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Abstract: The halogenation of aromatic compounds by bromine or
chlorine in the presence of an epoxide gives the corresponding ha-
logenated aromatics and 2-halohydrins, both with good yields.
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The ring-opening reaction of epoxides to halohydrins
seems to be still a current problem in preparative organic
chemistry. Searching in common databases gives more
than fifty papers concerning the preparation of 2-halo-
genoalkanols via ring-opening of epoxides, in the past 15
years.1 Recently, we found an interesting paper2 published
in this journal, describing a conversion of epoxides to ha-
lohydrins with elemental halogens ‘catalyzed by phenyl-
hydrazine.’ The authors proposed a four-step mechanism
for this reaction to explain their findings, where the phe-
nylhydrazine plays an essential role as a ‘catalyst.’ Since
the authors did not isolate the ‘catalyst’ (unreacted phe-
nylhydrazine) after the reaction from the reaction mix-
ture,3 and because it is unlikely that phenylhydrazine – a
very reactive aromatic compound and reducing agent –
could survive in the presence of epoxide and in contact
with molecular chlorine, bromine, or iodine, we decided
to analyse and reinvestigate this reaction. The results of
our investigation can be summarized as follows.

(a) We found that the phenylhydrazine is a reagent but not
a catalyst. When we repeated the reaction described by
Sharghi and Eskandari,2 we found no phenylhydrazine in
the reaction products but only many halogenated aromatic
compounds (from monobromo to tetrabromo), identified
by GC/MS (see experimental part).

(b) The phenylhydrazine reacts with molecular halogen
via electrophilic halogenation and redox reaction giving a
mixture of products.4–7

(c) Therefore, the only effect of the application of phenyl-
hydrazine in this protocol2 is the generation of hydrogen
halogenide ‘in situ’; the phenylhydrazine and molecular
halogen is just a ‘generator’ of hydrogen halogenide in
this reaction.8

(d) Finally, the intermediate hydrogen halogenide reacts
instantly with the epoxide present in the reaction mixture
to give 2-halohydrin as the sole isolated product.9

During the reinvestigation of the paper by Sharghi and Es-
kandari,2 we realized that it is possible to combine any ha-
logenation reaction with the ring opening of epoxides.10,11

Moreover, the evolution of hydrogen halogenide as a side
product is one of the main problems in many halogenation
reactions. It causes not only loss of about 50% of the halo-
gen in the form of HX, but also causes some practical and
environmental concerns, amongst them the necessity of
neutralization of these very acidic by-products.

In this paper, we describe a few examples of a useful tan-
dem electrophilic halogenation and ring opening of ep-
oxides by hydrogen halogenide generated in situ
(Scheme 1).

When we applied this concept to the reactions, well
known from basic organic chemistry, namely the bromi-
nation of acetanilide, anisole, 2-naphthol and naphtha-
lene, in the presence of a typical epoxide (ethylene,
propylene, and butylene oxide), we observed in all cases
almost quantitative yields of bromoarenes and corre-
sponding bromohydrins (assayed by NMR). Both compo-

Scheme 1
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nents could be very easily isolated, by simple or fractional
distillation of the reaction mixture, without the necessity
for any chromatographic separations. In all cases, we ob-
tained reasonable yields of the desired products with the
expected regioselectivity. Also, the chlorination gave
similar results.

Only iodine, which is a not a sufficiently electrophilic re-
agent for the iodination of aromatics, gave neither iodoar-
omatics nor iodohydrins in our hands.12

In conclusion, for the preparation of 2-halohydrins from
epoxides we advise to combine this process with any use-
ful halogenation of an organic compound, mainly aromat-
ics, instead of using phenylhydrazine as was described by
Sharghi and Eskandari.2 Such a tandem reaction gives
high yields of both products with a good ‘atom economy’
and is consistent with modern trends towards ‘green
chemistry.’ Some results of our investigations are present-
ed in Table 1.

NMR spectra were recorded by Mr Paweł Dąbrowski on a Bruker
Avance 300 MHz spectrometer locked on deuterium. Chemical
shifts [d (ppm)] were calculated from the chemical shift of the deu-
terium lock and are not calibrated. FTIR spectra were measured
with a Perkin–Elmer 2000 spectrometer using KBr pellets (1/200)
by Mrs Elżbieta Mróž, and the mass spectra were measured with a
HP8542 mass detector coupled with HP8542 gas chromatograph by
Dr Andrzej Nosal (both from our institute). Mps were determined
on a Boetius microscope with electrical hot plate and are corrected.
The molecular structures of all known compounds were confirmed
by taking their NMR spectra. The required epoxides were acquired
from a local manufacturer. All reagents and solvents were of com-
mercial quality and purchased from a local supplier (POCh Gli-
wice). The procedures described in this paper were not optimized.

Reaction of Bromine with Methyloxirane in the Presence of 
Phenylhydrazine 
Methyloxirane (5.8 g, 0.10 mol) was added to a stirred solution of
phenylhydrazine (3.2 g, 0.030 mol)8 in CH2Cl2 (25 mL) at 10 °C
(ice–H2O bath). Then, a solution of bromine (16.0 g, 0.10 mole) in
CH2Cl2 (25 mL) was added dropwise (30 min) to the mixture at the
same temperature. The reaction mixture was stirred to reach a tem-
perature of about 25 °C and kept additionally for 1 h at the same
temperature. The solvent and unreacted bromine were evaporated,
then the dark-brown products were distilled off under reduced pres-

sure from a water bath to give 13.9 g of a distillate boiling at 65–
72 °C/14 Torr, which contains 1-bromopropan-2-ol and 2-bro-
mopropanol in a 80:20 ratio (calculated from the NMR spectra), and
traces of aromatic compounds from which only bromobenzene was
identified by GC/MS.

1-Bromopropan-2-ol 
GC/MS (column HP-1, 25 m, temperature program 60/1-8-280):
tR 10.8 min.

NMR (CDCl3): d = 1.25 (d, 3 H, CH3, J = 6.3), 3.29 (dd, 1 H, CH2,
J = 10.3, 6.7), 3.41 (dd, 1 H, CH2, J = 10.3, 3.9), 3.95 (ddq, 1 H,
CH, J = 6.7, 6.3, 3.9), 4.4 (br s, OH). 

MS (EI, 70 eV): m/z (%) = 138 (2), 140 (2) [M, M + 2, C3H7BrO],
123 (9), 125 (10) [M – CH3], 93 (5), 95 (5) [CH2Br], 59 (23) [M –
Br], 45 (100) [C2H5O].

2-Bromopropanol 
NMR (CDCl3): d = 1.60 (d, 3 H, CH3, J = 6.8), 3.62 (dd, 1 H, CH2,
J = 12.2, 6.9), 3.70 (dd, 1 H, CH2, J = 12.2, 4.6), 4.14 (ddq, 1 H,
CH, J = 6.9, 6.8, J = 4.6), 4.4 (br s, OH). The ratio of the integrals
of methyl groups (at d = 1.25 and 1.60) is 80:20.

Bromobenzene
tR 6.2 min. 

MS (EI, 70 eV): m/z (%) = 156 (71), 158 (70) [M, M + 2, C6H5Br],
79 (32), 81 (36) [Br], 77 (100) [C6H5].

2,4,6-Tribromophenylhydrazine
The semi-solid residue after distillation was treated with CCl4 (15
mL), then the crystalline precipitate was filtered off, washed with
CCl4 (3 × 10 mL), and dried. A crystalline product was obtained,
identified as 2,4,6-tribromophenylhydrazine. 

Yield: 4.0 g (33%); an analytical sample had mp 119–121 °C (with
faint recrystallization before melting); GC/MS tR 22.9 min. 

FTIR: 3413, 3285, 3073, 1615, 1562, 1541, 1456, 1349, 1289,
1227, 1054, 860, 732, 707, 674, 548 cm–1.

NMR (acetone-d6): d = 3.22 (s, 3 H, NHNH2), 7.52 (s, 2 H, ArH2). 

MS (EI, 70 eV): m/z (%) = 327 (28), 329 (100), 331 (90), 333 (30)
[C6H4Br3N, M – NH], 248 (12), 250 (22), 252 (10) [C6H4Br2N, M –
NH – Br], 168 (32), 170 (32) [C6H4BrN, M – NH –2 Br], 90 (29)
[C6H4N, M – NH – 3 Br]. 

MS: no molecular ion. Since the MS spectrum was identical with
that of 2,4,6-tribromoaniline, we prepared on a column the corre-
sponding hydrazone of acetone with this 2,4,6-tribromophenylhy-
drazine to confirm the structure. 

Table 1 Results of a Tandem Halogenation and Concomitant Epoxide Ring Opening

Epoxide Aromatic Halogen Yield (%) (ratio) of 
halohydrins

Yield of 
halogenoaromatics

Ref.

oxirane anisole Br2 90 78 (4-) 13a

methyloxirane anisole Br2 88 (69:31) 79 (4-) 13a

methyloxirane acetanilide Br2 87 (79:21) 79 (4-) 13b

methyloxirane naphthalene Br2 85 (69:31) 69 (1-) 13c

methyloxirane 2-naphthol Br2 79 (73:27) 73 (1,2-) 13d

ethyloxirane anisole Br2 82 (69:31) 69 (4-) 13a

ethyloxirane anisole Cl2 78 (76:24) 77 (4-) 13e
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Acetone 2,4,6-Tribromophenylhydrazone
GC/MS: tR 20.4 min. 

MS (EI, 70 eV): m/z (%) = 367 (10), 369 (18), 371 (20), 373 (7)
[C8H6Br3N2, M – CH3], 352 (33), 354 (100), 356 (82), 358 (28)
[C7H3Br3N2, M – 2 CH3],

232 (8), 234 (18), 236 (9) [C6H2Br2], 153 (18), 155 (16) [C6H2Br],
74 (32) [C6H2] (no molecular ion at 382/384/386/388).

The collected filtrates were evaporated to leave an oily dark residue
(2.5 g), which was analyzed by means of NMR and GC/MS. No
phenylhydrazine was found. The oil is a mixture of more than 12
compounds, mainly brominated phenylhydrazines and products,
which could be derived from brominated phenyldiazonium salts,
such as brominated benzenes and brominated phenylazophenylhy-
drazines.4,5 

NMR (CDCl3): there are more than 20 signals in the NMR spec-
trum, the most intense in the aromatic region are: d = 7.18 (s), 6.82
(d), 7.37 (d), 7.42 (s) and 7.63 (s), but there are no peaks of phenyl-
hydrazine at d = 7.21 (t), 6.76 (d + t).

GC/MS: there are more than 20 peaks. However, there are no peaks
from phenylhydrazine. Since most of the MS spectra show no signal
of molecular ions, we were not able to find the exact structures, so
we present only the most representative fragments derived from the
highest peaks on the total ion chromatogram. 

GC/MS (EI, 70 eV) (tR 13.8 min): m/z (%) = 197 (8), 199 (7)
[C6H4BrN3], 169 (25), 171 (24) [C6H4BrN], 90 (100) [C6H4N] (no
molecular ion). 

GC/MS (EI, 70 eV) (tR 20.9 min): m/z (%) = 292 (6), 294 (9), 296
(4) [C6H6Br2N4], 172 (100), 174 (96) [C6H7BrN] (no molecular
ion). 

2,4,6-Tribromophenylhydrazine
GC/MS (EI, 70 eV) (tR 22.6 min): m/z (%) = 327 (35), 329 (100),
331 (98), 333 (32) [C6H4Br3N, M – NH], 248 (17), 250 (30), 252
(16) [C6H4Br2N, M – NH – Br], 168 (34), 170 (34) [C6H4BrN, M –
NH – 2 Br], 90 (46) [C6H4N, M – NH – 3 Br] (no molecular ion). 

GC/MS (EI, 70 eV) (tR 28.3 min): m/z (%) = 445 (3), 447 (9), 449
(13), 451 (9), 453 (2) [C6HBr4N2], 352 (40), 354 (100), 356 (92),
358 (29) [C6HBr3N3] (no molecular ion). 

All fragments of mass spectra clearly indicate the presence of bro-
minated compounds.

Tandem Halogenation and Epoxide Ring Opening; General 
Procedure
To a stirred solution of epoxide (0.10 mol) and aromatic compound
(0.10 mol) in CH2Cl2 (25 mL), a solution of bromine (16.0 g, 0.10
mol) in CH2Cl2 (25 mL) was added dropwise (about 30 min) at
10 °C (ice–H2O bath was necessary since the reaction was exother-
mic). The reaction mixture was stirred to reach a temperature of
about 25 °C, then kept for a further 1 h the same temperature. The
solvent was evaporated, then the products were distilled off or frac-
tionated under reduced pressure. All compounds prepared accord-
ing to this procedure are known and were identified by means of
NMR.

In the case of chlorination, an analogous procedure was applied ex-
cept that gaseous chlorine was bubbled through a cooled and stirred
solution of the epoxide (0.10 mol) and aromatic compound (0.10
mol) in CH2Cl2 (50 mL).
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