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Organoaluminum reagents have found numerous ap-
plications in synthetic organic chemistry,[1] for example,
in carbo- and hydroalumination reactions. The Lewis
acidic character of the aluminum metal center enables
reactions with unique chemo-, regio-, and enantiose-
lectivity to be carried out.[2, 3] In general, aryl aluminum
species are generated by transmetalation of aryl lithium
reagents with various aluminum(III) sources[4] or in
some cases through aluminum–tin or aluminum–boron
exchange reactions.[5] The deprotonation of aromatic
rings with an aluminum base is a very convenient
method for the preparation of unsaturated organo-
aluminum compounds. Recently, Uchiyama, Wheatley,
and co-workers reported directed alumination reactions
with the powerful aluminate base iBu3Al(TMP)Li (TMP =

2,2,6,6-tetramethylpiperidyl).[6] Owing to the ate character of
this base, several aromatic and heteroaromatic compounds
were metalated readily. Herein, we report new neutral
aluminum trisamide bases inspired by recent structural
investigations[7] that undergo highly regioselective metalation
reactions.

Thus, the treatment of LiTMP with a solution of AlCl3 in
THF (0.33 equiv)[8] at �78 8C leads to a solution of Al-
(TMP)3·3 LiCl (1; Scheme 1). An additional sterically hin-
dered aluminum base was prepared by treating the imine 2[9]

with tBuLi (1.0 equiv) in THF[10] at �78 8C to give the lithium
amide 3, followed by transmetalation with AlCl3 (0.33 equiv)
in THF. The corresponding aluminum trisamide base 4 was
obtained in quantitative yield (Scheme 1).[11] These bases
display excellent reactivity and good solubility (0.3m in
THF).[12]

First, we investigated the alumination of various function-
alized aromatic compounds, such as benzonitrile (5a), tert-
butyl benzoate (5b), and tert-butyl 1-naphthoate (5c). These
substrates all underwent complete metalation with Al-
(TMP)3·3 LiCl (1, 1.0 equiv)[13] within 3–6 h at �5 to �10 8C.
The resulting aryl aluminum compounds were transmetalated

with ZnCl2 to give the corresponding zinc reagents, and after
copper-mediated acylation[14] or a palladium-catalyzed cross-
coupling reaction[15] with [Pd(dba)2] (5 mol%) and P(o-furyl)3

(10 mol %), the products 6a–c were obtained in 70–79% yield
(Table 1, entries 1–3).

Similarly, complete alumination was observed with the
aluminum trisamide 4 (1.0 equiv) within 3–5 h at �5 to
�10 8C, and the biaryl compounds 6a–c were isolated in 71–
77% yield (Table 1, entries 1–3). These results indicate that
both bases, 1 and 4, show similar metalation rates. However,
the practical and economical synthesis of 4 led us to use this
base for further experiments. The metalation of difluoroben-
zenes 5d–f is especially challenging and requires a low
reaction temperature.[16] However, with the aluminum base 4,
a smooth regioselective alumination proceeded at �40 8C
within 1.5–3 h. After transmetalation to the corresponding
zinc derivatives and Negishi cross-coupling, the functional-
ized biphenyls 6d–f were obtained in 79–89 % yield (Table 1,
entries 4–6). Moreover, the metalation of the corresponding
dichlorobenzenes 5g–i proceeded within 3–4.5 h under sim-
ilar conditions at �60 8C to give the functionalized aromatic
compounds 6g–i in 78–85% yield after transmetalation and
cross-coupling (Table 1, entries 7–9).

Electron-rich aromatic compounds are generally difficult
to metalate. Thus, aromatic ethers are poor ortho-directing
groups for lithiation reactions.[17] Monometallic magnesium
and zinc amides are unable to metalate such substrates at
all.[18] However, aluminum amides are powerful reagents for
the metalation of aromatic ethers, probably as a result of a
strong coordination of the ether oxygen atom to the
aluminum center. Thus, the metalation of anisole (5j) with 4
was complete within 9 h at 25 8C,[19] and a copper-mediated
acylation gave the substituted benzophenone 6 j in 79% yield
(Table 1, entry 10). A substantially lower metalation rate was
observed with 1 (11 h at 25 8C; Table 1, entry 10). Interest-
ingly, the substituted anisoles 5k and 5 l, as well as the
naphthalene derivative 5m, were also metalated regioselec-

Scheme 1. Preparation of the aluminum trisamide bases 1 and 4.
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tively at the ortho position to the
methoxy group. Copper-mediated
trapping reactions or a palladium-
catalyzed cross-coupling reaction
then furnished the products 6k–m
in 73–78% yield (Table 1,
entries 11–13). Additionally, phene-
tole (5n) was aluminated within
10 h at 25 8C, whereas the metal-
ation of trifluoromethoxybenzene
(5o) proceeded within 3 h at 0 8C.
The subsequent reactions with
chlorobenzoyl chlorides in the pres-
ence of CuCN·2LiCl (1.1 equiv) led
to the benzophenones 6 n and 6o in
85 and 81% yield, respectively
(Table 1, entries 14 and 15). Fur-
thermore, 2-methoxypyridine (5p)
and 6-chloro-2-methoxypyridine
(5q) were aluminated within 3 h at
25 and 0 8C, respectively. After
CuCN·2LiCl-mediated acylation
reactions, the ketones 6p and 6q
were obtained in 85 and 90% yield
(Table 1, entries 16 and 7). Interest-
ingly, the use of aromatic or hetero-
aromatic ethers as substrates ena-
bles the alumination reactions to be
carried out at very convenient tem-
peratures (0 or 25 8C), possibly as a
consequence of the complexation of
the aluminum center with the ether
oxygen atom.

The highly regioselective alumi-
nation can be used to create unusual
substitution patterns on heteroaro-
matic compounds. Thus, 2-(triiso-
propylsilyl)benzothiazole (7a) and
2-(triethylsilyl)benzothiazole (7b)
may be metalated either at the
ortho position to the nitrogen
atom (position a) or at the ortho
position to the sulfur atom (posi-
tion b ; Scheme 2). Interestingly,
both substrates were aluminated
exclusively at position a with the
base 4 (1.0 equiv; 25 8C, 12 h). After
transmetalation to form a zinc com-
pound, followed by a copper-medi-
ated acylation or palladium-cata-
lyzed cross-coupling reaction, the
functionalized benzothiazoles 8a
and 8b were isolated in 83 and
81% yield, respectively. Similar
regioselectivity is observed when
metalation both a to an oxygen
atom and a to a sulfur atom is
possible. Thus, phenoxathiine (9)
underwent a smooth regioselective

Table 1: Products of type 6 obtained by the alumination of aromatic and heteroaromatic compounds
with 4, transmetalation with ZnCl2, and subsequent transformation with electrophiles (E+).

Entry Substrate T [8C], t [h][a] E+ Product/Yield [%][b]

1 5a �10, 4 (4) 6a : 71 (70)[c]

2 5b �5, 3 (3) 6b : 77 (79)[d]

3 5c �5, 5 (6) 6c : 76 (78)[c]

4 5d : p �40, 2 p-IC6H4CO2Et 6d : p ; Ar = p-CO2EtC6H4: 79[d]

5 5e : m �40, 1.5 m-IC6H4NO2 6e : m ; Ar = m-NO2C6H4: 88[d]

6 5 f : o �40, 3 o-IC6H4Cl 6 f : o ; Ar= o-ClC6H4: 89[d]

7 5g : p �60, 3 p-IC6H4Me 6g : p ; Ar = p-MeC6H4: 85[d]

8 5h : m �60, 4.5 o-IC6H4OMe 6h : m ; Ar = o-OMeC6H4: 78[d]

9 5 i : o �60, 4.5 m-IC6H4Me 6 i : o ; Ar = m-MeC6H4: 81[d]

10 5 j : X = H 25, 9 (11) p-ClC6H4COCl 6 j : X = H; R = COC6H4-p-Cl: 79 (74)[c]

11 5k : X = Cl 25, 4 p-IC6H4CN 6k : X = Cl; R = p-CNC6H4: 78[d]

12 5 l : X= I 25, 8 6 l : X = I; R = (2-EtO2C)allyl: 73[e]

13 5m 25, 8 6m : 77[c]

14 5n 25, 10 6n : 85[c]

15 5o 0, 3 6o : 81[c]

16 5p 25, 3 (3.5) 6p : 85 (81)[c]

17 5q 0, 3 6q : 90[c]

[a] The metalation times with TMP3Al·3LiCl (1) are given in parentheses. [b] Yield of the analytically pure
isolated product. Yields in brackets are for the use of 1 in place of 4. [c] The organozinc intermediate was
transmetalated with CuCN·2LiCl (1.1 equiv). [d] The product was obtained by palladium-catalyzed
cross-coupling with [Pd(dba)2] (5 mol%) and P(o-furyl)3 (10 mol%). In products 6d–6f and 6g–6i, the
aryl substituent is located between the two halogen atoms. [e] CuCN·2LiCl (0.25 equiv) was used.
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alumination within 12 h at 25 8C at the ortho position to the
oxygen atom. Subsequent transmetalation and a copper-
mediated acylation with p-chlorobenzoyl chloride (1.0 equiv)
provided the ketone 10 in 77 % yield (Scheme 2).

Few examples of the metalation of substrates containing
partly saturated rings have been described.[20] However, the
metalation of 2,3-dihydrobenzofuran (11) with 4 proceeded
smoothly within 12 h at 25 8C, and a palladium-catalyzed
cross-coupling reaction furnished the compound 12 in 85%
yield (Scheme 3). Furthermore, the treatment of benzo-
[1,3]dioxole (13a) or benzo[1,4]dioxane (13 b) with 4
(1.0 equiv) led to an aluminated intermediate within 12 h at
25 8C. A subsequent transmetalation with ZnCl2 and palla-
dium-catalyzed cross-coupling or copper-mediated acylation
provided the products 14a and 14b in 75 and 78 % yield,
respectively (Scheme 3).

In conclusion, we have reported a new
directed alumination that enables the regiose-
lective functionalization of various aromatic and
heteroaromatic compounds. A number of func-
tional groups are tolerated, including ester and
cyano groups, as well as halogen atoms. Owing to
the strong Lewis acidic character of aluminum,
remarkable regioselectivity was observed with
oxygen-substituted aromatic substrates. These
substrates are difficult to metalate with other
amide bases. The high regioselectivity enables
the preparation of compounds with uncommon
substitution patterns. We are currently investi-
gating the scope of application of these new
aluminum bases.

Experimental Section
Preparation of (C12H26N)3Al·3LiCl (4): tert-Butyliso-
butylideneamine[10] (2 ; 7.63 g, 60.0 mmol) was dis-
solved in THF (60 mL) in an argon-flushed Schlenk
flask. This solution was cooled to �78 8C, tBuLi (1.5m
in pentane, 40 mL, 60.0 mmol) was added dropwise,
and the resulting mixture was stirred at this temper-

ature for 4 h. A freshly prepared solution of AlCl3 (20 mmol, 2.67 g)
in THF was then added, and the mixture was stirred at �60 8C for
15 h. The solvents were then reduced in vacuo. The fresh solution of 4
was titrated prior to use at 0 8C with menthol[21] or 2-propanol, and
with 4-(phenylazo)diphenylamine[18] as an indicator. A concentration
of 0.3m in THF was found.

Synthesis of 12 : (C12H26N)3Al·3LiCl (4 ; 0.3m solution in THF,
7 mL, 2 mmol) was added dropwise to a solution of 2,3-dihydroben-
zofuran (11; 240 mg, 2.0 mmol) in dry THF (2 mL) under argon in a
50 mL Schlenk tube equipped with a magnetic stirring bar, and the
resulting mixture was stirred at 25 8C for 12 h. After transmetalation
with ZnCl2, a palladium-catalyzed cross-coupling reaction with 4-
iodoanisole was carried out at 25 8C for 2 h. After aqueous workup
and purification by column chromatography, 12 (385 mg, 85%) was
obtained as a colorless solid.
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