ester (4a). A white solid, Mp: 84–86 °C; IR (thin film): ν 3027, 1958, 1494, 1444, 1360, 1189, 1176, 1097 cm⁻¹; ¹H NMR (CDCl₃, TMS, 300 MHz): δ 2.42–2.47 (m, 5H), 4.08 (t, *J*=6.6 Hz, 2H), 5.90 (t, *J*=7.2 Hz, 1H), 7.07–7.15 (m, 4H, Ar), 7.23–7.35 (m, 8H, Ar), 7.76 (d, *J*=8.1 Hz, 2H. Ar); ¹³C NMR (CDCl₃, TMS, 75 MHz): δ 21.6, 29.4, 69.8, 122.7, 127.17, 127.23, 127.8, 128.1, 128.3, 129.6, 129.8, 133.0, 139.2, 141.8, 142.2, 144.7, 144.9; MS (%) *m/z* 377 (M⁺ – 1, 0.84), 206 (100), 191 (25.36); Anal. Calcd. for C₂₃H₂₂O₃S requires C, 72.99; H, 5.86; Found: C, 72.91; H, 5.86%.

4.3.2. Toluene-4-sulfonic acid 4,4-bis(4-methoxyphenyl) but-3-en-1-yl ester (4b). A colorless oil, IR (thin film): ν 2956, 2837, 1606, 1575, 1541, 1463, 1359, 1290, 1247, 1176, 1079, 1033 cm⁻¹; ¹H NMR (CDCl₃, TMS, 300 MHz): δ 2.40–2.47 (m, 5H), 3.79 (s, 3H, CH₃O), 3.83 (s, 3H, CH₃O), 4.06 (t, J=6.6 Hz, 2H), 5.75 (t, J=7.5 Hz, 1H), 6.78 (d, J=8.7 Hz, 2H, Ar), 6.87 (d, J=8.7 Hz, 2H, Ar), 6.87 (d, J=8.0 Hz, 2H, Ar), 7.06 (d, J=9.0 Hz, 2H, Ar), 7.28 (d, J=8.4 Hz, 2H, Ar), 7.76 (d, J=8.4 Hz, 2H, Ar), 1³C NMR (CDCl₃, TMS, 75 MHz): δ 21.6, 29.4, 55.21, 55.25, 70.0, 113.4, 113.6, 120.6, 127.9, 128.4, 129.8, 130.7, 131.7, 133.0, 135.0, 144.0, 144.6, 158.7, 158.9; MS (%) *m/z* 438 (M⁺, 14.83), 266 (100), 253 (49.35), 235 (92.98); HRMS Calcd. for C₂₅H₂₇O₅S⁺ (Maldi): 439.1572, Found: 439.1574 (M+H⁺).

4.3.3. Toluene-4-sulfonic acid 4-(4-methoxyphenyl)-4phenylbut-3-en-1-yl ester (4c). A yellow oil, IR (thin film): ν 2957, 2837, 1606, 1510, 1360, 1291, 1248, 1176, 1097, 1033 cm⁻¹; (*Z*- or *E*-isomer) ¹H NMR (CDCl₃, TMS, 300 MHz) δ 2.39–2.48 (m, 5H), 3.78 (s, 3H, CH₃O), 4.06 (t, *J*=6.9 Hz, 2H), 5.81 (t, *J*=6.9 Hz, 1H), 6.78 (d, *J*=8.7 Hz, 2H, Ar), 6.99–7.15 (m, 4H, Ar), 7.23–7.36 (m, 5H, Ar), 7.75 (d, *J*=8.1 Hz, 2H, Ar); (*E*- or *Z*-isomer) ¹H NMR (CDCl₃, TMS, 300 MHz): δ 2.39–2.48 (m, 5H), 3.83 (s, 3H, CH₃O), 4.08 (t, *J*=6.6 Hz, 2H), 5.83 (t, *J*=6.9 Hz, 1H), 6.87 (d, *J*= 8.7 Hz, 2H, Ar), 6.99–7.15 (m, 4H, Ar), 7.23–7.36 (m, 5H, Ar), 7.76 (d, *J*=8.1 Hz, 2H, Ar); (*Z*- or *E*-isomer) ¹³C NMR (CDCl₃, TMS, 75 MHz): δ 21.5, 29.2, 55.0, 69.8, 113.3, 120.7, 127.0, 127.7, 128.1, 129.4, 130.6, 132.8, 139.4, 144.2, 144.6, 158.6. (*E*- or *Z*-isomer) ¹³C NMR (CDCl₃, TMS, 75 MHz): δ 21.5, 29.3, 55.0, 69.9, 113.5, 122.4, 127.1, 127.9, 128.1, 129.7, 131.3, 134.4, 142.2, 144.4, 144.6, 158.8. MS (%) *m*/*z* 408 (M⁺, 4.59), 236 (72.85), 91 (100); HRMS Calcd. for C₂₄H₂₅O₄S⁺ (Maldi): 409.1488, Found: 409.1468 (M+H⁺).

4.3.4. Toluene-4-sulfonic acid 4,4-di-p-tolyl-but-3-en-1-yl ester (4d). A white solid, Mp: 93–95 °C; IR (thin film): ν 2957, 2930, 1606, 1510, 1494, 1444, 1360, 1291, 1247, 1176, 1097, 1033 cm⁻¹; ¹H NMR (CDCl₃, TMS, 300 MHz): δ 2.32 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 2.42 (s, 3H, CH₃), 2.43 (td, J=6.6, 7.2 Hz, 2H), 4.06 (t, J=6.6 Hz, 2H), 5.82 (t, J=7.2 Hz, 1H), 6.96 (d, J=8.1 Hz, 2H, Ar), 7.01–7.07 (m, 4H, Ar), 7.14 (d, J=7.5 Hz, 2H, Ar), 7.28 (d, J=8.1 Hz, 2H, Ar), 7.76 (d, J=8.1 Hz, 2H, Ar); ¹³C NMR (CDCl₃, TMS, 75 MHz): δ 21.0, 21.1, 21.5, 29.3, 69.9, 121.5, 127.0, 127.8, 128.7, 128.9, 129.4, 129.7, 130.1, 132.8, 136.3, 136.7, 136.9, 139.2, 144.6; MS (%) *m/z*: 406 (M⁺, 1), 346 (3.72), 234 (38.64), 219 (50.67), 59 (100); Anal. Calcd. for C₂₅H₂₆O₃S requires C, 73.86; H, 6.45; Found: C, 73.79; H, 6.46%.

4.3.5. Toluene-4-sulfonic acid 4-(2-chlorophenyl)-4phenylbut-3-en-1-yl ester (4e). A white solid, Mp: 101-103 °C; IR (thin film): v 2924, 1598, 1494, 1468, 1444, 1360, 1177, 1189, 1097, 1056, 1035 cm⁻¹; (Z-isomer) ¹H NMR (CDCl₃, TMS, 300 MHz): δ 2.27 (dt, J=6.3, 7.2 Hz, 2H), 2.38 (s, 3H, CH₃), 4.06 (t, J = 6.3 Hz, 2H), 6.07 (t, J =7.2 Hz, 1H), 7.06–7.13 (m, 3H, Ar), 7.17–7.27 (m, 8H, Ar), 7.38–7.41 (m, 1H, Ar), 7.75 (d, J=8.1 Hz, 2H, ArH); (Z-isomer) ¹³C NMR (CDCl₃, TMS, 75 MHz): δ 21.5, 29.3, 69.3, 123.9, 126.1, 126.8, 127.1, 127.3, 127.72, 128.1, 128.8, 129.7, 131.26, 132.7, 137.7, 139.5, 141.7, 144.7; (*E*-isomer) ¹H NMR (CDCl₃, TMS, 300 MHz): δ 2.61 (dt, J=6.3, 7.2 Hz, 2H), 2.38 (s, 3H, CH₃), 4.11 (t, J=6.3 Hz, 2H), 5.60 (t, J=7.2 Hz, 1H), 7.06–7.13 (m, 3H, Ar), 7.17– 7.27 (m, 8H, Ar), 7.38–7.41 (m, 1H, Ar), 7.75 (d, J=8.1 Hz, 2H, Ar); (*E*-isomer) ¹³C NMR (CDCl₃, TMS, 75 MHz): δ 22.1, 28.8, 69.5, 126.4, 126.7, 127.70, 127.9, 128.5, 129.0, 129.58, 129.61, 131.34, 132.9, 133.3, 138.4, 139.5, 141.8, 142.6. MS (%) m/z 240 (M⁺-TsOH) (100), 205 (89.98); Anal. Calcd. for $C_{23}H_{21}ClO_3S$ requires C, 66.90; H, 5.13; Found: C, 66.80; H, 5.11%.

4.3.6. Toluene-4-sulfonic acid 4,4-bis-(4-chlorophenyl)but-3-en-1-yl ester (4f). A white solid, Mp: 83–85 °C; IR (thin film): ν 2919, 2850, 1596, 1491, 1464, 1401, 1360, 1188, 1175, 1091, 1014 cm⁻¹; ¹H NMR (CDCl₃, TMS, 300 MHz) δ 2.40–2.45 (m, 5H) 4.10 (t, J=6.6 Hz, 2H), 5.92 (t, J=7.8 Hz, 1H), 7.01–7.08 (m, 4H, Ar), 7.21–7.36 (m, 6H, Ar), 7.75 (d, J=8.4 Hz, 2H, Ar); ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 21.6, 29.4, 69.4, 124.0, 127.8, 128.3, 128.4, 128.7, 129.8, 130.9, 132.9, 133.37, 133.43, 137.2, 139.9, 142.7, 144.8; MS (%) m/z 274 (M⁺–TsOH) (31.72), 239 (100); Anal. Calcd. for C₂₃H₂₀Cl₂S requires C, 61.75; H, 4.51; Found: C, 61.60; H, 4.67%.

4.3.7. Toluene-4-sulfonic acid 4,4-bis-(4-fluorophenyl) but-3-en-1-yl ester (4g). A yellow oil, IR (thin film): ν 2926, 1601, 1508, 1361, 1223, 1189, 1177, 1096 cm⁻¹; ¹H

NMR (CDCl₃, TMS, 300 MHz): δ 2.38–2.45 (m, 5H), 4.08 (t, J=6.6 Hz, 2H), 5.85 (t, J=7.2 Hz, 1H), 6.94 (dd, J=9.0, $J_{\rm HF}$ =9.0 Hz, 2H, Ar), 7.03–7.11 (m, 6H, Ar), 7.29 (d, J= 8.1 Hz, 2H, Ar), 7.76 (d, J=8.1 Hz, 2H, Ar); ¹³C NMR (CDCl₃, TMS, 75 MHz): δ 21.6, 29.3, 69.6, 115.0 (d, $J_{\rm C-F}$ = 21.5 Hz), 115.4 (d, $J_{\rm C-F}$ =21.5 Hz), 123.1, 127.8, 128.8 (d, $J_{\rm C-F}$ =7.9 Hz), 129.8, 131.2, 133.0, 134.9 (d, $J_{\rm C-F}$ = 36.9 Hz), 137.9 (d, $J_{\rm C-F}$ =36.9 Hz), 143.0, 144.8, 163.1 (d, $J_{\rm C-F}$ =245.8 Hz), 162.3 (d, $J_{\rm C-F}$ =245.8 Hz); MS (%) m/z 242 (M⁺–TsOH) (100), 227 (19.43), 133 (30.78), 109 (59.91); HRMS Calcd. for C₂₃H₂₀F₂O₃SNa⁺ (Maldi): 437.1008, Found: 437.0993 (M+Na⁺).

4.3.8. Toluene-4-sulfonic acid 4-(4-ethoxyphenyl)pent-3en-1-yl ester (4h). A colorless oil, IR (thin film): ν 2978, 2928, 1607, 1511, 1478, 1360, 1245, 1188, 1177, 1117, 1097 cm^{-1} ; (Z- or E-isomer) ¹H NMR (CDCl₃, TMS, 300 MHz): δ 1.37–1.44 (m, 3H, CH₃), 1.95 (s, 3H, CH₃), 2.42 (s, 3H, CH₃), 2.44–2.60 (m, 2H), 3.98–4.11 (m, 4H), 5.45-5.53 (m, 1H), 6.80-6.86 (m, 2H, Ar), 7.20-7.31 (m, 4H, Ar), 7.66–7.82 (m, 2H, Ar); (E- or Z-isomer) ¹H NMR (CDCl₃, TMS, 300 MHz): δ 1.37–1.44 (m, 3H, CH₃), 1.50 (s, 3H, CH₃), 2.43 (s, 3H, CH₃), 2.44–2.60 (m, 2H), 3.98– 4.11 (m, 4H), 5.45-5.53 (m, 1H), 6.80-6.86 (m, 2H, Ar), 7.20-7.31 (m, 4H, Ar), 7.66-7.82 (m, 2H, Ar); (Z- or *E*-isomer) 13 C NMR (CDCl₃, TMS, 75 MHz): δ 21.6, 28.4, 63.25, 63.33, 69.7, 113.8, 114.0, 125.7, 127.7, 127.8, 129.69, 129.74, 135.3, 144.6, 157.3. (*E*- or *Z*-isomer) ¹³C NMR (CDCl₃, TMS, 75 MHz): δ 21.6, 29.6, 63.3, 67.4, 70.1, 114.0, 119.3, 126.5, 127.8, 128.7, 129.7, 132.9, 137.6, 144.6, 158.0. MS (%) m/z 360 (M⁺, 12.45), 188 (72.15), 173 (100); HRMS Calcd. for $C_{20}H_{26}O_4S^+$ (Maldi): 361.1504, Found: 361.1468 (M+H⁺).

Acknowledgements

We thank the State Key Project of Basic Research (Project 973) (No. G2000048007), Chinese Academy of Sciences (KGCX2-210-01), Shanghai Municipal Committee of Science and Technology, and the National Natural Science Foundation of China for financial support (203900502, 20025206 and 20272069).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tet.2004.09. 105

References and notes

- 1. Binger, P.; Schuchardt, U. Chem. Ber. 1981, 114, 3313-3324.
- For the synthesis of MCPs (a) Brandi, A.; Goti, A. *Chem. Rev.* 1998, 98, 589–635. (b) *Carbocyclic Three-membered Ring Compounds*; de Meijere, A., Ed.; Houben-Weyl; Thieme: Stuttgart, 1996; Vol. E17a-c.

- For recent reviews, please see: (a) Nakamura, I.; Yamamoto, Y. Adv. Synth. Catal. 2002, 344, 111–129. (b) Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem. Rev. 2003, 103, 1213–1269.
- 4. For some more recent related papers, please see: (a) de Meijere, A.; Leonov, A.; Heiner, T.; Noltemeyer, M.; Bes, M. T. Eur. J. Org. Chem. 2003, 472-478. (b) Belov, V. N.; Savchenko, A. I.; Sokolov, V. V.; Straub, A.; de Meijere, A. Eur. J. Org. Chem. 2003, 551-561. (c) de Meijere, A.; Kuchuk, I. D.; Sokolov, V. V.; Labahn, T.; Rauch, K.; Es-Sayed, M.; Krämer, T. Eur. J. Org. Chem. 2003, 985-997. (d) Huang, X.; Zhou, H.-W.; Chen, W.-L. J. Org. Chem. 2004, 69, 839-842. (e) Zhou, H.-W.; Huang, X.; Chen, W.-L. Synlett 2003, 2080–2082. (f) Huang, Z.; Zhou, H.-W. Org. Lett. 2002, 4, 4419-4422. (g) Zhou, H-W. ; Huang, X.; Chen, W.-L. J. Org. Chem. 2004, 69, 5471-5472. (h) Huang, X.; Chen, W.-L.; Zhou, H.-W. Synlett 2004, 329-331. (i) Siriwardana, A. I.; Nakamura, I.; Yamamoto, Y. J. Org. Chem. 2004, 69, 3202-3204. (j) Oh, B. H.; Nakamura, I.; Saito, S.; Yamamoto, Y. Heterocycles 2003, 61, 247-257.
- For some related Lewis acid or Brønsted acid-mediated reactions of MCPs, please see: (a) Peron, G. L. N.; Kitteringham, J.; Kilburn, J. D. *Tetrahedron Lett.* **1999**, *40*, 3045–3048.
 (b) Miura, K.; Takasumi, M.; Hondo, T.; Saito, H.; Hosomi, A. *Tetrahedron Lett.* **1997**, *38*, 4587–4590. (c) Peron, G. L. N.; Kitteringham, J.; Kilburn, J. D. *Tetrahedron Lett.* **2000**, *41*, 1615–1618. (d) Patient, L.; Berry, M. B.; Kilburn, J. D. *Tetrahedron Lett.* **2003**, *44*, 1015–1017. (e) Peron, G.; Norton, D.; Kitteringham, J.; Kilburn, J. D. *Tetrahedron Lett.* **2001**, *42*, 347–349. (f) Nakamura, I.; Kamada, M.; Yamamoto, Y. *Tetrahedron Lett.* **2004**, *45*, 2903–2906. (g) Patient, L.; Berry, M. B.; Coles, S. J.; Hursthouse, M. B.; Kilburn, J. D. *Chem. Commun.* **2003**, 2552–2553.
- 6. For some of the Lewis acid or Brønsted acid-mediated transformations of MCPs in our laboratory, please see: (a) Shi, M.; Xu, B. Org. Lett. 2002, 4, 2145-2148. (b) Huang, J.-W.; Shi, M. Tetrahedron 2004, 60, 2057-2062. (c) Shao, L.-X.; Shi, M. Eur. J. Org. Chem. 2004, 426-430. (d) Chen, Y.; Shi, M. J. Org. Chem. 2004, 69, 426-431. (e) Shao, L.-X.; Shi, M. Adv. Synth. Catal. 2003, 345, 963-966. (f) Shi, M.; Chen, Y. J. Fluoro. Chem. 2003, 122, 219-227. (g) Huang, J.-W.; Shi, M. Tetrahedron Lett. 2003, 44, 9343-9347. (h) Shi, M.; Chen, Y.; Xu, B.; Tang, J. Green Chem. 2003, 5, 85-88. (i) Shi, M.; Xu, B. Tetrahedron Lett. 2003, 44, 3839-3842. (j) Xu, B.; Shi, M. Org. Lett. 2003, 5, 1415-1418. (k) Shi, M.; Shao, L.-X.; Xu, B. Org. Lett. 2003, 5, 579-582. (1) Shi, M.; Chen, Y.; Xu, B.; Tang, J. Tetrahedron Lett. 2002, 43, 8019-8024. (m) Shi, M.; Xu, B.; Huang, J.-W. Org. Lett. 2004, 6, 1175-1178.
- Siriwardana, A. I.; Nakamura, I.; Yamamoto, Y. *Tetrahedron Lett.* 2003, 44, 4547–4550.
- Ritter-type reaction product was obtained as a byproduct if the reaction was carried out in CH₃CN (a) Ritter, J. J.; Minieri, P. P. J. Am. Chem. Soc. **1948**, 70, 4045–4048. (b) Ritter, J. J.; Kalish, J. J. Am. Chem. Soc. **1948**, 70, 4048–4050. (c) Reddy, K. L. Tetrahedron Lett. **2003**, 44, 1453–1455. (d) Krimen, L. I.; Cota, D. J. Org. React. **1969**, 17, 213–325. (e) Nair, V.; Rajan, R.; Rath, N. P. Org. Lett. **2002**, 4, 1575–1577.
- The rearrangement of cyclopropylmethyl cation has already been studied extensively. It is reasonable that the substituents on the double further stabilize the cation. Please seeCarey, F. A.; Sundberg, R. J. *Advanced Organic Chemistry*, 5th ed.; Plenum: New York, 1998; pp 221 and 419.

10. Matrix-assisted laser desorption/ionization (MALDI) is a more soft and sensitive ionization technique than others. Among the chemical and physical ionization pathways suggested for MALDI are gas-phase photoionization, ion-molecule reactions, etc. The most widely accepted ion formation mechanism involves gas-phase proton transfer or alkali metal transfer in the expanding plume with photoionized matrix molecules. The matrix will serve to minimize sample damage from the laser pulse and inhibit the appearance of molecular ionsde Hoffmann, E.; Stroobant, V. *Mass Spectrometry: Principles and Applications*, 2nd ed.; Wiley: Chichester, 2001; pp 28–32.