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SUMMARY

Fucose-containingoligosaccharidesplaya central role
in physio-pathological events, and fucosylated oligo-
saccharides have interesting potential applications in
biomedicine. No methods for the large-scale produc-
tion of oligosaccharides are currently available, but
thechemo-enzymatic approach is very promising. Gly-
cosynthases, mutated glycosidases that synthesize
oligosaccharides in high yields, have been demon-
strated to be an interesting alternative. However,
examples of glycosynthases available so far are
restricted to a limited number of glycosidases families
and to only one retaining a-glycosynthase. We show
here that new mutants of two a-L-fucosidases are effi-
cient a-L-fucosynthases. The approach shown utilized
b-L-fucopyranosyl azide as donor substrate leading to
transglycosylation yields up to 91%. This is the first
method exploiting a b-glycosyl azide donor for a-gly-
cosynthases; its applicability to the glycosynthetic
methodology in a wider perspective is presented.

INTRODUCTION

The great structural variety of carbohydrates results from the

diverse stereochemistry of the monosaccharide building blocks

and from the enormous number of intersugar linkages that they

can form. This feature makes sugar molecules suitable for medi-

ating many biological processes (Varki, 1993), but it complicates

greatly their production. In addition, carbohydrate synthesis

in vivo, in contrast to nucleic acids and protein synthesis, is

a very complex process that is not regulated by universally

conserved codes, and has not been automated in vitro yet.

This challenge currently motivates the efforts in developing

methods for large-scale production of oligosaccharides (See-

berger, 2008). At present, no such methods are available

because, in chemical synthesis, most of the difficulties arise
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from the laborious regio- and stereochemical control. An inter-

esting option is enzymatic synthesis promoted by glycosyltrans-

ferases (GT) and glycoside hydrolases (GH) working in transgly-

cosylation mode. The former enzymes are extremely efficient,

but their use is hampered by the high cost of the sugar nucleotide

substrates, the difficulties in obtaining the catalysts in sufficient

amounts, and the extreme specificity of the enzymes (Hancock

et al., 2006). Recent successes in improving the promiscuity of

GTs by directed evolution have opened new perspectives in

the use of these enzymes, but their exploitation is still limited

(Aharoni et al., 2006; Williams et al., 2007). An alternative to

glycosyltransferases, GHs that retain the anomeric configuration

in the product, are widespread enzymes that, using cheap

substrates, promote oligosaccharide synthesis by transglycosyla-

tion reactions. Retaining glycosidases utilize a double displace-

ment mechanism in which a glycosyl intermediate is formed and

subsequently hydrolyzed (see Figure S1 available online): when

acceptorsdifferent from water intercept the glycosyl-enzyme inter-

mediate, transglycosylation reactions occur (McCarter and

Withers, 1994). This approach might allow regio- and stereospec-

ificity control, but yields are usually not higher than 40% because

the products of the reaction are, at the same time, substrates. To

overcome these drawbacks, glycosynthases, a new class of

mutant glycosidases derived from exo- and endo-b-glucosidases

by replacing the active site nucleophile with a nonnucleophilic

residue, were introduced (Mackenzie et al., 1998; Moracci et al.,

1998; Malet and Planas, 1998). The mutation completely inacti-

vates the enzyme, but, in the presence of a substrate with good

leaving group ability, the activity of the mutant can be restored.

In fact, the small cavity created upon mutation can accommodate

a substrate with inverted anomeric configuration when compared

with the original substrate (Figure S2A, inverting b-glycosynthases)

(Mackenzie et al., 1998; Malet and Planas, 1998), or a small anion

(Figure S2B, retaining b-glycosynthases) (Moracci et al., 1998). In

both cases, the mutant enzyme promotes the transglycosylation

to an acceptor with almost quantitative yields. Inverting b-glyco-

synthases cannot hydrolyze the product of the reaction showing

a b-anomeric configuration,whereas in retaining b-glycosynthases

the bad leaving ability of the glycosidic group in the products
1108, October 30, 2009 ª2009 Elsevier Ltd All rights reserved 1097
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prevents their subsequent hydrolysis, resulting in quantitative

yields.

The approach leading to inverting glycosynthases is suitable

for both exo- and endo-glycosidases and has successfully

been applied to a variety of GHs belonging to several families

of the carbohydrate active enzyme classification (Cantarel

et al., 2009; http://www.cazy.org/), namely, GH1, GH2, GH5,

GH7, GH10, GH16, GH17, GH26, GH31, and GH52. Instead,

retaining glycosynthases have been obtained only from hyper-

thermophilic exo-b-glycosidases from family GH1 (for reviews

see Perugino et al., 2004, 2005, and Hancock et al., 2006).

In spite of the convenience of this approach, GHs recalcitrant to

become glycosynthases are not uncommon (Ducros et al., 2003;

Cobucci-Ponzano et al., 2003b; Perugino et al., 2005), which

explains why efforts in developing new methods to improve glyco-

synthases are continuous (Kim et al., 2004; Lin et al., 2004; Ben-

David et al., 2008). Recently, glycosynthases have been prepared

from enzymes following atypical reaction mechanisms (GH85)and

from inverting glycosidases (GH8 and GH95) (Umekawa et al.,

2008; Honda and Kitaoka, 2006; Honda et al., 2008; Wada et al.,

2008). However, these approaches (as stated by the authors),

though innovative, do not provide common strategies to convert

an inverting glycosidase into a glycosynthase (Wada et al., 2008).

The most noticeable examples of enzymes that are not prone

to function as glycosynthases are retaining a-glycosidases with

only a GH31 a-glucosidase available to date (Okuyama et al.,

2002). The scarcity of a-glycosynthases has hampered so far

the access to the synthesis of a large class of oligosaccharides

of biotechnological interest, such as a-L-fucosylated oligosac-

charides. Fucose-containing oligosaccharides play a central

role in a number of physiological and pathological events (Ma

et al., 2006), and therefore fucosylated oligosaccharides have

potential applications in biomedicine (Vanhooren and Van-

damme, 1999). However, the synthesis of a-L-fucosides by clas-

sical chemical methods is challenging because of the remarkable

instability of fucosyl donors commonly used in chemical glycosyl-

ations, explaining the interest in enzymatic approaches. a-L-

Fucosidase-catalyzed reactions led to transfucosylating yields

in the range 6%–54% (Murata et al., 1999; Farkas et al., 2000;

Wada et al., 2008), whereas mutants obtained by directed evolu-

tion of the a-L-fucosidase from Thermotoga maritima (Tma-fuc)

increased the transfucosylation yields from 7% (wild-type) to

60% (Osanjo et al., 2007). Noticeably, this result was obtained

by mutating three amino acids not directly involved in catalysis.

In the past, we have tried to convert by mutation the retaining

a-L-fucosidase from the hyperthermophilic archaeon Sulfolobus

solfataricus (Ssa-fuc) intoanovela-L-fucosynthaseunderavariety

of conditions, but no oligosaccharide product was observed (Co-

bucci-Ponzano et al., 2008). Here we describe a novel strategy for

the production of efficient fucosynthases by using b-L-fucopyra-

nosyl azide as donor substrate. The applicability to the glycosyn-

thetic methodology in a wider perspective is also presented.

RESULTS

Construction of Ssa-fuc Nucleophile Mutants
and Kinetic Characterization
The SsD242A and SsD242S mutants of the a-L-fucosidase from

S. solfataricus were produced as previously described for
1098 Chemistry & Biology 16, 1097–1108, October 30, 2009 ª2009
SsD242G (Cobucci-Ponzano et al., 2003b). As expected, both

mutants were almost completely inactive, but the hydrolytic

activity of SsD242S was chemically rescued with external nucle-

ophiles resulting in increased activity on both 4-nitrophenyl� and

2-chloro-4-nitrophenyl a-L-fucopyranosides (4NP-a-L-Fuc and

2C4NP-a-L-Fuc) (Figure S3) (for a review on the chemical rescue

of the activity of glycoside hydrolase mutants see Ly and

Withers, 1999). The increased activity in sodium formate was

similar for both substrates (Figure S3A), whereas in sodium

azide, SsD242S showed an about 3-fold higher specific activity

on 2C4NP-a-L-Fuc if compared with 4NP-a-L-Fuc (Figure S3B).

In our hands, SsD242A was not reactivated by sodium azide and

was not further characterized.

The steady-state kinetic parameters of the mutants on the

4NP-a-L-Fuc and 2C4NP-a-L-Fuc substrates were measured

in several conditions (Table 1); remarkably, the turnover number

of SsD242S on 2C4NP-a-L-Fuc in sodium azide (2 M) was 1.8-

fold higher than that of the wild-type.

Analysis of the Products of Ssa-fuc Mutants
Incubation of SsD242G and SsD242S in the presence of 4NP-a-

L-Fuc or 2C4NP-a-L-Fuc (2 and 20 mM, respectively) and

sodium formate did not lead to observable transfucosylation

products on thin-layer chromatography (TLC), confirming the

results previously reported (Cobucci-Ponzano et al., 2008).

Instead, newly formed transfucosylation products were identi-

fied in the presence of sodium azide (Figure 1). In the presence

of 2C4NP-a-L-Fuc the mutants produced two compounds,

which were not UV-visible on TLC. Remarkably, after incubation

with the wild-type Ssa-fuc, one of the two compounds was

completely hydrolyzed, demonstrating that it contained a-L-

anomeric bonds (Figure 1B). The combined use of nuclear

magnetic resonance and mass spectrometry allowed us to

unequivocally define the structure of products 1 and 2 (Fig-

ure 1C). Compound 1, b-L-fucopyranosyl azide (b-L-Fuc-N3),

which is produced with both 4NP- and 2C4NP-a-L-Fuc, is

not surprising: SsD242G produced b-L-Fuc-N3 in similar condi-

tions as expected from a mutant in the nucleophile (Cobucci-

Ponzano et al., 2003b). Instead, compound 2, the disaccharide

a-L-fucopyranosyl�(1-3)-b-L-fucopyranosyl azide (a-L-Fuc-

(1-3)-b-L-Fuc-N3), is unexpected. It is produced only from the

2C4NP-a-L-Fuc and more efficiently by SsD242S (Figure 1B);

presumably, the better leaving ability of the 2-chloro-4-nitrophenol

aglycon, if compared with the 4-nitrophenol, and the mutation in

Ser were decisive to improve the transfucosylation reaction. The

presence of the b-L-Fuc-N3 group at the reducing end of this

compound (Figure 1C) indicated that no transfucosylation

occurred on 2C4NP-a-L-Fuc, suggesting that it was an efficient

donor, but a poor acceptor.

Characterization of the Reaction Mechanism
of the Ssa-fuc Mutants
The most surprising result of the sodium azide activity rescue

experiments is that mutants in the nucleophile of Ssa-fuc

promoted the formation of both b-L- and a-L-bonds. Two alter-

native reaction mechanisms could explain how the Ssa-fuc

mutants promoted the synthesis of compound 2 containing an

a-L-bond. In one case, the b-L-Fuc-N3 product might become

a novel donor and acceptor as a result of its accumulation;
Elsevier Ltd All rights reserved
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thus, compound 1 is transferred to another b-L-Fuc-N3 molecule

leading to a-L-Fuc-(1-3)-b-L-Fuc-N3 (Figure 2A, lower diagram).

This mechanism would imply that azide in b-L-Fuc-N3 could

work as leaving group; though not impossible, this is certainly

surprising because glycosyl-azide compounds are rather stable

(Ly and Withers, 1999). Therefore, an alternative explanation

could be that a third amino acid in the active site of the enzyme

might have gained the function of nucleophile as a consequence

of the mutation of the Asp242. This hypothetical residue might

form the covalent intermediate and then transfer the fucose to

the b-L-Fuc-N3 acceptor (Figure 2B, lower diagram). At the

earliest stages of the reaction, following this second hypothesis,

Table 1. Steady-State Kinetic Constants of Wild-Type and Mutant

a-L-Fucosidases

kcat KM kcat/KM

(s�1) (mM) (s�1 mM�1)

Wild-type Ssa-fuca

4NP-a-L-Fuc 287 ± 11 0.028 ± 0.004 10250

2C4NP-a-L-Fuc 157 ± 9 0.013 ± 0.004 11602

SsD242G

4NP-a-L-Fuc 0.24b — —

+ sodium formate pH 4.0

4NP-a-L-Fuc 5.9 ± 0.2 1.0 ± 0.1 6

2C4NP-a-L-Fuc 1.6 ± 0.1 0.2 ± 0.1 7

+ sodium azide 2 M

4NP-a-L-Fuc 9.7 ± 0.3 0.19 ± 0.02 51

2C4NP-a-L-Fuc 55 ± 3 0.14 ± 0.02 384

SsD242S

4NP-a-L-Fuc 0.08b — —

2C4NP-a-L-Fuc 0.25b — —

+ sodium formate

4NP-a-L-Fucc 3.6 ± 0.1 0.9 ± 0.1 4

2C4NP-a-L-Fucd 5.8 ± 0.2 0.045 ± 0.005 129

+ sodium azide 2 M

4NP-a-L-Fuc 47 ± 1 0.19 ± 0.02 247

2C4NP-a-L-Fuc 286 ± 35 0.3 ± 0.1 987

Wild-type Tma-fuce

4NP-a-L-Fuc 80 ± 3 0.033 ± 0.005 2412

2C4NP-a-L-Fuc 88 ± 5 0.007 ± 0.003 12287

TmD224G

4NP-a-L-Fuc 0.05b — —

2C4NP-a-L-Fuc 0.46b — —

+ sodium azide 1 M

4NP-a-L-Fuc 9.2 ± 0.3 0.015 ± 0.002 613

2C4NP-a-L-Fuc 27 ± 1 0.040 ± 0.005 681
a Assays were performed in 50 mM sodium phosphate buffer (pH 6.5)

at 65�C.
b kcat was determined from the initial velocity at saturating concentration

of substrate.
c In 1 M sodium formate.
d In 2 M sodium formate.
e Assays were performed in 50 mM sodium citrate/phosphate buffer

(pH 6.0) at 60�C. The standard deviation is reported.
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sodium azide and the hypothetical nucleophile compete in the

attack to the anomeric center of 2C4NP-a-L-Fuc (in Figure 2B

compare the upper and lower schemes). To verify this latter

hypothesis, we characterized single and double mutants in the

residues Glu58 and Glu292, which cooperate with Asp242 in

catalysis (Cobucci-Ponzano et al., 2005), but we could not find

evidence of their involvement as novel nucleophile. In addition,

assuming that a residue acting as nucleophile in SsD242S might

react with a mechanism-based inhibitor, we prepared the inhib-

itor 2-deoxy-2-fluoro-a-L-fucosyl fluoride (2d-2F-Fuc-F, see

Supplemental Data), aiming to identify this hypothetical residue

by high-performance liquid chromatography (HPLC)/electro-

spray mass spectrometry as previously reported (Tarling et al.,

2003). The mechanism-based inhibitor bound to Asp242 in the

wild-type Ssa-fuc used as control whereas the treatment of

SsD242S did not produce any labeled peptide (see Supple-

mental Data). Though these negative results are not conclusive,

our data strongly indicate that no additional catalytic nucleophile

was produced by mutating Asp242 in Ssa-fuc, making question-

able the validity of the reaction mechanism shown in Figure 2B.

To validate the reaction mechanism described in Figure 2A, we

tested if SsD242S was able to use b-L-Fuc-N3 as donor.

Remarkably, SsD242S incubated for 16 hr at 65�C in 20 mM

b-L-Fuc-N3 catalyzed the formation of the disaccharide 2 with

a transfucosylation efficiency, defined as the amount of fucose

transferred to an acceptor different from water, measured by

HPAEC-PAD, of 40% and exclusive formation of the a-L-(1-3)-

bond (Figure 3A). Similar results were obtained with SsD242G,

but TLC inspection indicated lower efficiency. b-L-Fuc-N3 re-

mained unreacted in the absence of the mutant (Figure 3A) or

in the presence of the wild-type Ssa-fuc incubated at the same

conditions (data not shown), ruling out possible artifacts.

These results confirm the reaction mechanism described in

Figure 2A in which the b-L-Fuc-N3, produced by the mutants

from the 2C4NP-a-L-Fuc and azide, become a donor during

the course of the reaction.

Construction and Characterization of Tma-fuc
Nucleophile Mutants
The use of the b-L-fucosyl azide donor could be a novel general

strategy for the production of efficient fucosynthases, therefore,

we prepared mutants in Gly and Ser of the catalytic nucleophile

Asp224 of Tma-fuc, which shows rather low (25%) amino acid

sequence identity to Ssa-fuc, but has been fully characterized

(Tarling et al., 2003; Sulzenbacher et al., 2004).

As expected, mutations severely affected the fucosidase

activity, which could not be rescued in the TmD224S with both

sodium azide or sodium formate; thus, this mutant was not

further analyzed. Instead, the residual activity of the TmD224G

mutant (0.05 and 0.46 s�1 on 4NP-a-L-Fuc and 2C4NP-a-L-

Fuc, respectively) was rescued only by sodium azide on both

substrates (Figure S4). The specific activity was higher on

2C4NP-a-L-Fuc, as reported above for SsD242S (compare

Figures S3 and S4).

The steady-state kinetic constants of TmD224G in sodium

azide are compared with those of the wild-type in Table 1. The

specificity constants of the mutant were 4- and 18-fold lower

than those of the wild-type on 4NP-a-L-Fuc and 2C4NP-a-L-

Fuc, respectively. However, the affinity for both substrates was
1108, October 30, 2009 ª2009 Elsevier Ltd All rights reserved 1099
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not significantly impaired by the mutation, remaining in the

micromolar range.

TLC analysis of the reaction mixtures of TmD224G after incu-

bation at 60�C for 16 hr in sodium azide 0.05–1.0 M and 20 mM

2C4NP-a-L-Fuc revealed a single transfucosylation product of

the same polarity of b-L-Fuc-N3 while no disaccharide products

were formed (data not shown). However, incubations in the pres-

ence of 10 mM b-L-Fuc-N3 and 4NP-b-D-Xyl at 1:5 and 1:10

donor:acceptor molar ratios revealed one UV-visible transfuco-

sylation product, showing that TmD224G exploits b-L-Fuc-N3

for its a-fucosynthase activity (Figure 3B).

Oligosaccharide Synthesis by a-L-Fucosynthases
The substrate specificity of the two a-fucosynthases was

analyzed by using b-L-Fuc-N3 as donor in the presence of glyco-

side, monosaccharide, or disaccharide acceptors. Remarkably,

SsD242S at donor:acceptor molar ratios between 1:2 and 1:3.4,

catalyzed the synthesis of products from 16 different acceptors,

including aryl-glycosides of hexoses, pentoses, N-acetyl-

glucosamine, disaccharides, and methylumbelliferyl-fuco- and

glucosides (Table S1). In all cases we observed also the forma-

tion of the autocondensation product 2. Interestingly, SsD242S

recognized as acceptors compounds containing either a/b-L/D

anomeric bonds.

Also TmD224G in the presence of 10 mM b-L-Fuc-N3 donor

and several acceptors (2- and 4NP-b-D-Xyl, 2NP-b-D-Fuc, and

4NP-b-D-Glc) used at 1:10 donor:acceptor molar ratios revealed

several transfucosylation products, but we never observed the

autocondensation product (data not shown).

Figure 1. TLC Detection of the Transfuco-

sylation Products of SsD242G/S in Sodium

Azide

(A) 2 M sodium azide and 2 mM 4NP-a-L-Fuc; lane

1: fucose marker; lane 2: SsD242G reaction; lane 3:

SsD242S reaction; lane 4: blank with no enzyme.

(B) 0.1 M sodium azide and 20 mM 2C4NP-a-L-

Fuc: lane 1: SsD242G reaction; lane 2: SsD242S

reaction; lanes 3 and 4: the same samples shown

in lanes 1 and 2, respectively, after incubation in

the presence of wild-type Ssa-fuc; lane 5: blank

with no enzyme.

(C) Based on later product analysis, 1 and 2 turned

out to be b-L-Fuc-azide and a-L-Fuc-(1,3)-b-L-

Fuc-azide, respectively.

These results showed that the mutants

have wide specificity for the acceptor

molecule. It is worth noting that most of

the donor was converted and all the

products accumulated in the reaction

after prolonged incubation, as expected

for efficient fucosynthases.

To determine the regioselectivity and

the ability of SsD242S and TmD224G in

synthesizing longer oligosaccharides,

we analyzed preparative reactions of the

two enzymes. Table 2 summarizes the

results of these synthetic trials: reactions

I and II show the products of SsD242S in 10 mM of b-L-Fuc-N3

donor with 4NP-b-D-Xyl and 4NP-b-D-Gal acceptors (34 mM

and 20 mM, respectively), whereas in reaction III the mutant

was incubated with 5 mM donor and 15 mM 4NP-b-D-GlcNAc

acceptor. In reaction IV, TmD224G mutant was incubated

with 10 mM b-L-Fuc-N3 as donor and 100 mM 4NP-b-D-Xyl

acceptor.

The products of the reaction were isolated by reverse-phase

HPLC and each product was identified by matrix-assisted laser

desorption/ionization time-of-flight (MALDI-TOF) mass spectrom-

etry, methylation analysis, and 1H-NMRspectroscopy. In the reac-

tions containing SsD242S we always found compound 2 and, in

trace amounts, a-L-Fuc-N3 ([M+Na]+ = m/z 212.05, NMR: dH1 =

5.37 ppm, 3JH1,H2 = 4.3 Hz): this unexpected compound, which

is present also in the reaction containing TmD224G, results as

trace impurity from the preparation of the donor.

The relative amounts of the different transfucosylation prod-

ucts for each acceptor were obtained from the signal integration

of the HPLC chromatogram while the amount of fucose trans-

ferred to an acceptor different from water was measured by

HPAEC-PAD (as described in Experimental Procedures),

yielding the global transfucosylation efficiency (Table 2). When

inverted donor:acceptor molar ratios were used, such as 3:1 b-

L-Fuc-N3: 4NP-b-D-Xyl, better total transfucosylation efficiency

(76% versus 50%), but also higher amounts of a-L-Fuc-(1-3)-

b-L-Fuc-N3 were found; therefore, an excess of donor was

considered detrimental for synthetic purposes.

The regioselectivity of SsD242S depends on the acceptor. The

enzyme produced a-(1-3) and a-(1-4) linkages with 4NP-b-D-Xyl,
1100 Chemistry & Biology 16, 1097–1108, October 30, 2009 ª2009 Elsevier Ltd All rights reserved
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whereas with 4NP-b-D-Gal the regioselectivity was switched to

the formation of mainly a-(1-6) bond. Instead, with 4NP-b-D-

GlcNAc the a-(1-3) regioselectivity prevails with the formation

of a single product (10). This acceptor-dependent regioselectiv-

ity of exo-glycosynthases is not novel and has already been

described for the Streptomyces E384A b-glucosidase (Faijes

et al., 2006).

Remarkably, with 4NP-b-D-Xyl and 4NP-b-D-Gal acceptors,

the mutant catalyzed the formation of trisaccharides, namely

compounds 5 and 9. The former might be synthesized once

compounds 3 or 4 compete with 1 in the acceptor subsite +1

(for the GH active site nomenclature see Davies et al., 1997).

Instead, the formation of the trisaccharide 9, which showed

a-(1-3) and a-(1-2), linkages, might occur only when compound

8 acts as acceptor. It is worth noting that compound 6, which

is the most abundant product isolated in reaction II (78%) and

contains an a-(1-6) linkage, did not lead to trisaccharides.

These results suggest that the +1 acceptor binding site of the

enzyme has high affinity for compound 8; by contrast, the auto-

condensation product 2 is a poor acceptor, as we never

observed trisaccharides of fucose. Interestingly, the transfuco-

sylation on disaccharide acceptors always led to branched prod-

ucts (compounds 5 and 9) and we never observed the transfer to

the fucose at the nonreducing end of the acceptor.

The synthetic activity of TmD224G, tested on 4NP-b-D-Xyl

acceptor (reaction IV), led to a-(1-4) and a-(1-3) linkage formation

in about 1:1 molar ratio; however, this mutant is extremely effi-

cient in transfucosylations (91%).

Figure 2. Proposed Reaction Mechanisms of SsD242G/S Mutants in the Presence of 2C4NP-a-L-Fuc and Sodium Azide

The synthesis of a-L-Fuc-(1-3)-b-L-Fuc-N3 is explained assuming either that azide in b-L-Fuc-N3 donor works as leaving group leading to self-condensation (A) or

with the presence of a putative amino acid in the active site acting as novel nucleophile (B).
Chemistry & Biology 16, 1097–1108, October 30, 2009 ª2009 Elsevier Ltd All rights reserved 1101
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Crystal Structure TmD224G in Complex with
an Autocondensation Product
Soaking of TmD224G crystals in solutions containing up to 100

mM b-L-Fuc-N3, followed by diffraction data analysis, did not

reveal any electron density for the donor in the active site of

the mutant. We thus performed cocrystallization experiments

by adding 75 mM b-L-Fuc-N3 to the crystallization buffer, ob-

tained crystals after several weeks and collected diffraction

data to 2.65 Å resolution. Clear electron density could be

observed in this case, but, to our surprise, it extended well

beyond the donor binding site. Modeling of b-L-Fuc-N3 into

this electron density, in a position equivalent to b-L-fucose in

the previously determined crystal structure of the Tma-fuc

product complex (Protein Data Bank code 1odu, Sulzenbacher

et al., 2004), and subsequent refinement led to a very clean elec-

tron density map around the pyranose ring, but left a substantial

amount of residual difference electron density around the azide

group. The only reasonable way to clean up the residual electron

density and make a good fit to the experimental data was to

model a disaccharide into the active site. This observation led

us to conclude that prolonged cocrystallization of TmD224G

with high concentrations of b-L-Fuc-N3 yielded an autoconden-

sation product, in contrast to what had been observed in solu-

tion. Unfortunately, the modest resolution of the diffraction

data did not allow us to identify unambiguously the chemical

nature of the autocondensation product. Models containing

a-L-Fuc-(1-2/3/4)-b-L-Fuc-N3 regioisomers gave similar refine-

ment statistics, but the best fit could be obtained with a-L-

Fuc-(1-2)-b-L-Fuc-N3. However, given the limited resolution,

the great variety of possible conformational states (chair, boat,

skew, etc.) of the pyranose ring at the reducing end could not

be accounted for. In the model, which should be taken with

caution, the position of the fucose moiety at the nonreducing

end and its interactions with surrounding residues are essentially

the same as the ones observed in the structure of native Tma-fuc

in complex with L-fucose (Sulzenbacher et al., 2004). The fucosyl

moiety at the reducing end makes no interactions with the

enzyme, except for a stacking interaction between the azide

group and Trp67 (Figure 4). Presumably, reduced interactions

Figure 3. TLC Detection of Transfucosyla-

tion Activity of SsD242S and TmD224G

with b-L-fuc-azide Donor

(A) Lane 1: blank with no enzyme; lane 2: SsD242S

reaction; lane 3: fucose marker.

(B) Lane 1: fucose marker; lane 2: TmD224G (4 mg,

13 pmol) reaction, 1:5 donor:acceptor molar ratio;

lane 3 blank with no enzyme; lane 4: TmD224G

(1.3 mg, 4 pmol) reaction, 1:10; lane 5 blank; lane

6: as lane 4; lane 7: xylose marker; lanes 8 and 9

are the same as lanes 2 and 1 in (A), respectively.

The UV-visible product is indicated by an arrow-

head.

might facilitate the departure of the a-L-

Fuc-(1-2)-b-L-Fuc-N3 product from the

active site.

It is worth noting that in the crystalliza-

tion trials we never observed the forma-

tion of the complex of TmD224G with b-L-Fuc-N3. Presumably,

the mutation allowed the attack to the anomeric center of the

donor by an acceptor leading to the transfucosylation product.

Remarkably, in the crystal we observed only the transfucosyla-

tion product and not the hydrolytic product (L-fucose), which is

efficiently bound by the wild-type enzyme (Sulzenbacher et al.,

2004). Possibly, this occurs because Gly224 in the mutant could

not form the hydrogen bond to the 1-hydroxyl observed within

the wild-type structure in complex with L-fucose (Sulzenbacher

et al., 2004).

DISCUSSION

Here we show that new mutants in the catalytic nucleophile of

two a-L-fucosidases from the hyperthermophiles S. solfataricus

and T. maritima are efficient a-L-fucosynthases in the presence

of activated substrates and sodium azide. This ion usually

rescues the enzymatic activity of GH mutants in the nucleophile

by acting as external nucleophile and producing glycosyl-azide,

which are stable and can be isolated easily and structurally char-

acterized (Ly and Withers, 1999; Zechel and Withers, 2001; Co-

bucci-Ponzano et al., 2003b; Shallom et al., 2005). In alternative

to azide, formate leads to glycosyl-formate intermediates,

which, being less stable than the glycosyl-azides, have been

exploited for the synthesis of oligosaccharides by retaining

b-glycosynthases (Moracci et al., 1998; Perugino et al., 2004).

Our initial attempts to use this approach on Ssa-fuc mutants

failed, possibly because the b-L-fucosyl formate was not stable

enough to act as intermediate. In contrast, the chemically

rescued activity of SsD242G/S mutants in the presence of

sodium azide and 2C4NP-a-L-Fuc substrate led to the synthesis

of b-L-Fuc-N3 (1) and, more importantly, of the disaccharide

a-L-Fuc-(1-3)-b-L-Fuc-N3 (2), which could also be produced

by SsD242S from b-L-Fuc-N3 donor. Therefore, SsD242G/S

mutants can act as a-fucosynthase by following two different

mechanisms depending on the reaction conditions: in the pres-

ence of sodium azide and 2C4NP-a-L-Fuc substrate, the

mutants are able to perform in one pot both the reactions

depicted in Figure 2A. Instead, when the mutants are incubated
1102 Chemistry & Biology 16, 1097–1108, October 30, 2009 ª2009 Elsevier Ltd All rights reserved
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with suitable acceptors and b-L-Fuc-N3, they catalyzed transfu-

cosylations (Figure 2A lower part). This is the reaction mecha-

nism followed by inverting glycosynthases (Figure S2A); the

novelty here is that the donor is fucosyl azide rather than glyco-

side fluorides in conventional glycosynthases (for a review see

Williams and Withers, 2000).

Glycosyl azides are substrates of transglycosylation reactions

catalyzed by retaining GHs (Fialová et al., 2005); mutants in the

catalytic nucleophile can use b-L-Fuc-N3 because of its stereo-

chemistry and configuration. The higher stability of a-anomers

(axial bonds) versus b-ones (equatorial bonds) is known as the

‘‘anomeric effect’’ (Juaristi and Cuevas, 1992) explaining the

much longer half-lives of a-glycosyl fluorides when compared

with b-anomers (12 days versus 30 hr for a-D- and b-D-Glc F,

respectively [Albert et al., 2000]). In addition, b-L-fucoside deriv-

atives, with 1C4 conformation (compound 1 in Figure 2), being

6-deoxyhexopyranosides and showing axial substituents on

the C4, are more easily activable than hexopyranosides with

C4 equatorial substituents, respectively (Overend, 1972). There-

fore, notwithstanding the observation that glycosyl azides are

more stable than glycosyl fluorides, b-L-Fuc-N3 might be

reactive enough to function as donor in the transfucosylation

reactions catalyzed by the a-fucosynthases, requiring less

acid/base assistance.

We have shown here that also the TmD224G mutant can act

as a-fucosynthase, confirming that the approach reported is

of general application. The regiospecificity and the transfucosy-

lation efficiency differ for the two enzymes and depend on

the acceptor used. It is worth noting that the trisaccharide

fucosyloligosaccharides (compounds 5 and 9) and the disaccha-

ride a-L-Fuc-(1-3)-D-GlcNAc (compound 10), which is rather

common in glycoproteins and in the Lewisx, Lewisy, and Sialyl

Lewisx antigens, were easily produced by SsD242S with no

efforts to search for optimal reaction conditions. These results

suggest that a-L-fucosynthases might be further improved and

tailored to specific syntheses.

In the enzymes from S. solfataricus and T. maritima, only Ser

and Gly residues, respectively replacing the natural Asp nucleo-

phile, led to a a-fucosynthase. Ala residues did not work in both

enzymes, whereas, intriguingly, Ser, which best acted in the

former, did not function in Tma-fuc. In addition to this, the two

enzymes appear also to have different affinities for b-L-Fuc-N3

in the acceptor binding site. TmD224G forms an autocondensa-

tion product only at the high protein and substrate concentra-

tions found in the cocrystallization reaction, suggesting that

b-L-Fuc-N3 is a poor acceptor. Unfortunately, no electron

density could be observed beyond subsite +1, precluding further

analysis. Likewise, presuming disorder due to high mobility, no

electron density could be observed in the region succeeding

the acid/base Glu266, apparently important for transfucosylation

reactions. Indeed, a directed evolution study of Tma-fuc re-

ported that mutations Thr264Ala and Tyr267Phe enhance

considerably the transglycosylation activity of the enzyme

(Osanjo et al., 2007). Structural data show that the side chain

of Thr264 establishes a strong hydrogen bond with the side chain

of Arg254, whereas residues Ala265-His268 do not make

contact with any other residue of the protein, suggesting high

mobility in this region (Sulzenbacher et al., 2004). Abolishing

the anchoring of Thr264 to Arg254 by a Thr264Ala mutation
Chemistry & Biology 16, 1097
presumably increases the mobility even more, possibly reorient-

ing amino acids to make direct contact with the substrate and

increasing the transfucosylation activity.

When we compare the crystal structure of Tma-fuc with a

homology model of Ssa-fuc, we observe striking differences

in the acceptor binding site. Tma-fuc residues Thr264 and

Arg254 are replaced by Ile287 and Val273, respectively: the

side chain of Ile287 makes only weak hydrophobic contact

with a nearby methionine, and consequently the loop region

carrying the Ssa-fuc acid/base Glu292 appears to be even less

anchored to the rest of the protein than in Tma-fuc. In subsite

+1 Tma-fuc Met225 is replaced in Ssa-fuc by Trp234, and this

latter residue might provide a better stacking platform for

pyranoside acceptors. Furthermore, a long insertion, missing in

Ssa-fuc, is found in Tma-fuc after b strand b1, narrowing the

acceptor binding site. Residues found in this insertion are likely

to impose a steric and polar stringency on the nature of the

acceptor sugar, not encountered in more open binding sites.

These observations indicate that minor structural changes in

the donor and acceptor binding sites dictate the glycosynthase

activity. Therefore, exploration of different strategies in order to

identify the best donor/acceptor substrates in a particular cata-

lytic context is necessary.

SIGNIFICANCE

We report here the preparation of two novel retaining a-

fucosynthases, which follow the classical reaction pathway

proposed more than 10 years ago for b-glycosynthases

(Mackenzie et al., 1998), but utilize b-fucosyl azide as donor

substrate. Our findings might open new perspectives in the

use of azide derivatives for the production of novel a-glyco-

synthases. The only a-glucosynthase known so far utilizes

as donor the b-Glc-F (Okuyama et al., 2002), which has

a half-life of 30 hr in several aqueous buffer systems. More-

over, other glycoside fluoride derivatives are even less

stable: b-D-galactopyranoside- and b-D-mannopyranoside

fluorides have half-lives ranging between 6 and 8 hr and 11

and 17 hr, respectively (Albert et al., 2000). Therefore, fluori-

nated substrates in enzymatic a-galactosynthetic and

a-mannosynthetic reactions, often taking long incubations,

might be inappropriate substrates due to their enhanced

spontaneous hydrolysis at the operational conditions. In

these regards, azide derivatives might show the right

balance between stability and reactivity to work as suitable

donors in a-glycosynthetic reactions. Future work in the

development of novel glycosynthases should take into

account the relative stability of donors derivatized with

different chemical groups.

EXPERIMENTAL PROCEDURES

Chemicals

All commercially available substrates were purchased from Sigma-Aldrich.

The b-L-Fuc-N3 was chemically synthesized from L-Fuc in three steps and

67% yield according to a published procedure (Kunz et al., 1991). The Gene-

Tailor Site-directed Mutagenesis System was from Invitrogen; the synthetic

oligonucleotides (Table S2) were from PRIMM (Italy), and the His6 tagged

proteins were purified with the Protino Ni-TED 1000 protein purification system

(Macherey-Nagel, Germany).
–1108, October 30, 2009 ª2009 Elsevier Ltd All rights reserved 1103
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Table 2. Synthetic Products of SsD242S and TmD224G

Reaction Donor Acceptor Products

Relative Ratios of

Transfucosylation

Products (%)

I NDa

53

31

Total transfucosylation efficiency 50%

16

II ND

78

10
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Site-Directed Mutagenesis

The plasmid pGEX-frameFuc expressing Ssa-fuc and the preparation of

SsD242G were described previously (Cobucci-Ponzano et al., 2003a,

2003b). Mutants SsD242A/S were prepared by site-directed mutagenesis

from the pGEX-frameFuc plasmid. Double mutants SsD242G/E58G-E292G

were prepared by polymerase chain reaction by using as template the vector

Table 2. Continued

Reaction Donor Acceptor Products

Relative Ratios of

Transfucosylation

Products (%)

8

Total transfucosylation efficiency 26%

4

III ND

Total transfucosylation efficiency 86%

100

IV 55

Total transfucosylation efficiency 91%

45

a ND, not determined.
Chemistry & Biology 16, 1097–1108, October 30, 2009 ª2009 Elsevier Ltd All rights reserved 1105
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expressing SsD242G and the mutagenic oligonucleotides reported previously

(Cobucci-Ponzano et al., 2005).

The plasmid expressing Tma-fuc was described previously (Sulzenbacher

et al., 2004) and it was used as template for the preparation by site-directed

mutagenesis of TmD224G and TmD224S. The genes containing the desired

mutations were identified by direct sequencing and completely resequenced.

Expression and Purification of Mutant a-L-Fucosidases

The mutant a-L-fucosidases from S. solfataricus were expressed as previously

described and purified by a slight modification of the final heating steps

at 65�C and 70�C (Cobucci-Ponzano et al., 2003b). The mutants of the

T. maritima a-L-fucosidases were expressed as previously reported (Tarling

et al., 2003). The purification procedures were performed with affinity matrixes

dedicated only to the purification of the specific mutant to exclude contamina-

tion by the wild-type enzyme from external sources. The enzymes, > 95% pure

by SDS-PAGE, stored at 4�C in sodium phosphate buffer 20 mM (pH 7.0), NaCl

150 mM (phosphate-buffered saline) were stable for several months at 4�C.

Protein concentration was determined with the method of Bradford (Bradford,

1976), by using bovine serum albumin as standard.

Enzymatic Characterization

The activity of the wild-type and mutant Ssa-fuc at standard conditions was

measured at 65�C in 50 mM sodium phosphate buffer (pH 6.5, buffer A),

with 4NP-a-L-Fuc (1 mM) and 2C4NP-a-L-Fuc (3 mM) by using up to 20 mg

(40 pmol) enzyme. The activity of TmD224G was measured on the same

substrates and concentrations at 60�C in 50 mM sodium citrate/phosphate

buffer (pH 6.0, buffer B).

The chemically rescued activities of SsD242S and TmD242G on the same

substrates, in the presence of sodium formate or sodium azide, were

measured at the indicated conditions.

The molar extinction coefficients used are reported in Table S3. For all these

enzymes, one unit of enzyme activity was defined as the amount of enzyme

Figure 4. Close-up View of the Active Site of TmD224G

a-L-Fuc-(1-2)-b-L-Fuc-N3 is shown in stick representation with carbon,

oxygen, and nitrogen atoms colored in yellow, red, and blue, respectively.

Residues interacting with the disaccharide are shown as sticks under a trans-

parent surface, with carbon, oxygen, and nitrogen atoms colored in gray, red,

and blue, respectively. A maximum-likelihood/sA-weighted Fo-Fc electron

density calculated prior incorporation of the disaccharide into the model and

contoured at 2.5 s is shown in green.
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catalyzing the hydrolysis of 1 mmol substrate in 1 min at the conditions

described.

Steady-state kinetic parameters of Ssa-fuc and SsD242G/A/S mutants on

4NP-a-L-Fuc and 2C4NP-a-L-Fuc were described previously (Cobucci-

Ponzano et al., 2003b, 2008). Steady-state kinetic parameters of wild-type

Tma-fuc and TmD224G were measured in buffer B at 60�C on 4NP-a-L-Fuc

and 2C4NP-a-L-Fuc used at concentrations ranges of 0.005–0.8 mM, and,

where indicated, in the presence of 1 M sodium azide. The amount of the

enzyme used in the assays was 5 mg (16 pmol).

In all the enzymatic assays, spontaneous hydrolysis of the substrate was

subtracted by using appropriate blank mixtures without enzyme. All kinetic

data were calculated as the average of at least two experiments and were

plotted and refined with the program GraFit (Leatherbarrow, 1992).

Glycosynthetic Trials

To purify and characterize the glycosynthetic products, SsD242G (50 mg,

100 pmol) was incubated for 16 hr at 65�C in 0.8 ml buffer A in the presence

of 0.1 M sodium azide, and 20 mM 2C4NP-a-L-Fuc. The transfucosylation

products of SsD242S from b-L-Fuc-N3 donor to different acceptors were

prepared by incubating 94 mg (188 pmol) enzyme for 16 hr at 65�C in 0.8 ml

buffer A, by using different donor:acceptor molar ratios. The transfucosylation

products of TmD224G were prepared by incubating 38 mg (122 pmol) enzyme

for 16 hr at 70�C in 0.2 ml buffer A by using 10 mM b-L-Fuc-N3 donor and

100 mM 4NP-b-D-Xyl (1:10 molar ratio). Blank mixtures without enzyme

were also prepared. The products were separated on a silica gel 60 F254

TLC using ethyl acetate-methanol-water (70:20:10) as eluent and were

detected by exposure to 4% a-naphthol in 10% sulfuric acid in ethanol

followed by charring.

The reaction mixtures were separately frozen dried and the purification of

each sample was obtained by reverse-phase chromatography (Polar-RP

80A, Phenomenex, 4 m, 250 3 10 mm) on an Agilent HPLC instrument 1100

series, using 3:2 water/methanol as eluent. The eluted products were first

analyzed by positive ions reflection MALDI-TOF mass spectrometry. For char-

acterization of the products, see Supplemental Experimental Procedures.

Analysis of transfucosylation efficiency of Ssa-fuc and Tma-fuc mutants,

was performed by use of a high-performance anion-exchange chromatog-

raphy with pulsed amperometric detection (HPAEC-PAD) equipped with a

PA1 column (Dionex, USA). The reaction mixtures and the blank mixtures

described above were diluted (10- to 100-fold) with H2O and 0.5 nmol arabinose

as internal standard, loaded onto the PA1 column and eluted with 16 mM

NaOH. The moles of fucose were determined by integration of the peaks within

the chromatogram, based on fucose and arabinose standard curves. The

amount of fucose transferred by the enzyme to water was calculated by sub-

tracting the amount of free fucose measured in the blank mixtures from that

identified in the reaction mixtures.

To measure the total amount of fucose enzymatically transferred, 1/10 of the

reaction mixtures were incubated for 90 min at 65�C in the presence of 1.2 mg

(2.4 pmol) Ssa-fuc wild-type. Successively, the solution was treated as

described above and run by HPAEC-PAD to measure the total amount of

fucose. The efficiency of the transfucosylation reaction was calculated as: total

amount of fucose transferred � moles of fucose transferred to water / total

amount of fucose transferred 3 100.

Crystallographic Analysis

Crystals of TmD224G in complex with b-L-Fuc-N3 were obtained as reported

for the native enzyme (Sulzenbacher et al., 2004), with the addition of 14 mg/

ml b-L-Fuc-N3 to the crystallization solution. Crystals belong to space group

H32 and contain two molecules of TmD224G in the asymmetric unit. Diffrac-

tion data extending to 2.65 Å were collected from a flash-frozen crystal at the

ESRF beam line ID14-2. Data were indexed and integrated with MOSFLM

(Leslie, 1992) and all further computing was carried out with the CCP4

program suite (CCPN, 1994), unless otherwise stated. Data collection statis-

tics are summarized in Table 3. The structure of TmD224G in complex with

b-L-Fuc-N3 was solved by molecular replacement with the program PHASER

(McCoy et al., 2007), using the crystal structure of native Tma-fuc (Protein

Data Bank code 1hl8) as a search model, and the resulting model was

refined with REFMAC (Murshudov et al., 1997) using the maximum like-

lihood approach and incorporating bulk solvent corrections and anisotropic
Elsevier Ltd All rights reserved
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Fobs versus Fcalc scaling. A random 5% (1536) of reflections were set aside

for cross-validation purposes. Manual adjustments of the model were carried

out with Coot (Emsley and Cowtan, 2004). Refinement and structure quality

statistics are listed in Table 3. Coordinates have been deposited in the

Protein Data Bank (Berman et al., 2000) with accession reference number

2wsp. Figure 4 was generated using the program PYMOL (http://pymol.

sourceforge.net/) (DeLano, 2002). A homology model of Ssa-fuc was gener-

ated with the Phyre Server (http://www.sbg.bio.ic.ac.uk/phyre/) (Kelley and

Sternberg, 2009).

ACCESSION NUMBERS

Coordinates have been deposited in the Research Collaboratory for Structural

Bioinformatics Protein Data Bank with the accession code 1odu.

SUPPLEMENTAL DATA

Supplemental Data include four figures, three tables, and Supplemental

Experimental Procedures, and can be found with the article online at http://

www.cell.com/chemistry-biology/supplemental/S1074-5521(09)00322-6.
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Table 3. Crystallographic Data Collection and Refinement

Statistics

Data

Wavelength 0.933

a = b, c (Å) 180.25, 169.73

Resolution rangea 35 – 2.65 (2.79 – 2.65)

Rmerge
a,b 0.080 (0.455)

No. of observations 207721

No. of unique reflections 30789

Completeness (%)a 99.9 (100.0)

Redundancya 6.7 (6.5)

<I/sI>a 16.5 (3.8)

B from Wilson statistics 65.3

Refinement

Resolution (Å) 35-2.65

No. of protein atomsc 7168

No. of water molecules/ligand atomsc 103 / 46

Rcryst
d / Rfree (%) 20.14 / 24.06

Rmsd 1-2 bond distances (Å) 0.006 (0.020)

Rmsd 1-3 bond angles (�) 0.949 (1.95)

Average main/side chain B (Å2) 52.15 / 53.07

Average B solvent / ligand (Å2) 24.37 / 60.26

Main chain / side chain D B, bonded

atoms (Å2)

0.77 / 1.14

a Values in parentheses are for the highest resolution shell.
b Rmerge = Shkl Si j Ihkli - <Ihkli>j/ Shkl Si <Ihkli>.
c Per asymmetric unit, corresponding to 2 molecules of TmD224G. Target

mean values and standard deviations are given in parentheses.
d Rcryst = SkFoj - jFck/SjFoj.
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Fialová, P., Carmona, A.T., Robina, I., Ettrich, R., Sedmera, P., Prikrylová, V.,
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