Regio- and Stereoselective Double Addition of Anionic C-Nucleophiles to Cobalt-Stabilized Acetylenedicarbaldehyde

Christine Sui-Seng,^[a] Michèle Soleilhavoup,^[a] Luc Maurette,^[a] Christine Tedeschi,^[a] Bruno Donnadieu,^[a] and Remi Chauvin^{*[a]}

Keywords: Alkynes / Cobalt / Diastereoselectivity / Nucleophilic addition

Though intrinsically unstable, Gorgues' acetylenedicarbaldehyde is an appealing, highly functional C4 synthon, which can be stabilized by η^2 complexation to a Co₂(CO)₆ unit. In contrast to the homologous dibenzoylacetylene complex, it can be used as a normal, doubly electrophilic, non-conjugated γ -dicarbonyl substrate toward alkyl-, aryl-, and alkynyllithium compounds or magnesium bromides; these anionic C-nucleophiles do not predominantly attack at the metal-carbonyl center. The 1,4-dialkyl- and 1,4-diphenylbut-2-yne-1,4-diol products are obtained with significant *meso/* dl diastereoselectivity (4–66% *de*), which can be explained by a simple model based on X-ray diffraction data and MM calculations. The alkyl- and arylmagnesium bromide reactants are more selective than their lithium counterparts. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)

Introduction

Despite its potential strategic interest in retrosynthetic schemes of symmetrical functional targets, the instability of acetylene dicarbaldehyde 1, though challenged by Gorgues, has limited its use in organic synthesis.^[1] A stable Co₂(CO)₆ complex (4) has been prepared by Gorgues and Le Marouille from the $Co_2(CO)_6$ complex 3 of the diacetal 2.^[2,3] Reactions of 4 have been described with amines,^[4] phosphorus vlides,^[5] and enol ethers.^[6] The numerous applications of the Co₂(CO)₆-activated substitution of oxypropyne derivatives (Nicholas reactions of propargylic alcohols, ethers, esters,^[7] and acetals^[8]) involve formally uncharged nucleophiles^[9] (except borohydrides^[10]) in either monopropargylic or bispropargylic versions.^[6,11] Although Co₂(CO)₆ complexes of oxopropyne derivatives (alkynyl ketones and aldehydes) react with neutral nucleophiles (e.g., oxazaborolidine-BH₃ complexes,^[12] silvlenol ethers^[6]), examples of addition of ligands of anionic C-nucleophiles, such as lithium enolates^[13a] and very recently Grignard reagents,^[13b] to acetylenic aldehydes are rare. Here, a parent study was undertaken with the bispropargylic dialdehyde complex 4 and the non-enolizable bispropargylic diketone complex 6.

The possibility of 1,2- vs. 1,4-regiochemical competition in nucleophilic attacks of free diacylacetylenes 1 and 5 is a priori removed by complexation of the triple bond to $Co_2(CO)_6$. Nevertheless, the introduction of a new kind of electrophilic center in complexes **4** and **6** gives rise to a chemical competition between *organic carbonyl* groups (limit form A) and *metal carbonyl* groups (limit form B, Scheme 1). This ambiguity is accompanied by further questions regarding the mono/bis selectivity, and meso/dl stereo-selectivity.

Scheme 1. Formal pairs of electrophilic sites of $Co_2(CO)_6$ complexes of diacylacetylenes.

Results

Complex **6** was readily prepared from dibenzoylacetylene **5** and $\text{Co}_2(\text{CO})_8$.^[6] While reaction of **6** with anionic alkylor alkynyllithiums produced intractable material, its reaction with ethylmagnesium bromide led to a mixture of decomplexation product **5**, reduced product **7a**,^[14] and unchanged starting material **6**. Attempts to improve the selectivity by addition of CeCl₃ were unsuccessful.^[15a] In the presence of BF₃·OEt₂, however, the reaction afforded a mixture of reduction product **7a** and acylation product **7b**.^[16] The formation of **7a** is a consequence of the long-recognized reducing power of Grignard reagents.^[15] A plausible mechanism for the formation of **7b** is proposed in Scheme 2. Actually, this observation is consistent with recent theoretical results on Nicholas' propargylic cations, which show

 [[]a] Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse cedex 4, France Fax: (internat.) + 33-(0)5 61 55 30 03
 E-mail: chauvin@lcc-toulouse.fr

Supporting information for this article is available on the WWW under http://www.eurjoc.org or from the author.

that whereas hard neutral nucleophiles are prone to react at the carbenium center, softer nucleophiles, such as carbanions, should react at the carbonylmetal center.^[17] In comparison, free diketone **5** reacted with two equivalents of EtMgBr in the presence of either BF_3 ·OEt₂ or CeCl₃ to afford the expected diethylation product **7c** (seemingly as a single diastereoisomer according to its ¹³C NMR spectrum), along with reduction byproduct **10**.

Scheme 2. Synthesis and reactivity of the $Co_2(CO)_6$ -dibenzoylacetylene complex with ethyl Grignard reagent. A plausible mechanism for the carbonylation/reduction of **6** to **7b** is proposed: After nucleophilic attack at a metal carbonyl and reductive elimination, the negative charge is stabilized in the β -diketonate fragment; reduction by the primary Grignard reagent^[15b] brings about the loss of a $Co_2(CO)_5$ unit, as suggested in related processes.^[6]

In contrast to the typical electronic and steric deactivation of the ketoyl functions in complex **6**, the study of the strain-free electrophilicity of the formyl functions in complex **4** deserved separate investigations. According to Gorgues and Meyer's reports,^[2,3] diacetal **2** was prepared from acetylene dimagnesium bromide and diethylphenylor-thoformate. This diacetal behaves as a normal alkyne ligand of transition metals.^[18] In particular, **2** was readily converted into its $Co_2(CO)_6$ complex **3**. Formolysis of **3** afforded the dialdehyde complex **4** in quantitative yield.^[2,3] (Scheme 3).

Scheme 3. Gorgues' synthesis of complex 4.

Complex **4** exhibits spectroscopic properties of a classical "conjugated" aldehyde ($v_{HC=O} = 1671 \text{ cm}^{-1}$, $\delta_{CHO} = 10.30 \text{ ppm}$, $\delta_{CHO} = 191.3 \text{ ppm}$, ${}^{1}J_{C,H} = 187.1 \text{ Hz}$). Full X-ray diffraction data are consistent with partial data previously reported.^[2] As in the case of **6**,^[6] the crystal structure of **4** displays no hint of a possible [Co···C⁺-O⁻] interaction (Figure 1, Table 1).

Figure 1. Detailed X-ray crystal structure of complex 4 (triclinic, P-1); selected bond lengths in Å and bond angles in degrees: Co(1)-C(1) = 1.924(3); Co(1)-C(2) =1.969(3); Co(1)-Co(2) = 2.4782(8); Co(2)-C(2) = 1.921(3); Co(2)-C(1) = 1.972(3); O(1)-C(3) = 1.198(4); O(2)-C(4) = 1.206(4); C(1)-C(2) = 1.359(4); C(1)-C(3) = 1.460(4); C(2)-C(4) = 1.453(4); C(1)-C(2)-C(4) = 142.2(3); C(2)-C(1)-C(3) = 139.8(3); O(1)-C(3)-C(1) = 124.7(3); O(2)-C(4)-C(2) = 125.5(3).

While no selective electrophilicity is observed in complex 6, regioselectivity is restored at the organic carbonyl centers in complex 4. Indeed, two equivalents of various alkyl-, aryl- and alkynyllithium reactants added at the aldehyde functions of 4 to afford bisadducts 9a-e in moderate yields, likely via the lithium salts of monoadducts 8a-e (Scheme 4, Table 2). Although conversion of 4 to bisadduct 9 is far from quantitative (the RLi reactant is likely consumed in residual attack at metal carbonyl centers), monoaddition product 8 has been detected for alkyl nucleophiles only (R = Me, Et).

According to the ¹H NMR spectrum of the crude material, one of the epimers of **9a** was predominantly formed in 12% *de*. Crystallization from chloroform and analysis by Xray diffraction allowed the assignment of a meso configuration to the major epimer of **9a** (Figure 2).^[19]

The sp^3 -hybridized carbanion of ethyllithium also reacted with **4** to give **9b** in 23% yield and 4% *de*. Again, X-ray diffraction studies (Figure 2) assigned a meso configuration to the major epimer of **9b**. The reaction, however, of *tert*butyllithium with **4** did not yield the expected adduct **9c**, most likely because of steric hindrance.

In contrast, the *sp*²-hybridized carbanion of phenyllithium reacted with **4** to produce **9d** in better isolated yield (37%) and stereoselectivity (54% *de*). Again, the meso configuration was assigned to the major epimer by X-ray crystallography (Figure 2). For comparison, an authentic sample of complex **9d** was prepared from $Co_2(CO)_8$ and 1,4-diphenylbut-2-yne-1,4-diol **10**, which was obtained by reaction of bis(trimethylsilyl)acetylene with two equivalents of benzaldehyde in the presence of catalytic amounts of KF and [18]crown-6.^[20] The overall stereoselectivity of the latter method (*dl:meso*, 63:37) is reversed with respect to that

Table 1.	Crystal data	and structure refinement	for complex 4	(Refinement method:	Full-matrix	least-squares on	F^2
	~		1			1	

Empirical formula	C. H.Co.O.	$V(\mathring{A}^3)$	620 6(2)	R(int)	0.0325
Formula mass	367.98	Z	2	Completeness	0.0525
Temperature (K)	293(2)	$\rho (g \text{ cm}^{-3})$	1.969	to $2\theta = 26.16$	91.6%
λ (Å)	0.71073	Abs. coef. $\mu(mm^{-1})$	2.706	No of data	2275
Cryst. syst.	triclinic	F(000)	360	 restraints 	0
Space group	P-1	θ range (deg)	2.15 to 26.16	- parameters	189
a (Å)	7.4070(10)	Index ranges	$-9 \le h \le 9$	$R_1[I > 2\sigma(I)]$	0.0287
b (Å)	8.990(2)	-	$-11 \le k \le 11$	$wR_2 [I > 2\sigma(I)]$	0.0729
c (Å)	9.599(2)		$-11 \le 1 \le 11$	R_1 (all data)	0.0369
α (deg)	82.84(3)	Reflections		wR_2 (all data)	0.0797
β (deg)	83.54(3)	- collected	5743	$\rho_{\rm max} (e \cdot {\rm \AA}^{-3})$	0.362
γ (deg)	79.32(3)	– unique	2275	$\rho_{\min} (e \cdot \dot{A}^{-3})$	-0.362

Scheme 4. Nucleophilic addition to a protected acetylenedicarbaldehyde equivalent.

Table 2. Preparation of 9 from 4 and two equivalents of organolithium reactant

	RLi	9:8 ^[a]	% de	% yield
a	MeLi	91:09	12 ^[a]	22
b	EtLi	94:06	04 ^[a]	23
c	<i>tert</i> -BuLi	-	-	-
d	PhLi	100:0	54 ^[a]	37
e	PhC=CLi	100:0	n.d. ^[b]	09
f	Me ₃ Si-C=CLi	100:0	n.d. ^[c]	63
g	$\begin{array}{l} rac\text{-}(MeC_2)CPh(OMe)\text{-}C\equiv CLi \ (11g)\\ rac\text{-}(Me_3SiC_2)CPh(OMe)\text{-}C\equiv CLi \ (11h)\\ (Me_3SiC_2)CH(OTHP)\text{-}C\equiv CLi \ (11i)^{[e]} \end{array}$	100:0	n.d. ^[d]	16
h		100:0	n.d. ^[d]	15
i		100:0	n.d.	15

^[a] Determined by ¹H NMR spectroscopy. ^[b] Integration of two slightly split signals in a resolved ¹³C NMR spectrum afforded a rough estimate of $20 \pm 10\%$. ^[c] Formal integrations of four split signals in a resolved ¹³C NMR spectrum gave the same excesses of the main signals, 22%. ^[d] Signals of the a priori possible six diastereoisomers could not be resolved by NMR spectroscopy. ^[e] 50:50 mixture of racemic epimers.

of the former one (*dl:meso*, 23:77). Assuming that the stereochemistry of **10** was preserved during its complexation with $Co_2(CO)_6$, the preparation of free ligand **10** thus favored the dl epimer in 26% *de*.

sp-Hybridized carbanions also reacted with **4**. In accordance with the moderate nucleophilicity of acetylide reactants, reaction of **4** with PhC₂Li gave complex **9e** in rather low yield (9%). Stronger nucleophilicity, however, is restored in Me₃SiC₂Li, which afforded complex **9f** in 63% yield. The diastereoselectivity of the nucleophilic attack by acetetylides could not be determined in a reliable fashion. Indeed, because of the presence of paramagnetic impurities released from cobalt carbonyl units, it was not possible to resolve the two epimers of **9e** or **9f** by ¹H NMR spectroscopy. Moreover, despite several attempts, crystals of **9e**

meso-9d

Figure 2. X-ray-crystal structures of meso complexes 9b and 9d; selected bond lengths in Å and bond angles in degrees for 4 (triclinic, P-1); selected bond lengths in A and bond angles in degrees. 1.949(2); 1.960(2); 1.439(3); C(1)-C(2) = 1.348(3); C(2)-C(3) = 1.492(3); C(1)-C(6) = 1.487(3); C(3)-C(4) = 1.520(3); O(1)-H(1)1.492(3); C(2) - H(2) = 0.93(7); C(3) - C(5) = 1.529(12); C(2) - C(1) - C(6) = 136.56(19); C(1) - C(2) - C(3) = 137.41(19); O(1) - C(3) - C(2) = 137.41(19); O(1) - C(3) - C(3) = 137.41(19); O(1) + 137.41(19); O(1) + 137.41(19); O(1) + 137.41(19); O(1) + 137.41 $\dot{O}(2) - \dot{C}(6) - \dot{C}(7)$ = 107.67(17); 107.93(17). meso-9d: Co(1) - C(1) = 1.942(8); Co(1) - C(2) = 1.943(8); Co(1) - Co(2) = 1.943(8); Co(1) - Co(2); Co(1)O(1)-H(1) = 0.70(3); O(2)-H(2) = 0.73(3); C(3)-C(4) = 1.520(3);C(2)-C(1)-C(4) = 133.0(7); C(1)-C(2)-C(3) = 130.0(7); C(1)-C(3)-C(2) = 100.0(7); C(2)-C(6)-C(7) = 100.0(6).137.1(7);

and **9f** were not suitable for X-ray crystal structure determination.

Symmetrical carbinol-skipped triynes and pentaynes are key intermediates for the synthesis of functional ring carbomers of cycloalkanes or pericyclynes.^[21] As a first application of the results above, tertiary and secondary carbinolskipped pentayne complexes 9g, 9h, and 9i were isolated in one step, albeit in moderate yields, by reaction of 4 with the lithium salts of diynes 11g, 11h, and 11i, respectively (Table 2, Scheme 5).^[22] The secondary carbinol-tetraskipped pentayne complex 11i was found to be particularly stable with respect to its tautomeric rearrangements. In all three cases, the signals of possible stereoisomers could not be assigned in NMR spectra and the stereoselectivity was not determined. It is noteworthy, however, that all carbon atoms of a given chemical type give sharp ¹³C NMR resonances, but without resolved stereochemical fine structures; as previously noted for related structures, the remote dialkynyl stereogenic centers appear to be virtually independent.[21]

Scheme 5. Preparation of carbinol-skipped pentanyne complexes from lithium 1,4-heptadiynes and complex 4.

Both the yields and diastereoselectivities of these reactions should depend on the countercation of the nucleophile. Indeed, we found that reactions of organomagnesium bromides with **4** gave compounds **9** with higher isolated yields and diastereoselectivities than do the corresponding reactions of organolithiums (Table 3). This feature is particularly interesting for alkyl nucleophiles, since the yields of **9a** and **9b** are both improved from ca. 20% to 80%, and

Table 3. Preparation of 9 from 4 and two equivalents of organomagnesium bromide reactant (compared with the preparation from the corresponding organolithium reactant)

	RMgBr	% conver- sion ^[a]	9:8	% <i>de</i> ^[a]	% isolated yield
a	MeMgBr	100	87:13	22(12)	81 (22)
b	EtMgBr	100	73:27	60(04)	71 (23)
d	PhMgBr	100	88:12	66(54)	48 (37)
e	Ph-C≡CMgBr	100	52:48	n.d. ^[b]	16 (09)
f	Me ₃ Si-C≡CMgBr	62	67:33	n.d.	15 (63)

^[a] Determined by ¹H NMR spectroscopy (see Exp. Sect. The values of *de* in brackets were obtained from reactions with lithium nucleophiles (see Table 2)). ^[b] Although the ¹H NMR spectra could not be resolved, the separation of the epimers by TLC allowed for the estimation: $36 < de \approx 68\%$ (see Exp. Sect.).

their values of *de* are improved from 12% to 22% and from 4% to 60%, respectively. To a lesser extent, switching from PhLi to PhMgBr also resulted in improved yield and stereo-selectivity in **9d** and **9e**. Thus, for sp^3 - and sp^2 -hybridized carbanions, the magnesium bromide salts are more selective at the aldehyde function than their lithium counterparts, but overall, however, are less reactive. Indeed, appreciable amounts of monoadducts **8** were obtained.

For *sp*-hybridized carbanions, the cation effect is much weaker. It is even reversed for trimethylsilylacetylide, which afforded **9f** in lower yield (15%) than did its lithium counterpart (63%), and even led repeatedly to the recovery of unchanged complex **4**.

Discussion

The origin of the stereochemical induction is tentatively proposed on the basis of a simple model. Let us first recall that the bending around the alkyne sp-carbon atoms brought about by $Co_2(CO)_6$ complexation (ca. 180° - $145^{\circ} = 35^{\circ}$) draws the two reacting propargylic carbon atoms nearer. Whereas diacylacetylene complexes 4 and 6 display quasi- C_2 molecular symmetry in their crystals, meso-1,4-disubstituted but-2-yne-1,4-diol complexes 9a, 9b, and 9f display quasi- C_s molecular symmetries. In the latter complexes, the short intramolecular HO…OH distances (ca. 2.70 Å) reveal intramolecular hydrogen bonding, which is evidenced further by the positions of the refined OH protons. In 9b, for example, the values O-H = 0.93 Å, $[H \cdots O] = 1.78$ Å and $[O - H \cdots O] = 172.8^\circ$, are typical for hydrogen bonds. Replacement of the OH proton for M⁺ (Li⁺ or MgBr⁺) gives a likely approximate structure for the metal salt of the primary monoaddition product 8. In this structure, the cation acts as a Lewis acid for the second aldehyde function, thus closing a seven-membered metallacycle by a $CH=O\rightarrow[M]$ dative bond. Assuming that the first added nucleophile (e.g., ethylide) prefers a pseudoequatorial orientation (anti to the triple bond), two kinds of conformations can be envisioned (Scheme 6): a quasi- C_s conformation (pseudo-chair C[M] or pseudo-boat B[M]) and a quasi- C_2 conformation (twisted, T[M]), which upon exo attack by the second nucleophile would lead to the meso and dl epimer of 9, respectively.

Scheme 6. Putative conformations of the intermediate lithium salt of primary products **8**, and associated stereochemistries of the second nucleophilic attack by NuM. M = Li, MgBr. The first entered Nu group is assumed to lie in a pseudo-equatorial position.

To fit the experimental conditions closer, the model was refined by adding two THF ligands on lithium and one THF ligand on magnesium bromide. With this model, ESFF molecular mechanic calculations showed that in both cases [i.e., $M = \text{Li}(\text{THF})_2$ and M = MgBr(THF)] the minimum-energy structures had quasi- C_s conformations, while no quasi- C_2 conformations exist as minima. The minimum C_s conformations are of the pseudo-boat type **B**[M] (Figure 3).

Figure 3 MM(ESFF) model for the intermediate resulting from the first attack of acetylene dicarbaldehyde complex 4 by EtLi $[M = Li(THF)_2]$ and EtMgBr [M = MgBr(THF)]. $[Co] = Co(CO)_3$. In both cases, a single minimum conformation is found. They are of pseudo-boat type, **B**[M] (Scheme 6). These conformations account for the observed meso diastereoselectivity of the nucleophilic attack by the second equivalent of EtM.

Since the sterically favored exo attack of the remaining aldehyde function in the **B**[**M**] conformation would indeed provide a meso configuration for the bisaddition product **9**, the experimental meso stereoselectivity is explained simply by this model.

Conclusion

Complex 4 reacts quite efficiently with alkyl and aryl Grignard reagents. The lower reactivity of alkynyl nucleophiles has been challenged with Carreira's zinc reactant, but without success.^[23] Nevertheless, though optimization of yields is required in a few cases, the present results show that use of this attractive, highly functional C₄ synthon is henceforth possible. These compounds are potentially valuable at three levels. Firstly, the introduced Co₂(CO)₆ metal core could be reused as an activator for a further Nicholas reaction of the primary 1,4-butyndiols products with *neutral* C-nucleophiles, such as enol ethers; overall retention of configuration of the asymmetric propargylic carbinol center would allow the preservation of the stereochemical information gained in the first addition step. Secondly, owing to the availability of various known methods for oxidative deprotection of Nicholas' cobalt complexes,^[24] the triple bond of the symmetrical 1,4-difunctional but-2-yne derivatives could be used in further classical functionalization (e.g., semi-hydrogenation to cis-meso bisallylic diol derivatives). Thirdly, a cyclizing version of this methodology can be applied to the synthesis of five- and six-membered ring *carbo*mers of carbocycles, which will be reported shortly.^[25]

Experimental Section

THF and diethyl ether were distilled over Na/benzophenone. Pentane and dichloromethane were distilled over P₂O₅. Commercial organomagnesium bromide and organolithium reactants were used: EtMgBr (3 м in diethyl ether), MeMgBr (3 м in diethyl ether), PhMgBr (3 м in ether), nBuLi (2.5 м in hexanes), MeLi (1.6 м in ether), and PhLi (1.6-1.8 M in cyclohexane/diethyl ether). Solutions of ethyllithium in diethyl ether were prepared according to a described procedure.^[26] Alkyllithium solutions were titrated with 2,2,2'-trimethylpropionanilide.^[27] Dibenzoylacetylene 5,^[28] its complex 6,^[6] and racemic 1-trimethylsilyl-3-hydroxy-3-phenylpenta-1,4divne 11h,^[21] were prepared according to described procedures. TLC was performed on a 60F254 silica gel phase. Mass spectra (DCI/NH₃) were recorded on a Nermag R10-10H apparatus. IR spectra were recorded on a Perkin-Elmer Spectrum GX FT-IR spectrometer using a CaF2 cell. ¹H NMR spectra were recorded on Bruker AC 200, AM 250, and AMX 400 spectrometers at 200, 250, and 400 MHz, respectively; ¹³C spectra were recorded at 50 MHz, 62.9, and 100 MHz, respectively. Positive chemical shifts at low field are expressed in ppm by internal reference to TMS. Samples of cobalt complexes for NMR spectroscopy were filtered through celite before recording their spectra.

Acetylenedicarbaldehyde Bis(diethyl acetal) Complex 3: A solution of 1,1,4,4-tetraethoxybut-2-yne 2 (3.56 g, 15.5 mmol) in diethyl ether (30 mL) was poured into a solution of dicobaltoctacarbonyl (5.30 g, 15.5 mmol) in diethyl ether (30 mL). After stirring for 3 h, the solution was filtered and the solvents were evaporated to dryness. Complex 3 was obtained as a brown oil (7.61 g, 95%). TLC (heptane/EtOAc, 7:3): $R_f = 0.50$. MS (DCI/NH₃): m/z = 534 ([M + NH₄]⁺), 471 ([MH – EtOH]⁺). IR (CDCl₃): $v_{sp3-CH} = 2980$ (m), 2931 (w), 2875 (w) cm⁻¹; $v_{C=0} = 2097$ (s), 2060 (vs), 2034 (vs) cm⁻¹. ¹H NMR (CDCl₃, 250 MHz): $\delta = 1.22$ (t, 12 H, CH₃); 3.73 (q, 8 H, CH₂); 5.44 [s, 2 H, CH(OEt)₂] ppm. ¹³C NMR (CDCl₃, 62.9 MHz): $\delta = 13.95$ (q, ¹ $J_{C,H} = 125.9$ Hz, CH₃), 63.27 (dt-like, ¹ $J_{C,H} = 141.2$, ² $J_{C,H} = 3.9$ Hz, CH₂O), 91.68 (s, C=C), 101.81 (d, ¹ $J_{C,H} = 161.5$ Hz, CH(OEt)₂], 199.47 [br s, Co₂(CO)₆] ppm.

Acetylenedicarbaldehyde Complex 4: Bis(diethyl acetal) complex 3 (7.60 g, 14.73 mmol) was dissolved in formic acid (120 mL) at 0 °C. After stirring for 2.5 h between 0 °C and room temp., the solution was filtered, evaporated, and dried under vacuum for 1.5 h. The red-brown residue was dissolved in CH_2Cl_2 and the solution was filtered through a small pad of silica gel. The filtrate was again evaporated, the residue dissolved in diethyl ether and the resulting solution filtered though celite. After evaporation, complex 4 was obtained as a red-orange microcrystalline solid (4.80 g, 89%).

TLC (pentane/Et₂O, 9:1): $R_f = 0.52$. MS (DCI/NH₃): m/z = 386 ([M + NH₄]⁺), 369 ([MH]⁺). IR (CDCl₃): $v_{OC-H} = 2814$ (w) cm⁻¹;

 $ν_{C=O} = 2114$ (s), 2081 (vs), 2057 (vs) cm⁻¹; $ν_{HC=O} = 1671$ (s) cm⁻¹. ¹H NMR (CDCl₃, 250 MHz): δ = 10.30 (s, CHO) ppm. ¹³C NMR (CDCl₃, 62.9 MHz): δ = 85.88 (d, ³*J*_{C,H} = 36 Hz, *C*=*C*-CHO), 191.30 (d, ¹*J*_{C,H} = 187 Hz, *C*HO), 199.47 [s, Co₂(*C*O)₆] ppm. Recrystallization from CH₂Cl₂/pentane afforded crystals of **4** suitable for an X-ray structure determination.

Reaction of Complex 6 with EtMgBr: BF₃·OEt₂ (0.097 mL, 0.77 mmol) was added by syringe into a solution of diketone complex 6 (0.200 g, 0.385 mmol) in diethyl ether (20 mL) at -78 °C. After stirring for 1.5 h, a solution of EtMgBr in diethyl ether (3 M, 0.256 mL, 0.77 mmol) was added by syringe. The resulting deep-red solution was kept at -15 °C for 17 h, then guenched with saturated aqueous NH₄Cl (20 mL). The organic layer was separated, washed with aqueous NH₄Cl and the solvents evaporated to dryness. Three products were identified in the ¹H NMR spectrum of the crude material: starting material 6 (73%), reduced product 7a (5%), and acylated product 7b (22%). The reddish residue (0.107 g) was chromatographed over silica gel eluting with pentane/diethyl ether mixtures of increasing polarity (starting at 95:5). After recovering unchanged 6, triketone 7b was obtained as a yellow oil (0.007 g, ca. 6%) containing 20% of reduced product 7a ($\delta_{\rm H}$ = 3.46 ppm).^[14] TLC (pentane/Et₂O, 1:1): $R_f = 0.72$. MS (DCI/NH₃): m/z = 312 $([M + NH_4]^+)$, 295 $([MH]^+)$. IR (CDCl₃): $v_{EtC=O} = 1723$ (s) cm⁻¹; $v_{PhC=O} = 1675 \text{ (s br) cm}^{-1}; v_{ArC=C} = 1598 \text{ (m)}, 1581 \text{ (w)}, 1449 \text{ (m)}$ cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.07$ (t, ³ $J_{H,H} = 7.2$ Hz, 3 H, CH_3), 2.63 (second-order m, from the decoupling of the Me resonance at $\delta = 1.07$ ppm: ${}^{2}J_{H,H} = 18.8$ Hz, 2 H, O=C-CH*H*-Me), 2.56 (second-order m, from the decoupling of the Me resonance at $\delta = 1.07$ ppm: ²J_{H,H} = 18.8 Hz, 2 H, O=C-CHH-Me), 3.62 (dd, ${}^{2}J_{H,H} = 18.3$, ${}^{3}J_{H,H} = 6.2$ Hz, 1 H, CHHCOPh), 3.85 (dd, ${}^{2}J_{H,H} =$ 18.3, ${}^{3}J_{\rm H,H} = 7.0$ Hz, 1 H, CH*H*COPh), 5.34 (t-like, ${}^{3}J_{\rm H,H} \approx$ 6.6 Hz, 1 H, CHCOEt), 7.49 (t-like, ${}^{3}J_{\text{H,H}} \approx 7.8$ Hz, 2 H, m-CH), 7.55 (t-like, ${}^{3}J_{\text{H,H}} \approx 7.7 \text{ Hz}$, 2 H, *m*-CH), 7.61 (t-like, ${}^{3}J_{\text{H,H}} \approx$ 7.3 Hz, 1 H, *p*-CH), 7.66 (t-like, ${}^{3}J_{H,H} \approx 7.3$ Hz, 1 H, *p*-CH), 8.01 (d, ${}^{3}J_{H,H} = 7.6$ Hz, 2 H, o-CH), 8.11 (d, ${}^{3}J_{H,H} = 7.6$ Hz, 2 H, o-CH) ppm. ¹³C{¹H} NMR (CDCl₃, 100 MHz): $\delta = 8.09$ (O= CCH₂CH₃), 36.28 (O=CCH₂Me), 38.60 (CH₂COPh), 56.28 (CHCOPh), 128.66, 129.11, 129.85, 130.04 (o- and m-CH), 134.01, 134.30 (p-CH), 136.41, 136.52 (ipso-C-CO), 196.88 (Et-COCH(Ph)C=O), 197.53 (CH₂(Ph)C=O), 205.45 (EtC=O) ppm. ¹H and ¹³C assignments were confirmed by ¹³C 140 Hz-J-MOD, ¹H-¹H COSY-DQF-GS, ¹H-¹³C ¹J-HMQC, ¹H-¹³C LR-HMQC, and ¹H-¹³C HMBC experiments.

Reaction of 5 with EtMgBr/CeCl₃, 3,6-Diphenyl-oct-4-yne-3,6-diol (7c): A solution of EtMgBr in diethyl ether (3.0 M, 0.81 mL, 2.4 mmol) was added by syringe into a solution of CeCl₃ (0.60 g, 2.43 mmol) in THF (5 mL) at 0 °C. After stirring for 1.5 h, the mixture was cooled to -78 °C and a solution of diketone 5 (0.285 g, 1.21 mmol) in THF (5 mL) was added. The mixture was warmed to room temp. over 5 h, and the resulting suspension was stirred overnight at room temp. The mixture was then cooled to -40 °C and treated with aqueous acetic acid (10%, 10 mL). The orange solution was extracted with diethyl ether. The ethereal phase was washed sequentially with aqueous NH₄Cl, aqueous NaHCO₃, and brine, then dried over MgSO₄ and the solvents evaporated to dryness. The residue (0.325 g) was chromatographed over silica gel eluting with pentane/diethyl ether (90:10). Diol 7c was obtained as a yellow oil (0.087 g, 24%). TLC (pentane/Et₂O, 9:1): $R_{\rm f} = 0.42$. IR (CDCl₃): $v_{\rm O-H} = 3591$ (s) cm⁻¹; $v_{\rm C-H} = 2974$ (s), 2938 (m) cm⁻¹; $v_{arC=C}$ = 1601 (m), 1449 (s) cm⁻¹; v_{COH} = 1326 (m) cm⁻¹. MS (DCI/NH₃): m/z = 312 ([M + NH₄]⁺), 294 $([M + NH_4 - H_2O]^+)$, 277 $([MH - H_2O]^+)$, 259 $([MH - 2H_2O]^+)$. ¹H NMR (CDCl₃, 200 MHz): $\delta = 0.96$ (m, 6 H, *CH*₃), 1.95 (m ≈ 2q, 4 H, diastereoisotopic *CH*₂Me), 3.12 (br, 2 H, *OH*), 7.27–7.39 (m, 6 H, *o*-, *m*-CH), 7.58–7.64 (m, 4 H, *o*-CH) ppm. ¹³C{¹H} NMR (CDCl₃, 50 MHz): $\delta = 9.04$ (*CH*₃), 38.21 (*CH*₂Me), 73.81 (*CHOH*), 88.16 (*C*=*C*), 125.40, 127.98 (*o*-, *m*-CH), 127.49 (*p*-CH), 144.12 (*ipso*-*C*) ppm. Further elution gave 7c as a mixture with the reduced side product 10, identified by comparison with the ¹H NMR spectrum of an authentic sample (see below).

1-Trimethylsilyl-3-methoxy-3-phenylhexa-1,4-diyne (MeC₂)(OMe)-PhC(C₂SiMe₃): This compound was obtained as a byproduct formed during the preparation of 11h by exhaustive methylation of 1-trimethylsilyl-3-hydroxy-3-phenylpenta-1,4-diyne (HC₂)PhC(OH)-(C₂SiMe₃) with CH₃I.^[21]

TLC (hexane/EtOAc, 9:1): $R_{\rm f} = 0.67$. ¹H NMR (CDCl₃, 250 MHz): $\delta = 0.21$ [s, 9 H, Si(CH₃)₃], 1.93 (s, 3 H, =C-CH₃), 3.44 (s, 3 H, OCH₃), 7.33–7.37 (m, 3 H, *m*- and *p*-CH), 7.75 (dd, ²J_{H,H} \approx 7.8, ³J_{H,H} \approx 1.7 Hz, 2 H, *o*-CH) ppm. ¹³C NMR (CDCl₃, 62.9 MHz): $\delta = -0.19$ [q, ¹J_{C,H} = 120 Hz, Si(CH₃)₃], 3.90 (q, ¹J_{C,H} = 132 Hz, =C-CH₃), 52.64 (q, ¹J_{C,H} = 143 Hz, OCH₃), 71.97 (s, COMe), (76.49–77.51, masked signal of =C-Me?), 83.22 (s, *C*=CMe), 91.17 (s, *C*=C-SiMe₃), 102.35 (s, =C-SiMe₃), 126.60 (dt-like, ¹J_{C,H} = 160 Hz, *m*-CH), 128.21 (dm, ¹J_{C,H} = 160 Hz, *o*-CH), 128.51 (dm, ¹J_{C,H} = 161 Hz, *p*-CH), 141 (s, *ipso-C*) ppm.

3-Methoxy-3-phenylhexa-1,4-diyne (11g): 1-Trimethylsilyl-3-methoxy-3-phenylhexa-1,4-diyne (2.30 g, 8.97 mmol) was dissolved in methanol (100 mL) at room temp. and K_2CO_3 (18.54 g, 134 mmol) was added. After stirring for 4 h the mixture was filtered and the solution was diluted with diethyl ether, washed with water, and then the solvents were evaporated to dryness. The crude residue (1.71 g) was chromatographed over silica gel (pentane/acetone, 95:5). Diyne **11g** was obtained as an orange oil (1.17 g, 71%).

TLC (pentane/acetone, 95:5): $R_{\rm f} = 0.75$. MS (DCI/NH₃) m/z = 202 ([M + NH₄]⁺), 185 ([MH]⁺), 170 ([M + NH₄ - MeOH]⁺), 153 ([MH - MeOH]⁺). C₁₃H₁₂O (184.2): calcd. C 84.75, H 6.57; found C 84.57, H 6.82. ¹H NMR (CDCl₃, 250 MHz): $\delta = 1.95$ (s, 3 H, \equiv C-CH₃), 2.74 (s, \equiv C-H), 3.48 (s, 3 H, OCH₃), 7.35-7.38 (m, 3 H, *m*- and *p*-CH), 7.76 (dd, ²J_{H,H} \approx 7.9, ³J_{H,H} \approx 1.7 Hz, 2 H, *o*-CH) ppm. ¹³C NMR (CDCl₃, 62.9 MHz): $\delta = 3.98$ (q, ¹J_{C,H} = 132 Hz, \equiv C-CH₃), 52.64 (q, ¹J_{C,H} = 143 Hz, OCH₃), 71.76 (s, COMe), 72.48 (d, ¹J_{C,H} \approx 254 Hz, \equiv CH), 76.85 (partly masked m, \equiv C-Me), 81.90 (d, ²J_{C,H} \approx 49 Hz, C \equiv CH), 83.87 (br s, C \equiv CMe), 126.63 (dt-like, ¹J_{C,H} = 159 Hz, *m*-CH), 128.51 (dd, ¹J_{C,H} \approx 159, ²J_{C,H} \approx 7 Hz, *o*-CH), 128.88 (dt, ¹J_{C,H} = 161, ²J_{C,H} \approx 8 Hz, *p*-CH), 140.51 (s, *ipso-C*) ppm.

1-Trimethylsilyl-3-(2-tetrahydropyranyl)oxypenta-1,4-diyne (11i): A mixture of racemic 1-trimethylsilylpenta-1,4-diyn-3-ol (1.006 g, 6.62 mmol), dihydropyran (1.8 mL, 20 mmol) and p-toluenesulfonic acid (22.9 mg, 0.12 mmol) in toluene (40 mL) was stirred for 6 h at room temp. The reaction was quenched by addition of triethylamine. After removal of the solvent under reduced pressure, dichloromethane (100 mL) and water (100 mL) were added. The organic layer was washed with water, dried over MgSO₄, and concentrated to produce a 50:50 mixture of the epimers of 11i as an orange oil (1.212 g, 77%). IR (CDCl₃) $v_{O-H} = 3308$ (s) cm⁻¹; $v_{C-H} = 3018, 2947, 2874, 2854$ (s) cm⁻¹; $v_{C=C} = 2248$ (s) cm⁻¹; $v_{C-Si} = 1252 \text{ (m) cm}^{-1}$. MS (DCI/NH₃): $m/z = 254 ([M + NH_4]^+)$. ¹H NMR (CDCl₃, 250 MHz): $\delta = 0.13, 0.14$ [2 s, 9 H, Si(CH₃)₃], 1.48–1.81 (m, 6 H, $CH_2CH_2CH_2$), 2.48, 2.51 (2 d, ${}^4J_{H,H} = 2.3$, 2.4 Hz, 1 H, ≡C-H), 3.47-3.54 and 3.80-3.84 (2 m, 2 H, diastereoisotopic CH₂O), 4.91-4.96 (m, 1 H, CHO₂), 5.13 and 5.15 $(2 \text{ d}, {}^{4}J_{\text{H,H}} = 2.3, 2.4 \text{ Hz}, 1 \text{ H}, \text{CHOTHP}) \text{ ppm. } {}^{13}\text{C}{}^{1}\text{H} \text{NMR}$

(CDCl₃, 62.9 MHz. Assignment from the ¹³C{¹H} gated spectrum): $\delta = -0.37$ [Si(CH₃)₃], 18.51, 18.70, 25.42, 29.84, 29.90 (CH₂CH₂CH₂), 54.63, 54.78 (CHOTHP), 61.72, 61.99 (CH₂O), 72.35, 73.34 (=CH), 78.76, 79.20 (C=C-H), 89.50, 90.47 (C=C-Si), 95.08, 95.45 (CHO₂), 99.23, 99.73 (=C-Si) ppm.

1,4-Diphenylbut-2-yne-1,4-diol (10): Bis(trimethylsilyl)acetylene (3.94 mmol, 17.6 mmol) was added to a mixture of KF (30.7 mg, 0.53 mmol, 3 mol%) and [18]crown-6 (0.139 g, 0.53 mmol) at 0 °C. Benzaldehyde (3.6 mL, 35.2 mmol) was then slowly added, and the solution was heated under reflux overnight. Because of the presence of unchanged benzaldehyde, KF (0.012 mg, 0.2 mmol) was added again, and the mixture was heated under reflux for another 1 h. After cooling, the solvent was evaporated and the residue (6.519 g) was analyzed by ¹H NMR spectroscopy and found to contain the bis(trimethylsilyl)diether of 10. Thus, the residue was dissolved in methanol (60 mL), potassium carbonate (9.70 g, 70 mmol) was added, and then the mixture was stirred for 2 h at room temp. The solution was filtered and evaporated, and the residue (7.41 g) was partitioned between saturated aqueous NH₄Cl (100 mL) and dichloromethane (100 mL). The organic layer was separated, washed with water until pH 7 was reached, dried over MgSO₄, filtered, and then the solvents were evaporated. The orange residue (2.203 g) was chromatographed over silica gel (CH₂Cl₂/THF, 95:5).

Pure 1-phenylbut-2-yn-1-ol eluted first and was obtained as an orange oil (0.241 g, 10%). TLC (CH₂Cl₂/THF, 95:5): $R_{\rm f} = 0.72$. ¹H NMR (CDCl₃, 200 MHz): $\delta = 2.67$ (d, ⁴ $J_{\rm H,H} = 2.4$ Hz, 1 H, ≡CH), 3.41 (br s, exchangeable with D₂O, 1 H, OH), 5.43 (br s, 1 H, CHOH), 7.36–7.46 (m, 6 H, *m*- and *p*-CH), 7.54–7.59 (m, 4 H, *o*-CH) ppm.

Diol **10** was obtained as a white solid (0.280 g, 20%). TLC (CH₂Cl₂/THF, 95:5): $R_{\rm f} = 0.35$. ¹H NMR (CDCl₃, 250 MHz): $\delta = 2.22$ (d, ³ $J_{\rm H,H} = 6.0$ Hz, exchangeable with D₂O, 2 H, OH), 5.56 (d, ³ $J_{\rm H,H} = 5.9$ Hz, 2 H, CHOH), 7.33–7.41 (m, 6 H, *m*- and *p*-CH), 7.52–7.56 (m, 4 H, *o*-CH) ppm.

9d from Co₂(CO)₈ and 10: Solid Co₂(CO)₈ (0.436 g, 1.26 mmol) was added to a suspension of 1,4-diphenylbut-2-yne-1,4-diol **10** (3.00 g, 1.26 mmol) in dichloromethane (20 mL) at room temp. The medium turned red and CO evolved. After stirring overnight, the solvent was evaporated and the residue dissolved in diethyl ether. The solution was filtered through celite and the solvents were evaporated to dryness. Pure complex **9d** was obtained as a brown foam (0.638 g, 97%).

TLC (pentane/Et₂O, 7:3): $R_f = 0.73$. IR (CDCl₃): $v_{O-H} = 3588$ (s, free), 3448 (s, hydrogen bonded OH) cm⁻¹; $v_{C-H} = 3032$ (w) cm⁻¹; $v_{C=O} = 2095$ (vs), 2059 (vs), 2034 (vs) cm⁻¹; $v_{arC=C} = 1603$ (m), 1494 (m), 1453 (m) cm⁻¹. MS (DCI/NH₃): m/z = 542 ([M + NH₄]⁺), 507 ([MH - H₂O]⁺), 479 ([MH - H₂O - CO]⁺).

meso-9d: ¹H NMR (CDCl₃, 200 MHz): $\delta = 3.44$ (br, 2 H, O*H*), 5.96 (s, 2 H, C*H*OH), 7.30–7.47 (m, 10 H, aromatic C*H*) ppm. ¹³C{¹H} NMR (CDCl₃, 62.9 MHz): $\delta = 74.52$ (CHOH), 102.38 (η²-C=C), 125.57 (*o*-CH), 128.22 (*p*-CH), 128.63 (*m*-CH), 143.14 (*ipso*-C), 198.49 [Co₂(CO)₆] ppm.

*threo-***9d**: ¹H NMR (CDCl₃): $\delta = 3.55$ (d, ³*J*_{H,H} ≈ 2 Hz, 2 H, O*H*), 5.89 (d, ³*J*_{H,H} ≈ 2 Hz, 2 H, C*H*OH), 7.30–7.47 (m, 10 H, aromatic *CH*) ppm. ¹³C{¹H} NMR (CDCl₃, 62.9 MHz): $\delta = 75.10$ (*C*HOH), 100.82 (η^2 -*C*=*C*), 125.57 (*o*-*C*H), 125.71 (*p*-*C*H), 128.63 (*m*-*C*H), 143.63 (*ipso*-*C*), 198.49 [br, Co₂(*C*O)₆] ppm. Integration of the ¹H NMR spectra gave *threo:meso*, 63:37. The meso and threo configurations were assigned by comparison with the spectrum of **9d**, which was prepared by addition of PhLi or PhMgBr to complex **4** (see below). 9a from 4 and MeLi: A solution of methyllithium in diethyl ether (1.6 M, 0.421 mL, 0.674 mmol) was added by syringe into a solution of acetylene dicarbaldehyde complex 4 (0.124 g, 0.337 mmol) in THF (13 mL) at -78 °C. The mixture was warmed to room temp. and then stirred for 2 h. The mixture was diluted with diethyl ether (50 mL) and then quenched and extracted with saturated aqueous NH₄Cl (50 mL). The organic phase was separated, dried over MgSO₄, and concentrated. The de (12%) was determined by deconvolution of the 400-MHz ¹H NMR spectrum of the crude material in CDCl3 at 40 °C. The crude material was chromatographed over silica gel (pentane/EtOAc, 7:3). Complex 9a was isolated over several fractions with varying values of de (0.030 g, 22%). TLC (pentane/EtOAc, 7:3): $R_{\rm f}$ = 0.66 (single spot). IR (CDCl₃): $v_{\rm O-H}$ = 3305 (s, H-bonded), 3602 (s, free), 2933 (w) cm⁻¹; $v_{C=0} = 2094$ (vs), 2056 (vs), 2030 (vs) cm⁻¹. MS (DCI/NH₃): m/z = 418 ([M + $NH_4]^+$), 383 ([MH - H₂O]⁺), 355 ([MH - H₂O - CO]⁺), 327 $([MH - H_2O - 2CO]^+), 299 ([MH - H_2O - 3CO]^+).$

meso-9a: ¹H NMR (400 MHz, 40 °C, CDCl₃): $\delta = 1.38$ (d, ³*J*_{H,H} = 6.0 Hz, 6 H, *CH*₃), 2.38 (s, 2 H, *OH*), 4.75 (large, 2 H, *CH*) ppm. ¹H NMR (200 MHz, 21 °C, CDCl₃): $\delta = 1.55$ (br, 6 H, *CH*₃), 2.89 (s, 2 H, *OH*), 5.03 (br, 2 H, *CHOH*) ppm. ¹³C{¹H} NMR (50 MHz, 21 °C, CDCl₃): $\delta = 24.73$ (*CH*₃), 68.47 (*CHOH*), 101.68 (η²-*C*=*C*),199.36 [Co₂(*CO*)₆] ppm.

threo-9a: ¹H NMR (400 MHz, 40 °C, CDCl₃): $\delta = 1.35$ (d, ³*J*_{H,H} = 6.4 Hz, 6 H, *CH*₃), 2.24 (s, 2 H, *OH*), 4.75 (br, 2 H, *CHOH*) ppm. ¹³C{¹H} NMR (50 MHz, 21 °C, CDCl₃): $\delta = 25.18$ (*C*H₃), 68.91 (*C*HOH), 101.24 (η^2 -*C*=*C*),199.36 [Co₂(*CO*)₆] ppm.

Monoaddition Product 8a: ¹H NMR (200 MHz, 21 °C, CDCl₃): δ = 1.55 (br, 6 H, CH₃), 2.93 (s, 2 H, OH), 5.03 (br, 2 H, CHOH), 10.31 (s, 1 H, HC=O).

9a from 4 and MeMgBr: A solution of methylmagnesium bromide in diethyl ether (3.0 M, 0.362 mL, 1.087 mmol) was added by syringe into a solution of acetylene dicarbaldehyde complex 4 (0.200 g, 0.543 mmol) in THF (26 mL) at -78 °C. The mixture was warmed to room temp. and then stirred for 2 h. The mixture was quenched with saturated aqueous NH₄Cl (50 mL) and then extracted with diethyl ether. The organic layer was washed with water until pH 7 was reached, dried over MgSO₄, and concentrated. The de (22%) was determined by deconvolution of the 400-MHz ¹H NMR spectrum of the crude material in C_6D_6 at 40 °C (*meso-9a*: $\delta = 1.41$ (d), 2.62 (br), 4.77 (m) ppm. *threo-9a*: $\delta = 1.37$ (d), 2.47 (br), 4.78 (m) ppm). The crude material was chromatographed over silica gel eluting with pentane/Et2O mixture of increasing polarity (from 70:30 to 50:50). Complex 9a was isolated in several fractions of varying de (0.176 g, 81%). C12H10O8Co2 (400.1): calcd. C 36.01, H 2.52, Co 29.47, O 31.0; found 36.05, H 2.71, O 31.68, Co 28.43.

9b from 4 and EtLi: A solution of ethyllithium in diethyl ether (1.3 M, 0.418 mL, 0.544 mmol) was added by syringe into a solution of acetylene dicarbaldehyde complex **4** (0.100 g, 0.272 mmol) in THF (10 mL) at -78 °C. After stirring for 15 min at -78 °C, the mixture was stirred for 1 h at -25 °C, then quenched with saturated aqueous NH₄Cl and diluted with diethyl ether. The organic layer was dried over MgSO₄, filtered through a small pad of celite, and concentrated. The crude material was chromatographed over silica gel (pentane/EtOAc, 90:10). Complex **9b** was isolated over several fractions with varying *de* (0.027 g, 23%). Elemental analysis for the complex **9b**·0.5 pentane (half an equivalent of pentane measured by NMR spectroscopy). C_{16.5}H₂₀O₈Co₂ (463.98):calcd. C 42.67, H 4.34, Co 25.40, O 27.58; ; found C 42.40, H 4.07, Co 23.81, O 27.32. The *de* could not be determined from the ¹H NMR spectrum of the crude material. The better resolution of the ¹³C NMR spec-

trum allowed for a crude estimation of *de* of ca. 10%. A more precise value (*de* 4%) was obtained as the weighted mean of the values of *de* (measured by integration of ¹H NMR spectra) of the three chromatographed fractions containing **9b**.

9b from 4 and EtMgBr: A solution of ethylmagnesium bromide in THF (3.0 M, 0.181 mL, 0.544 mmol) was added by syringe into a solution of acetylene dicarbaldehyde complex 4 (0.100 g, 0.272 mmol) in THF (10 mL) at -78 °C. The mixture was warmed to room temp., stirred for 2 h, guenched with saturated aqueous NH₄Cl, and then extracted with diethyl ether. The organic layer was washed with water until pH 7 was reached, then dried over MgSO₄ and concentrated. The crude material was chromatographed over silica gel eluting with pentane/EtOAc mixtures of increasing polarity (from 90:10 to 50:50). The de (60%) was determined as the weighted mean of the values of de (measured by integration of ¹H NMR spectra) of the three fractions containing 9b. Pure meso-9b was isolated as an orange-red solid (0.083 g, 71%). IR (CDCl₃): $v_{O-H} = 3603$ (s, free OH), 3452 (s, hydrogen bonded) cm⁻¹; $v_{C-H} = 2968$ (w), 2935 (w), 2878 (w) cm⁻¹; $v_{C=O} = 2094$ (vs), 2056 (vs), 2030 (vs) cm⁻¹. MS (DCI/NH₃): m/z = 446 ([M + $NH_4]^+$), 411 ([MH - $H_2O]^+$), 383 ([MH - $H_2O - CO]^+$), 355 $([MH - H_2O - 2CO]^+), 327 ([MH - H_2O - 3CO]^+).$

meso-9b: TLC (pentane/EtOAc, 9:1): $R_f = 0.40$. ¹H NMR (CDCl₃): δ = 1.15 (t, ³ $J_{H,H} = 7.3$ Hz, 6 H, CH₃), 1.80 (m, 4 H, CH₂Me), 2.96 (d, ³ $J_{H,H} = 3.6$ Hz, 2 H, OH), 4.71 (m, 2 H, CHOH) ppm. ¹³C NMR: δ = 11.23 (q, ¹ $J_{C,H} = 126.1$ Hz, CH₃), 32.50 (t, ¹ $J_{C,H} =$ 124.7 Hz, CH₂Me), 74.06 (d, ¹ $J_{C,H} = 143.9$ Hz, CHOH), 100.78 (s, η^2 -C=C), 199.43 [br s, Co₂(CO)₆] ppm.

*threo-*9b: TLC (pentane/EtOAc, 9:1): $R_f = 0.49$. ¹H NMR (CDCl₃): $\delta = 1.15$ (t, ${}^{3}J_{H,H} = 7.3$ Hz, 6 H, CH₃), 1.67 (m, 4 H, CH₂Me), 2.66 (d, ${}^{3}J_{H,H} = 4.7$ Hz, 2 H, OH), 4.71 (m, 2 H, CHOH) ppm. ¹³C{¹H} NMR (62.9 MHz, CDCl₃): $\delta = 11.14$ (CH₃), 32.86 (CH₂), 74.06 (CHOH), 100.86 (η^2 -C=C), 199.57 [Co₂(CO)₆] ppm.

9d from 4 and PhLi: A solution of phenyllithium in cyclohexane/ diethyl ether (1.6 M, 0.340 mL, 0.544 mmol) was added by syringe into a solution of acetylene dicarbaldehyde complex **4** (0.100 g, 0.272 mmol) in THF (10 mL) at -78 °C. The mixture was warmed to room temp., stirred for 1.5 h, quenched with saturated aqueous NH₄Cl, and then extracted with diethyl ether. The organic layer was washed with water, dried over MgSO₄, and concentrated. The *de* (54%) was determined by integration of the resolved ¹H NMR spectrum of the crude material in CDCl₃. The crude material was chromatographed over silica gel (pentane/EtOAc, 80:20). Complex **9d** was isolated as a red amorphous solid (0.053 g, 37%).

9d from 4 and PhMgBr: A solution of phenylmagnesium bromide in diethyl ether (3.0 M, 0.181 mL, 0.544 mmol) was added by syringe into a solution of acetylene dicarbaldehyde complex **4** (0.100 g, 0.272 mmol) in THF (20 mL) at -78 °C. The mixture was warmed to room temp., stirred at room temp. for 2.5 h, quenched with saturated aqueous NH₄Cl, and then extracted with diethyl ether. The organic layer was washed with water until pH 7 was reached, then dried over MgSO₄ and concentrated. The crude material was chromatographed over silica gel eluted with pentane/EtOAc mixtures of increasing polarity (from 90:10 to 80:20). Complex **9d** (mixture of diastereoisomers) was isolated as a brown solid (0.069 g, 48%). Elemental analysis for **9d**·H₂O C₂₂H₁₆Co₂O₉: calcd. C 48.71, H 2.98, Co 21.74; found C 48.41, H 2.83.

The stereoselectivity (de = 66%) was determined as the weighted mean of the values of de (measured by integration of the ¹H NMR spectra) of all the three chromatographed fractions containing **9d**.

Analyses were consistent with those of the product obtained by reaction of the diol 10 with $Co_2(CO)_8$ (see above).

meso-9d: TLC (pentane/EtOAc, 9:1): $R_f = 0.40$. ¹H NMR (CDCl₃, 250 MHz): $\delta = 3.54$ (br, 2 H, OH), 5.95 (s, 2 H, CHOH), 7.34–7.43 (m, 10 H, aromatic CH) ppm.

*threo-*9d: TLC (pentane/EtOAc, 9:1): $R_f = 0.53$. ¹H NMR (CDCl₃, 250 MHz): $\delta = 3.65$ (d, ³ $J_{H,H} = 2.7$ Hz, 2 H, OH), 5.88 (d, ³ $J_{H,H} = 2.7$ Hz, 2 H, CHOH), 7.32–7.48 (m, 10 H, aromatic CH) ppm.

Monoaddition Product 8d: ¹H NMR (CDCl₃, 250 MHz): $\delta = 2.80$ (d, ³ $J_{H,H} = 3.1$ Hz, 1 H, OH), 5.92 (s, 1 H, CHOH), 7.32–7.48 (m, 5 H, aromatic CH), 10.24 (s, 1 H, CHO) ppm.

9e from 4 and PhC=CLi: A solution of *n*-butyllithium in toluene (2.1 M, 1.04 mL, 2.18 mmol) was added by syringe into a solution of phenylacetylene (0.144 mL, 2.18 mmol) in THF (20 mL) at -78 °C. After stirring for 1 h, during which time the temperature rose to -25 °C, the resulting pink solution was cooled down to -78 °C. A solution of acetylenedicarbaldehyde complex **4** (0.400 g, 1.09 mmol) in THF (36 mL) was added. The mixture was warmed to room temp., stirred for 3.5 h, quenched with saturated aqueous NH₄Cl, and then extracted with diethyl ether. The organic layer was washed with water, dried over MgSO₄, filtered through a small pad of celite, and concentrated. The crude material was chromatographed over silica gel with pentane/EtOAc (90:10 then 80:20). Complex **9e** was isolated as an orange oil (0.055 g, 9%) corresponding to a single spot on TLC.

TLC (pentane/EtOAc, 8:2): $R_{\rm f} \approx 0.25$. TLC (pentane/EtOAc, 7:3): $R_{\rm f} \approx 0.54$. IR (CDCl₃) $v_{\rm O-H} = 3601$ (s, free), 3408 (s, hydrogenbonded) cm⁻¹; $v_{\rm C-H} = 2927$ (w), 2855 (w) cm⁻¹; $v_{\rm C=O} = 2099$ (vs), 2063 (vs), 2039 (vs) cm⁻¹; $v_{\rm arC=C} = 1600$ (m), 1490 (m), 1457 (m) cm⁻¹. MS (DCI/NH₃/Et₂O): m/z = 586 ([M - 2H₂ + NH₄]⁺), 569 ([M - 2H₂ + H]⁺), 553 ([M - H₂ + H - H₂O]⁺), 499 ([M + H - H₂O - 2CO), 481 ([M + H - 2H₂O - 2CO]⁺. The invoked oxidation processes are explained by the stabilization of the doubly propargylic carbenium centers:

Scheme 7

If the sample is injected as a CH₂Cl₂ solution, instead of in Et₂O, the isotope pattern analysis allowed for the following assignments: MS (DCI/NH₃/CH₂Cl₂): m/z = 586 ([M - 2CO + 2HCl - H₂O + NH₃ - H⁻]⁺), 569 ([M - 2CO + 2HCl - H₂O - H⁻]⁺), 553 ([M - 2CO + 2HCl - 2H₂O + H]⁺).

¹H NMR (CDCl₃, 200 MHz): $\delta = 2.98$ (br s, 2 H, OH), 5.87 (s, 2 H, CHOH), 7.30 (sharp signal, 6 H; *m*- and *p*-CH), 7.39–7.43 (m, 4 H, *o*-CH) ppm. ¹³C{¹H} NMR (CDCl₃, 62.9 MHz): $\delta = 64.08$ (CHOH), 85.96 and 88.08 (C=CPh), 96.39 (η^2 -C=C), 122.00 (*ipso-C*), 128.50 (*m*-CH), 128.99 (*p*-CH), 131.88 (*o*-CH), 198.91 [s, Co₂(CO)₆] ppm. Elemental analysis for **9e**-icosane (1 equivalent of C20 alkane in the sample was confirmed by NMR spectroscopy): C₄₆H₅₆O₈Co₂ (854.26): calcd. C 64.62, H 6.62; found C 64.50, H 6.44.

NMR spectroscopic data for the minor epimer of **9e** [TLC (pentane/EtOAc, 7:3): $R_{\rm f} = 0.63$] were extracted from spectra of the crude material. ¹³C{¹H} NMR (CDCl₃, 62.9 MHz): $\delta = 64.08$ (CHOH), 86.04 and 88.00 (C=CPh), 96.39 (η^2 -C=C), 122.00 (*ipso*- C), 128.50 (*m*-CH), 128.99 (*p*-CH), 131.88 (*o*-CH), 198.91 [s, $Co_2(CO)_6$] ppm. Formal integration of the spectrum gave 12 and 28% excesses for the major components of two split $C \equiv CPh$ signals; a rough estimation gives *de* of ca. 20 ±10%.

9e from 4 and PhC=CMgBr: A solution of ethylmagnesium bromide in THF (3.0 M, 0.181 mL, 0.544 mmol) was added to a solution of phenylacetylene (0.037 mL, 0.544 mmol) in THF (10 mL) at -78 °C. After stirring for 0.5 h, during which time the mixtute warmed to room temp., the solution was cooled to -78 °C. A solution of acetylenedicarbaldehyde complex 4 (0.100 g, 0.272 mmol) in THF (13 mL) was added. The mixture was warmed to room temp., stirred for 2.5 h, quenched with saturated aqueous NH₄Cl, and then extracted with diethyl ether. The organic phase was washed with water, dried over Na₂SO₄, and concentrated. The crude material was chromatographed over silica gel (pentane/Et₂O, 80:20). Complex 9e (0.025 g, 16%) was isolated as an orange oil corresponding to the same (more polar) TLC spot observed for the reaction using Ph₂C₂Li. The less-polar spot corresponds to the minor epimer of 9e, which was obtained in mixture (0.017 g) with 8e and the first epimer of 9e in a ratio 9e:8e, 66:33. Assuming that **9e** here occurs either as a 1:1 mixture of the two epimers (de = 0) or, at worst, as a single minor epimer (de = -100%), the weighted mean of the values of de in the two extreme cases gives the estimated range: $36 < de \approx 68\%$.

NMR spectroscopic data for **8e**: ¹H NMR (CDCl₃, 250 MHz): δ = 2.91 (d, ³*J*_{H,H} = 5.9 Hz, 1 H, O*H*), 5.81 (d, ³*J*_{H,H} = 5.8 Hz, 1 H, CHOH), 7.30–7.41 (m, assumed 5 H, aromatic C*H*), 10.36 (s, 1 H, CHO) ppm.

9f from 4 and Me₃SiC=CLi: A solution of *n*-butyllithium in toluene (2.5 M, 0.218 mL, 0.544 mmol) was added by syringe into a solution of trimethylsilylacetylene (0.077 mL, 0.544 mmol) in THF (10 mL) at -78 °C. The mixture was warmed to room temp. and then cooled to -78 °C. A solution of acetylenedicarbaldehyde complex 4 (0.100 g, 0.272 mmol) in THF (13 mL) was added. The mixture was warmed to room temp., stirred for 3.5 h, quenched with saturated aqueous NH₄Cl, and then extracted with diethyl ether. The organic layer was washed with water until pH 7 was reached, dried over MgSO₄, and concentrated. The crude material was chromatographed over silica gel with pentane/EtOAc (90:10 then 80:20). Complex 9f was isolated over several fractions, corresponding to two spots on TLC (each affording the same ¹H NMR spectrum), that were combined to give a red amorphous solid (0.082 g, 63%). TLC (pentane/Et₂O, 80:20): $R_{\rm f} = 0.40$ and 0.53. IR (CDCl₃): $v_{O-H} = 3588 \text{ (s) cm}^{-1}; v_{C-H} = 2962 \text{ (w) cm}^{-1}; v_{C=CSi} = 2173 \text{ (w)}$ cm⁻¹; $v_{C=0} = 2099$ (vs), 2063 (vs), 2038 (vs) cm⁻¹; $v_{C-Si} = 1252$ (m) cm⁻¹. MS (DCI/NH₃): m/z = 582 ([M + NH₄]⁺), 547 ([MH - H₂O]⁺), 491 ([MH - H₂O - 2CO]⁺). ¹H NMR (CDCl₃, 250 MHz): $\delta = 0.16$ [br s, 18 H, Si(CH₃)₃], 2.95 (br, 2 H, OH), 5.57 (br, 2 H, CHOH). Because of this broadness, the de could not be determined by ¹H NMR spectroscopy. ¹³C{¹H} NMR (CDCl₃, 62.9 MHz; formal integration of four split signals gave the same 22% excess of the main signals, and allowed for the following assignments): major epimer, $\delta = -0.45$ [Si(CH₃)₃], 63.69 (CHOH), 90.82 (η^2 - $C \equiv C$), 95.97 ($C \equiv C$ -Si), 103.74 ($C \equiv C$ -Si), 198.64 [s, $Co_2(CO)_6$] ppm; minor epimer, $\delta = -0.45$ [Si(CH₃)₃], 63.61 (CHOH), 90.90 (η^2 -C=C), 95.84 (C=C-Si), 103.82 (C=C-Si), 198.64 [s, Co₂(CO)₆] ppm.

9f from 4 and Me₃SiC=CMgBr: A solution of EtMgBr in THF (3 M, 0.362 mL, 1.09 mmol) was added by syringe into a solution of phenylacetylene (0.154 mL, 1.09 mmol) in THF (20 mL) at room temp. and then the solution was heated at 55 °C for 0.5 h. The solution was cooled to 5 °C, and a solution of complex **4** (0.200 g,

0.544 mmol) in THF (20 mL) was added. The resulting dark-brown solution was stirred for 1 h at room temp., then quenched with saturated aqueous NH₄Cl and extracted with diethyl ether. The organic layer was washed with water until pH 7 was reached, dried over MgSO₄, and concentrated. The crude brown solid (0.155 g) was analyzed by ¹H NMR spectroscopy and integration of the respective signals gave the ratio **4:8f:9f**, 38:20:42. The crude material was then chromatographed over silica gel with pentane/Et₂O (80:20). A first product [TLC (pentane/Et₂O, 80:20): $R_{\rm f} = 0.56$], likely containing complex **8d** (according to its ¹H NMR spectrum, $\delta_{CHO} = 9.97$ ppm), was obtained as an impure orange oil (0.007 g, ca. 2%). Subsequently, complex **9f**, as a reddish oil (0.046 g, ca. 15%), and unchanged **4**, as a red powder (0.009 g, 5%), were isolated.

9g from 4 and the Lithium Salt of 11g: A solution of *n*-butyllithium in toluene (2.2 M, 0.197 mL, 0.434 mmol) was added by syringe into a solution of diyne (MeC₂)(OMe)PhC-C=CH **11g** (0.080 g, 0.544 mmol) in THF (6 mL) at -78 °C. The mixture was warmed to 0 °C, and then cooled to -78 °C. A solution of acetylenedicarbaldehyde complex **4** (0.080 g, 0.217 mmol) in THF (10 mL) was added. The mixture was then stirred at room temp. for 1 h, quenched with saturated aqueous NH₄Cl, and extracted with diethyl ether. The organic layer was washed with water, dried over MgSO₄, and concentrated. The brown residue was chromatographed over silica gel with pentane/Et₂O mixtures of increasing polarity (from 80:20 to 50:50). Complex **9g** (mixture of diastereoisomers) was isolated as a brown oil (0.024 g, 15%).

IR (CDCl₃): $v_{O-H} = 3585$ (s) cm⁻¹; $v_{C-H} = 2958$ (w), 2935 (w), 2826 (w) cm⁻¹; $v_{C=O} = 2100$ (vs), 2064 (vs), 2038 (vs) cm⁻¹; $v_{ar,C=}$ $_{C} = 1591$ (m), 1489 (m), 1449 (m) cm⁻¹; $v_{C-O} = 1063$ (m) cm⁻¹. MS (DCI/NH₃): m/z = 754 ([M + NH₄]⁺). ¹H NMR (CDCl₃, 250 MHz): $\delta = 1.91$ (s, 6 H, \equiv C-CH₃), 2.97 (br, 2 H, OH), 3.44–3.49 (m, 6 H, OCH₃), 5.54–5.61 (m, 2 H, CHOH), 7.33 (m, 6 H, *m*- and *p*-CH), 7.71 (m, 4 H, *o*-CH) ppm. Surprisingly, the ¹³C NMR spectrum can be assigned entirely to that of a pseudodiastereoisomerically pure compound. ¹³C NMR (CDCl₃, 62.9 MHz): $\delta = 3.64$ (q, ¹J_{C,H} = 132 Hz, \equiv C-CH₃), 52.83 (q, ¹J_{C,H} = 143 Hz, O-CH₃), 63.28 (d, ¹J_{C,H} = 151 Hz, CHOH), 71.77 [s, C(OMe)Ph), 84.32 (br, $C\equiv$ CMe), 95.35 (s, η^2 - $C\equiv$ C), 126.47 (d, *o*-CH), 128.27 (d, *m*-CH), 128.64 (d, *p*-CH), 140.32 (s, *ipso-C*), 198.37 [s, Co₂(CO)₆] ppm.

9h from 4 and the Lithium Salt of 11h: A solution of *n*-butyllithium in toluene (2.5 M, 0.217 mL, 0.544 mmol) was added by syringe into a solution of diyne (Me₃SiC₂)(OMe)PhC-C=CH **11h** (0.132 g, 0.544 mmol) in THF (10 mL) at -78 °C. The mixture was warmed to room temp. and then the resulting violet solution was cooled to -68 °C. A solution of complex **4** (0.100 g, 0.272 mmol) in THF (13 mL) was added. The mixture was then stirred at room temp. for 2.5 h, quenched with saturated aqueous NH₄Cl, and extracted with diethyl ether. The organic layer was washed with water, dried over MgSO₄, and concentrated. The brown residue was chromatographed over silica gel with pentane/EtOAc mixtures of increasing polarity (from 90:10 to 50:50). Complex **9h** (mixture of diastereoisomers) was isolated as a brown oil (0.039 g, 16%).

IR (CDCl₃): $v_{O-H} = 3585$ (s, free), 3410 (hydrogen bonded) cm⁻¹; $v_{C-H} = 2961$ (w), 2936 (w), 2902 (w), 2827 (w) cm⁻¹; $v_{C=O} = 2100$ (vs), 2064 (vs), 2040 (vs) cm⁻¹; $v_{ar,C=C} = 1587$ (w), 1489 (m), 1450 (m) cm⁻¹; $v_{C-O} = 1064$ (m) cm⁻¹; $v_{C-Si} = 1252$ (m) cm⁻¹. MS (DCI/NH₃): m/z = 870 ([M + NH₄]⁺), 835 ([MH - H₂O]⁺). ¹H NMR (CDCl₃, 250 MHz): $\delta = 0.21$ [s, 18 H, Si(CH₃)₃], 2.82 (br, 2 H, OH), 3.45–3.47 (m, 6 H, OCH₃), 5.57–5.60 (m, 2 H, CHOH), 7.36 (m, 6 H, *m*- and *p*-CH), 7.72 (m, 4 H, *o*-CH) ppm. Surprisingly, the ¹³C NMR spectrum can be assigned almost entirely as that of a pseudo-diastereomerically pure compound (except for two C=C signals). ¹³C{¹H} NMR (CDCl₃, 62.9 MHz): $\delta = -0.37$ [Si(CH₃)₃], 53.01 (O-CH₃), 63.12 (CHOH), 71.88 [C(OMe)Ph], 83.62, 84.83, 85.00 (diastereoisomeric C=C-Si), 95.18 (η^2 -C=C), 101.00 (=C-SiMe₃), 126.47 (*o*-CH), 128.32 (*m*-CH), 128.76 (*p*-CH), 139.44 (*ipso*-C), 198.34 [Co₂(CO)₆] ppm.

9i from 4 and the Lithium Salt of 11i: A solution of *n*-butyllithium in hexane (2.5 M, 0.850 mL, 2.12 mmol) was added by syringe into a solution of 1-trimethylsilyl-3-(tetrahydropyranyloxy)pent-1,4-diyne (**11i**, 0.500 g, 2.12 mmol) in THF (15 mL) at -80 °C. After stirring for 15 min, a solution of complex **4** (0.390 g, 1.06 mmol) in THF (10 mL) was added. The mixture was then stirred at -80 °C for 1 h and at room temp. for 1 h, before being quenched with a saturated aqueous solution of NH₄Cl and extracted with diethyl ether. The organic layer was washed with water, dried over MgSO₄ and concentrated. The brown residue was purified by flash chromatography through a plug of silica gel eluting with heptane/EtOAc (80:20). Complex **9i** (mixture of diastereoisomers) was isolated as a brown amorphous solid (167 mg, 15%).

IR (CDCl₃): $v_{O-H} = 3408$ (w) cm⁻¹; $v_{C-H} = 2951$, 2854 (m) cm⁻¹; $v_{C=C} = 2247$ (w) cm⁻¹; $v_{C=O} = 2098$, 2063, 2035 (vs) cm⁻¹; $v_{C-Si} = 1251 \text{ (m) cm}^{-1}$; $v_{C-O} = 1117 \text{ (m) cm}^{-1}$. MS (DCI/NH₃): $m/z = 839 ([M - H]^+)$. ¹H NMR (CDCl₃, 250 MHz): $\delta = 0.13 [m,]$ 18 H, Si(CH₃)₃], 1.22 and 1.51 (2 m, 12 H, CH₂CH₂CH₂), 3.49 and 3.83 (2 m, 4 H, CH2O), 4.91 (m, 2 H, CHO2), 5.20 (m, 2 H, CH-OTHP), 5.63 (m, 2 H, CHOH) ppm. ¹³C NMR (CDCl₃, 62.9 MHz): δ: -0.43 [Si(CH₃)₃], 18.35, 18.58, 19.66, 25.23, 25.39, 29.63, 29.86, 30.26, 30.62 (CH₂CH₂CH₂), 54.92-55.26 (CHOTHP), 61.61-62.01 (CHOTHP), 62.83 (CHOH), 94.57-95.67 (CHO₂, $C \equiv C$), 98.76-99.00 ($\equiv C$ -Si), 198.53 [Co₂(CO)₆] ppm.

X-ray Analysis of 4, 9b, and 9d: Data were collected at low temperature on a Stoe Imaging Plate Diffraction System (IPDS), equipped with an Oxford Cryosystems Cryostream Cooler Device and by using graphite-monochromated Mo-K radiation ($\lambda = 0.71073$ Å). The final unit cell parameters were obtained by means of a leastsquares refinement of a set of 5000 well-measured reflections. Crystal decay was monitored in the course of data collection by measuring 200 reflections by image: no significant fluctuations of intensities have been observed during all measurements. All structures have been solved by Direct Methods using SIR92,^[29] and refined by least-squares procedures on F^2 with the aid of SHELXL.^[30] The Atomic Scattering Factors were taken from International Tables for X-ray Crystallography.^[31] All hydrogen atoms were located on difference Fourier maps, and refined by using a riding model with an isotropic thermal parameter fixed at 20% higher to carbons atoms to which they are connected. Exceptions are the hydrogens atoms H(3) and H(4) of the CHO function of 4, and the hydrogens atoms H(1) and H(2) of the -OH groups of 9b and 9d, which were isotropically refined. A semi-empirical correction absorption was applied for all models (DIFABS-N),^[32] all non-hydrogens atoms were anisotropically refined, and in the last cycles of refinement a weighting scheme was used,^[33] where weights are calculated from the following formula: $w = 1/[2(F_o^2) + (aP)^2 + bP]$ where P = $(F_{0}^{2} + 2F_{c}^{2})/3$. Molecules were drawn using the program ZORTEP with 50% probability displacement ellipsoids for non-hydrogen atoms.^[34]

MM Modeling of Intermediates B[Li(THF)₂] and B[MgBr(THF)]: Optimization of the geometry of lithium and magnesium bromide salts of **8b** have been carried out with ESSF (Extensive Systematic Force Field) implemented in the Discover software.^[35] The input geometries were designed starting from the X-ray crystal structure of **8b**, appending a frozen $\text{Co}_2(\text{CO})_6$ core at the triple bond, and replacing one of the sp^3 carbinol groups for a sp^2 formyl group. The remaining OH proton of **8b** was then replaced by a metal unit $[M = \text{Li}(\text{THF})_2$ or MgBr(THF)], placed at nonbonding distances from the formyl function and diversely oriented. Finally, ESSF optimization led to the closure of a seven-membered metallacycle by a new O \rightarrow [M] bond in a pseudo-boat conformation **B**[M].

Supporting Information: (see footnote on the first page of this article) Cartesian coordinates for the ESFF-optimized structures **B**[Li(THF)₂] and **B**[MgBr(THF)].

Acknowledgments

The authors wish to thank Cécile Lamirand, Antonetta Mohanu, and Cécile Destombes for experimental assistance, and the Ministère de l'Education Nationale de la Recherche et de la Technologie for ACI financial support.

- ^[1] [^{1a]} A. Gorgues, A. Le Coq, *Chem. Commun.* **1979**, 767–768.
 ^[1b] A. Gorgues, A. Le Coq, *Tetrahedron Lett.* **1979**, 50, 4825–4828.
 ^[1c] A. Gorgues, A. Le Coq, *Tetrahedron Lett.* **1979**, 50, 4829–4832.
 ^[1d] A. Gorgues, D. Stephan, A. Belyasmine, A. Khanous, A. Le Coq, *Tetrahedron* **1990**, 465, 2817–2820.
- ^[2] A. Meyer, A. Gorgues, Y. Le Floc'h, Y. Pineau, J. Guilleviv, J. Y. Le Marouille, *Tetrahedron Lett.* 1981, 22, 5181-5182.
- ^[3] A. Meyer, M. Bigorgne, Organometallics 1984, 3, 1112–1118.
- ^[4] M. Badri, J.-P. Majoral, A.-M. Caminade, M. Delmas, A. Gaset, A. Gorgues, J. Jaud, J. Am. Chem. Soc. **1990**, 112, 5618-5623.
- ^[5] A. Khanous, A. Gorgues, M. Jubault, *Tetrahedron Lett.* 1990, 31, 7311-7314.
- ^[6] M. Soleilhavoup, L. Maurette, C. Lamirand, B. Donnadieu, M. J. McGlinchey, R. Chauvin, *Eur. J. Org. Chem.* 2003, 1652–1660 following paper.
- [7] [^{7a]} K. M. Nicholas, Acc. Chem. Res. **1987**, 207–214. [^{7b]} O. Kuhn, D. Rau, H. Mayr, J. Am. Chem. Soc. **1998**, 120, 900–907. [^{7c]} J. R. Green, Current Org. Chem. **2001**, 809–826.
- [8] R. Tester, V. Varghese, A. M. Montana, M. Khan, K. M. Nicholas, J. Org. Chem. 1990, 55, 186–192.
- [9] S. Padmanabhan, K. M. Nicholas, J. Organomet. Chem. 1981, 212, 115-124.
- ^[10] K. M. Nicholas, J. Siegel, J. Am. Chem. Soc. 1985, 107, 4999-5001.
- [^{11]} [^{11a]} M. Gruselle, V. Philomin, F. Chaminant, G. Jaouen, K. M. Nicholas, *J. Organomet. Chem.* **1990**, *399*, 317–326. [^{11b]} S. Takano, T. Sugihara, K. Ogasawara, *Synlett* **1992**, 70–72. [^{11c]} J. R. Green, *Chem. Commun.* **1998**, 1751–1752.
- [^{12]} J. Bach, R. Berenger, J. Garcia, T. Loscertales, J. Manezanal, J. Vilarrasa, *Tetrahedron Lett.* **1997**, *38*, 1091–1094.
- ^[13] ^[13a] C. Mukai, K. Nagami, M. Hanaoka, *Tetrahedron Lett.* **1989**, *41*, 5627–5630. ^[13b] A. J. Fletcher, R. Fryatt, D. T. Rutherford, M. R. J. Elsegood, D. R. Steven, *Synlett* **2001**, 1711–1714.
- ^[14] X. Lu, J. Ji, D. Ma, W. Shen, J. Org. Chem. **1991**, 56, 5774–5778.
- [15] [15a] T. Imamoto, N. Takiyama, K. Nakamura, T. Hatajima, Y. Kamiya, J. Am. Chem. Soc. 1989, 111, 4392–4398. ^[15b] J. March, Advanced Organic Chemistry. Reactions, Mechanisms and Structures, 4th ed., John Wiley & Sons, New York, 1992, chapter 16, p. 926, and references therein.
- ^[16] The characterization of **7b** was guided by that of the previously known 1-acetyl-1,2-dibenzoylethane homolog: ^[16a] H. Stetter, F. Jonas, *Tetrahedron Lett.* **1981**, *22*, 4945–4948. ^[16b] P.-K.

Chiu, M. P. Sammes, *Tetrahedron* **1988**, *44*, 3531–3538. ^[16c] S. Sayama, Y. Inamura, *Bull. Chem. Soc. Jpn.* **1991**, *64*, 306–308.

- ^[17] M. Soleilhavoup, C. Saccavini, C. Lepetit, G. Lavigne, L. Maurette, B. Donnadieu, R. Chauvin, *Organometallics* 2002, 21, 871–883.
- ^[18] H. G. Alt, H. E. Engelhardt, R. D. Rogers, S. T. Abu-Orabi, J. Organomet. Chem. **1989**, 378, 33-43.
- ^[19] M. Gruselle, B. Malézieux, J. Vaissermann, H. Amouri, Organometallics 1998, 17, 2337–2343.
- ^[20] ^[20a] A. B. Holmes, C. L. D. Jennings-White, A. H. Schulthess, B. Akinde, D. R. M. Walton, *Chem. Commun.* **1979**, 840–842.
 ^[20b] E. Abele, K. Rubina, J. Popelis, I. Mazeika, E. Lukevics, J. Organomet. Chem. **1999**, 586, 184–190.
- ^[21] ^[21a] L. Maurette, C. Godard, S. Frau, C. Lepetit, M. Soleilhavoup, R. Chauvin, *Chem. Eur. J.* 2001, 1165–1170. ^[21b] C. Tedeschi, C. Saccavini, L. Maurette, M. Soleilhavoup, R. Chauvin, *J. Organomet. Chem.* 2003, 670, 151.
- [22] Alkynylation has been reported of acetoxy propargylic Nicholas' complexes with twofold excess of the alkynyl nucleophile with respect to the trisalkynylalane reactants: S. Padmanabhan, K. M. Nicholas, *Tetrahedron Lett.* **1983**, *24*, 2239–2242.
- ^[23] [2^{3a]} D. E. Frantz, R. Fässler, E. M. Carreira, J. Am. Chem. Soc. 2000, 122, 1806–1807. ^[23b] Examples have been recently reported of asymmetric addition of diethylzinc to dicobalthexacarbonyl complexes of acetylenic aldehydes: M. Fontes, X. Verdaguer, L. Sola, A. Vidal-Ferran, K. S. Reddy, A. Riera, M. A. Perquas, Organic Letters 2002, 4, 2381–2383.
- ^[24] ^[24a] G. B. Jones, J. M. Wright, T. M. Rush, G. W. Plourde II,

T. F. Kelton, J. E. Mathews, R. S. Huber, J. P. Davidson, *J. Org. Chem.* **1997**, *62*, 9379–9381. ^[24b] D. S. Davis, S. C. Shadinger, *Tetrahedron Lett.* **1999**, *40*, 7749–7752.

- ^[25] ^[25a] R. Chauvin, *Tetrahedron Lett.* **1995**, *36*, 397–400. ^[25b] R. Chauvin, *Tetrahedron Lett.* **1995**, *36*, 401–404. ^[25c] C. Godard, C. Lepetit, R. Chauvin, *Chem. Commun.* **2000**, 1833–1834. ^[25d] C. Lepetit, C. Godard, R. Chauvin, *New. J. Chem.* **2001**, *25*, 572–580.
- ^[26] R. G. Jones, H. Gilman, Org. React. 1951, 6, 339-366.
- ^[27] J. Suffert, J. Org. Chem. 1989, 54, 509-510.
- ^[28] J.-J. Zhang, G. B. Schuster, J. Am. Chem. Soc. 1989, 111, 7149-7155.
- ^[29] A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, *J. Appl. Cryst.* **1994**, *27*, 435–436.
- [^{30]} G. M. Sheldrick, SHELXL-97. Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
- ^[31] International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, England, **1974**.
- ^[32] N. Walker, D. Stuart, Acta Crystallogr. Sect A 1983, 39, 158-166.
- ^[33] J. R. Carruthers, D. J. Watkin, Acta Crystallogr. Sect. A 1979, 35, 698-699.
- ^[34] L. Zolnaï, ZORTEP, *Graphical Program for X-ray Structures Analysis*, University of Heidelberg, Germany, **1998**.
- ^[35] Discover 95.0, Molecular Simulation Inc., Cambridge, U. K., **1996**.

Received October 23, 2002