FULL PAPER

Stereo- and Regioselectivity in an Intramolecular Nitrone–Alkene Cycloaddition of Hept-6-enoses with a *trans*-Acetonide Blocking Group

Tony K. M. Shing,*^[a] Wai F. Wong,^[a] Taketo Ikeno,^[b] and Tohru Yamada*^[b]

Abstract: The positional effect of the *trans*-acetonide blocking group and the effect of the stereochemistry of the substituents on the regio- and stereose-lectivity in intramolecular nitrone– alkene cycloaddition (INAC) reactions of hept-6-enoses are reported. Hept-6-enoses with a 2,3-*trans*-acetonide group were reacted with *N*-alkyl hydroxyl-amine to give a mixture of *exo* and

endo cycloadducts (cyclohexanols and cycloheptanols, respectively). Complete formation of *endo* cycloadducts (cycloheptanols) was realized for the INAC reaction of hept-6-enoses containing a

Keywords: alkenes · carbohydrates · cycloaddition · cycloheptanes · nitrones

3,4-*trans-O*-isopropylidene ring. Similarly, reaction of a hept-6-enose possessing a 4,5-*trans*-acetonide group surprisingly afforded *exo* cycloadducts (cyclohexanols) exclusively. The regioand stereochemical outcomes of these reactions were rationalized on the basis of transition-state energies obtained by computation.

Introduction

Intramolecular nitrone–alkene cycloaddition (INAC) constitutes a versatile and efficient synthetic protocol for the construction of polyhydroxylated carbocycles from carbohydrates.^[1] The *exo* or the *endo* mode of INAC cyclization affords a fused or a bridged isoxazolidine, respectively (Scheme 1).^[2]

Scheme 1. The a) exo and b) endo modes of INAC cyclization.

[a] Prof. Dr. T. K. M. Shing, Dr. W. F. Wong Department of Chemistry and Center of Novel Functional Molecules The Chinese University of Hong Kong Shatin, NT, Hong Kong (China) Fax: (+852)2603-5057 E-mail: tonyshing@cuhk.edu.hk
[b] Prof. Dr. T. Ikeno, Prof. Dr. T. Yamada Department of Chemistry Faculty of Science and Technology Keio University Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan) Fax: (+81)455-661-716 E-mail: vamada@chem.keio.ac.jp There are only two examples^[3] of the synthesis of a bridged bicyclo[4.2.1] system, that is, a cycloheptane skeleton, from branched sugars, however, there are many examples^[1] of unbranched hept-6-enose derivatives being used to form the fused bicyclo[4.3.0] system, that is, a cyclohexane skeleton. However, the regio- and diastereoselectivity of these INAC reactions have not been studied.

Both the fused and bridged isoxazolidines are key intermediates in the syntheses of natural products or analogues with biological importance.^[1] Upon hydrogenolysis of the N–O bond, bridged bicyclo[4.2.1]isoxazolidine **1** provides the skeleton of aminocycloheptanol **2**, which is a new class of glycosidase inhibitor.^[4] Further transformation of **2** could give alkaloid tropane **3**^[5] and calystegine **4**^[6] that exhibits specific glycosidase inhibition (Scheme 2).^[7] Recently, we have successfully developed a method for the facile conversion of the bridged bicyclo[4.2.1] systems into two calystegines **5** and **6**, one tropane **7**, and one hydroxylated aminocycloheptane **8**.^[8]

Our previous studies^[9] have shown that *exo*-INAC cyclization is the preferred pathway for hept-6-enoses containing a *cis*-acetonide (*erythro*-diol-acetonide) to give fused isoxazolidines exclusively, whereas hept-6-enoses with a 2,3-*Otrans*-diacetal give a mixture of fused (cyclohexane) and bridged (cycloheptane) isoxazolidines. High yielding and exclusive *endo*-INAC reactions of hept-6-enoses have recently been realized with a 3,4-*O*-*trans*-acetonide to give bridged bicyclo[4.2.1]isoxazolidines for the first time.^[8] In the present article, the positional effect of a *trans*-acetonide (*threo*-

Scheme 2. Transformation of isoxazolidine 1.

diol-acetonide) blocking group on the stereo- and regioselectivity of INAC reactions of hept-6-enoses derived from carbohydrates is reported. Hept-6enoses with a trans-acetonide group placed in different positions (2,3-, 3,4-, or 4,5-position) were synthesized from sugars and then subjected to INAC reactions to give cycloadducts. Theoretical analysis was carried out and the transition state (TS) energies of all the possible cycloadducts were computed. The present findings on the stereochemical outcome of the INAC reactions should assist synthetic chemists in their routes towards the preparation of calystegines, tropanes, and hydroxylated aminocycloheptanes.

following the latter sequence gave aldehydes **20** and **21**, respectively, in good yields.

Individual aldehydes 12, 13, 16, 17, 20, and 21 underwent an INAC reaction with MeNHOH smoothly to give one *exo* and one *endo* cycloadduct. The results are summarized in Table 1. The INAC reactions of heptenoses 12, 16, or 20 proceeded with excellent yields and cycloheptanes (*endo* product) 23, 25, or 27, respectively, were obtained as the major cycloadducts (entries 1–3). As the size

Scheme 3. Preparation of hept-6-enoses **12**, **13**, **16**, **17**, **20**, and **2** (Bn=benzyl; TBS=*tert*-butylsilyl).

Results and Discussion

Hept-6-enoses with a 2,3-*trans*-acetonide group: Diol 9, synthesized from D-mannitol according to the literature,^[10] underwent oxidative cleavage of glycol^[11] and then allylation to afford alkenes 10 and 11 in 44 and 27% overall yields, respectively (Scheme 3). Both alkenes 10 and 11 were transformed into aldehydes 12 and 13, respectively, upon regioselective terminal hydrolysis with aqueous acetic acid (AcOH) and subsequent glycol oxidative cleavage. Aldehydes 16 and 17 were obtained from alkenes 10 and 11, respectively, through a synthetic sequence of benzylation, acid hydrolysis, and glycol-cleavage oxidation. With the same starting alkenes 10 and 11, replacing benzylation with silylation and of the OR4 group increases from OH to OTBS, the *endo* selectivity increases from 86:14 (entry 1) to 92:8 (entry 3). The *endo* selectivity appears to be controlled by the OR group at C3 and the new C–N bond is always *anti* to OR3 in all entries. In cases in which the OR4 stereochemistry is synergetic, the *endo* cycloadduct was the major product (entries 1–3), otherwise (entries 4–6) the *endo* selectivity is poor and further diminishes as the size of the OR4 group increases. The structures of cycloheptanes **25** and **29**, and cyclohexane **28** were confirmed by X-ray crystallography analyses.^[12] Desilylation of **27** gave alcohol **23**, which was benzylated to give cycloheptane **25** (Scheme 4). The constitutions of cycloheptanes **23** and **27** were therefore confirmed. Similar synthetic transformation on cycloheptanes **33** and **29** verified their structures.

2694

Table 1. INAC reactions of hept-6-enoses with 2,3-trans-acetonide.

[a] Not characterized. [b] Overall isolated yield from the corresponding diol.

The stereochemistry of the cyclohexanes was established with the evidence from 1D ¹H NMR spectroscopy coupling data, and 2D COSY and NOESY analysis. The assignment of the stereochemistry of cyclohexane **26** is illustrated in Scheme 5. The quasi-diaxial ar-

rangement of H2 and H3 was supported by the large coupling constant $(J_{\text{H2,H3}}=10.2 \text{ Hz})$. The small coupling constants of H3 with H4 $(J_{H3,H4} = 2.4 \text{ Hz})$ and H4 with H5 $(J_{H4,H5}=3.6 \text{ Hz})$ suggested a quasi-equatorial positioning of H4. The quasiaxial-axial coupling of H1 with H2 $(J_{H1,H2}=7.8 \text{ Hz})$ and quasiaxial-equatorial coupling of H5 with H6 $(J_{\rm H5,H6} = 6.6 \text{ Hz})$ demonstrated that the isoxazolidine ring was bending to the β face as shown in Scheme 5. The large coupling constant $(J_{\rm H1,H6} =$ 7.8 Hz) between H1 and H6 verified an eclipsed conforma-

FULL PAPER

Scheme 4. Structural confirmation of cycloheptanes 23, 27, 31, and 33.

Scheme 5. Conformation of cyclohexane 26.

tional arrangement that hinted at a distorted-chair conformation for the cycloadduct **26**. The heterocyclic ring was in a *cis* arrangement and *anti* to the C–O bond at C2.

Hept-6-enoses with a 3,4-*trans*-acetonide group: Diacetonide 34, synthesized from D-ribose,^[8] was acetylated to give acetate 35 (Scheme 6). Regioselective acid hydrolysis of acetate 35 gave a diol that was subjected to oxidative glycol cleavage to furnish hept-6-enose 36 as an INAC precursor with a 3,4-*trans*-isopropylidene blocking group.

The C2 hydroxyl group was protected in advance to obtain the desired hept-6-enose **36** instead of a hex-5-enose by further glycol-cleavage oxidation. The C2 substituent effect on the INAC reaction was then studied by converting diacetonide **34** into hept-6-enose **38** with a *tert*-butylsilyl (TBS) group by a reaction sequence involving silylation,

Scheme 6. Preparation of hept-6-enoses **36**, **38**, and **41** ($Ac_2O = acetic anhydride$).

Chem. Eur. J. 2009, 15, 2693-2707

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

acid hydrolysis, and glycol oxidative cleavage. Performing the same manipulation as with hept-6-enose **38**, hept-6enose **41** was synthesized from the known diacetonide **39**.^[8] Hept-6-enoses **42**, **43**, **44** (Bz=benzoyl), and **45** shown in Table 2 were synthesized from sugars by following the method detailed in our previous communication.^[8]

Complete formation of the cycloheptanes was realized by means of the *endo* mode of the INAC reaction in excellent yields. The stereochemistry of the only/major heterocycle seems to be controlled by the OR group at C3. The new C– N bond is always *anti* to OR3 in all entries. In cases in which the OR2 stereochemistry is synergetic only one cycloadduct is formed (entries 1–3), otherwise the diastereoselectivity is analogously reduced (entries 4 and 5). Different C2 substituents in aldehydes **36**, **42**, and **38** result in the same regio- and stereochemical outcome. The amount of the major diastereomer **51** (entry 5) decreases as the size of the C2 substituent increases from a -OH group in aldehyde **43** (entry 4) to a -OTBS group in aldehyde **41**, which is in line with the stereochemistry mismatch at C2. The major cycloadduct **53** further decreases in entry 6 as there is an additional mismatched stereochemistry at C5, whereas only cycloadduct **55** was obtained with a synergetic C5 stereochemistry (entry 7).

The structures of cycloheptanes **48** and **49** were confirmed by X-ray crystallography analyses.^[13] Single crystals of a debenzoylated derivative of **55** confirmed its constitution by X-ray crystallography analyses.^[14] The stereochemistry of cycloheptanes **46**, **47**, and **51** was assigned by protective-group transformation of the C2 substituent as described before. For cycloheptane **53**,^[15] strong NOE correlations of H4 with H7 and H1 with H2 indicate that the bridgehead is pointing to the β face (Scheme 7). The NOE correlations of H4 with H5 and H5 with H6 demonstrate that the benzoyl group is at the α face. The isoxazolidine ring of cycloheptane **53** is *syn* to the C2 substituent and that of another cycloadduct **54** is *anti* to the C2 substituent by exclusion.

> Hept-6-enoses with a 4,5-transacetonide group: Enoate 56 was synthesized from D-xylose by means of a Wittig reaction and acetylation according to the lit-(Scheme 8).^[16] erature The double bond in enoate 56 was saturated by palladium-catalyzed hydrogenation to give an ester that underwent acid hydrolysis to afford diol 57. The terminal alkene functionality in alkene 58 was obtained in a high yield from diol 57 on treatment with triphenylphosphine, iodine, and imidazole.[17] Reduction of alkene 58 with diisobutylaluminum hydride (DIBAL-H) afforded alcohol 59 in a quantitative yield. 2-Iodoxybenzoic acid (IBX) oxidation^[18] of alcohol 59 gave hept-6-enose 60, which was subjected to the INAC reaction. Unexpected results of three cyclohexanes 61, 62, and 63 were generated in a moderate overall yield (67%). The structure of cyclohexane **61** was confirmed by X-ray crystallography^[19] analyses and those of cyclohexanes 62 and 63 were established with the evidence from 1D ¹H NMR spectroscopy coupling data and 2D COSY and NOESY analysis. Strong NOE correlations of H1 with H6 and H4 with H6 of cyclohexane 62 illustrate a cis-fused

[a] Not characterized. [b] Overall isolated yield from the corresponding diol or alcohol.

Entry	Aldehyde ^[a]	Cycloadduct(s)	Yield ^[b] [%
1			89
2		MeN O BnO''	97
3			99
4		Men Q HO ¹ , 23 4, + HO ¹ , 23 4, 0 Men O HO ¹ , 23 4, + HO ¹ , 23 4, 0 Men O 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93 49/50 91:9
5		MeN 0 TBSO'' + TBSO'' + TBSO'' + 52	100 51/52 88:12
6	OHC OHC OHC OHC OHC OHC OHC OHC OHC OHC	$ \begin{array}{c} Bn \\ N \\ Bn \\ 0 \\ 53 \\ 54 \\ $	85 53/54 66:34
7			93

FULL PAPER

Scheme 7. Conformation of cycloheptane 53 (Bn = benzyl, Bz = benzoyl).

heterocyclic ring bending to the β face as shown in Scheme 9. From the ¹H NMR spectrum of 62, the coupling constant between H1 and H6 $(J_{H1 H6} =$ 5.4 Hz) fell into the range of axial-equatorial coupling. Together with the axial-axial coupling of H4 with H5 ($J_{\rm H4,H5} =$ 9.3 Hz) and H5 with H6 $(J_{\rm H5,H6}=9.3 \text{ Hz})$, it is suggested that a chair conformation is adopted by cyclohexane 62. In the ¹H NMR spectrum of 63, the large coupling constant between H4 and H5 $(J_{H4 H5} =$ 9.6 Hz) demonstrated a quasidiaxial arrangement and the smaller one of H5 with H6 $(J_{\rm H5,H6}=6.0 \text{ Hz})$ fell into the range of quasi-axial-equatorial coupling. The coupling constants of H1 with H6 and H1 with H2 were both 7.2 Hz which suggested a distortedchair conformation with the isoxazolidine ring bending to the α face.

analysis: Theoretical The ground-state structures were calculated with molecular mechanics by using the CON-FLEX program for conformational search.[20] Many conformers were obtained and the relatively stable conformers (within 10 kcal mol^{-1} compared with the most stable one) were selected for further analysis. The ground states and all the transition states based on the ground-state structures were calculated by using B3LYP/6-31G* with Gaussian 98.^[21,22] The obtained TS energies were compared with each other. The

obtained structures were similar to those in previous reports^[23,24] and the imaginary frequencies were checked to ensure that the vectors were directed toward the reaction pathway. Intrinsic reaction coordinate (IRC) calculations were performed for the most stable TSs. Only the concerted pathway was calculated as this was reported to be more favorable than the biradical pathway.^[23]

The results of nitrone **64** derived from hept-6-enose **12** with a 2,3-*trans*-diacetonide are shown in Table 3. The calculated results suggested that cycloheptanol **23** (experimental

Scheme 8. Preparation of hept-6-enose 60.

Scheme 9. Conformation of 62 and 63.

Table 3. Theoretical analysis of INAC of nitrone 64.^[a]

		0- МеN, 0 0 0 65		
ground state ΔE [kcalmol ⁻¹] bond length in TS [Å] ^[b]	3.07	4.62	0	2.90
C–C	2.25	2.22	2.17	2.08
C–O	2.07	2.07	2.21	2.33
experimental ratio [%]	14	0	86	0
TS ΔE [kcal mol ⁻¹]	2.05	4.94	0	1.66
TS ΔG (100 °C) [kcal mol ⁻¹]	1.27	4.84	0	2.14

[a] $B3LYP/6-31G^*$ calculations were performed. Relative energies are shown. [b] The new bonds formed in the INAC reaction.

Chem. Eur. J. 2009, 15, 2693-2707

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

A EUROPEAN JOURNAL

ratio 86%) is the major isomer because it had the lowest Gibbs TS energy. The energy difference between the TSs of **23** and **22** was relatively smaller $(1.27 \text{ kcal mol}^{-1})$ than that between **23** and **65** (4.84 kcal mol⁻¹), and **23** and **66** (2.14 kcal mol⁻¹). Therefore, cyclohexanol **22** (experimental ratio 14%) was obtained in low yields. The theoretical analysis is consistent with the experimental results.

The results of nitrone **67** derived from hept-6-enose **13** are shown in Table 4. The TS leading to cycloheptane **29** is the lowest, which implies that **29** should be formed as the major cycloadduct and is in accord with the experimental results. The even smaller energy difference ($0.69 \text{ kcal mol}^{-1}$) between the TSs of **29** and **28** suggested that cyclohexanol **28** (experimental ratio 34%) was obtained in an appreciable yield.

The results of nitrones **71** and **76**, derived from hept-6-enoses **36** and **43**, respectively, with a 3,4-*trans*-diacetonide are shown in Tables 5 and 6, respectively. The energy of the TS leading to cycloheptanol **46** is significantly lower than those of the rest of the TSs. Consequently, the *endo* cycloadduct **46** was the exclusive product. For nitrone **76**, the energy of the TS leading to *endo* cycloadducts **49** and **50** is also appreciably lower than those of the TSs.

The benzyl group of the nitrone derived from hept-6enose **60** was replaced with a methyl moiety in the calculation for simplicity.^[9] The calculation results for *N*-methyl nitrone **80** are illustrated in Table 7. Since the energies of the TSs leading to cyclohexaTable 4. Theoretical analysis of INAC of nitrone 67.^[a]

$ \overset{\Theta}{\underset{M \in \mathbb{N}}{\mathbb{N}}} \xrightarrow{(O)} \overset{O}{\underset{M \in \mathbb{N}}{\mathbb{N}}} \xrightarrow{(O)} $	Men Q 0,,0,,0,	MeN O O O O O O H 68		0 МеN, 0 0 0 69	0 МеN 0 0 0 0 70
ground state ΔE [kcal mol ⁻¹]	0	1.86	2.38	2.78	4.43
bond length in TS [Å] ^[b]					
С-С	2.17	2.12	2.26	2.20	2.15
C–O	2.19	2.27	2.05	2.07	2.14
experimental ratio [%]	67	0	33	0	0
$TS \Delta E [kcal mol^{-1}]$	0	3.27	1.80	4.79	4.66
TS ΔG (80 °C) [kcal mol ⁻¹]	0	3.03	0.69	4.92	3.92

 $[a]\,B3LYP/6-31G^*$ calculations were performed. Relative energies are shown. $[b]\,The$ new bonds formed in the INAC reaction.

Table 5. Theoretical analysis of INAC of nitrone 71.^[a]

			MeN HO ^{VIII} 73	MeN, HO ^{VI} 0 0 74	MeN, HO ^{VIII} 75
ground state ΔE [kcalmol ⁻¹] bond length in TS [Å] ^[b]	0	3.15	5.84	6.73	9.36
С-С	2.15	2.06	2.23	2.23	2.16
C–O	2.27	2.33	2.05	2.12	2.14
experimental ratio [%]	100	0	0	0	0
TS ΔE [kcal mol ⁻¹]	0	5.46	4.54	5.01	6.33
TS ΔG (80 °C) [kcal mol ⁻¹]	0	5.81	4.18	4.45	5.83

[a] $B3LYP/6-31G^*$ calculations were performed. Relative energies are shown. [b] The new bonds formed in the INAC reaction.

Table 6. Theoretical analysis of INAC of nitrone 76.^[a]

⊕ 0 MeN HO'' 0 − 76	MeN 0 HO'' 0 49	MeN 0 HO'' 50	MeN HO ^V , O T7	0- МеN, НО ^{VV} 0 78	MeN HO ^{1,1} , 0 79
ground state ΔE [kcalmol ⁻¹] bond length in TS [Å] ^[b]	0	1.02	5.78	4.79	7.47
C-C	2.17	2.11	2.29	2.22	2.16
C–O	2.21	2.28	2.03	2.01	2.12
experimental ratio [%]	91	9	0	0	0
TS ΔE [kcal mol ⁻¹]	0	1.52	4.01	4.12	6.06
TS ΔG (80 °C) [kcal mol ⁻¹]	0	1.55	3.36	4.30	5.60

[a] $B3LYP/6-31G^*$ calculations were performed. Relative energies are shown. [b] The new bonds formed in the INAC reaction.

nols **61–63** are relatively lower and the differences are not larger than $0.8 \text{ kcal mol}^{-1}$, we would expect the formation of all of them.

The conformation of the most stable TSs leading to the cycloadducts are showed in Figure 1. Only the skeleton atoms are shown for simplicity.

With the 2,3-*trans*-diequatorial acetonide, the TS leading to cyclohexanes 22 (TS-22a) and 28 (TS-28a) adopts a chair conformation that results in less efficient bonding orbital overlap as shown in TS-22b and TS-28b, respectively. Focusing on the *trans*-fused C2 and C3 carbon atoms of TS-22a and TS-28a revealed torsional strains, which is common in a

2698

Table 7. Theoretical analysis of INAC of nitrone 80.^[a]

	Men	MeN O	MeN 0	MeN	Men
80	81	82	83	84	85
ground state ΔE [kcal mol ⁻¹]	0	0.88	3.07	0.22	1.66
bond length in TS [Å] ^[b]					
C–C	2.09	2.14	2.19	2.24	2.24
C–O	2.30	2.23	2.10	2.03	2.07
experimental ratio [%] ^[c]	0	0	20	35	12
TS ΔE [kcal mol ⁻¹]	6.91	3.02	0.95	0	1.38
TS ΔG (80 °C) [kcal mol ⁻¹]	6.84	3.40	0.32	0	0.80

[a] B3LYP/6-31G* calculations were performed. Relative energies are shown. [b] The new bonds formed in the INAC reaction. [c] Yield for the *N*-benzyl group.

trans-hydrindane system. On the other hand, the twist-chair conformation of TS-23a and TS-29a allows the orientation of bonding orbitals to be aligned on the same plane in space and lowers the TS energy. The torsional strain of substituents on the trans-fused C2 and C3 carbon atoms in TS-23a and TS-29a is relieved probably due to the twist-chair conformation of the cycloheptane and the torsional energy involved becomes smaller when compared to that in TS-22a and TS-28a. Cycloheptanes 23 and 29 were therefore formed as the major cycloadduct. Moreover, TS-22a is destabilized by a pseudo-1,3-diaxial interaction between the C4 hydroxyl group and the developing isoxazolidine ring; cycloheptane 23 was therefore harvested in a high relative composition of 86%. The (R)-C4-OH group in TS-22a is situated at the axial position. When the size of the (R)-C4-OR group increases from OH to OTBS, the endo selectivity increases from 86:14 to 92:8, respectively, as cyclohexanes 22, 24, and 26 (exo product) are destabilized by the 1,3-diaxial interaction. For the (S)-C4-OR group in TS-29a at the equatorial position, the endo cycloadducts 29, 31, and 33 might be destabilized by the steric repulsion between the isoxazolidine ring and the OR group at the same side. Consequently, the endo selectivity decreased as the size of the (S)-C4-OR group increased.

For nitrone **76**, both the twist-chair and chair conformation of TS-**49b** and TS-**50b**, respectively, result in efficient bonding orbital overlap. Among other *exo* cycloadducts, cyclohexane **77** has the lowest TS energy. To relieve the torsional strain imposed by the 3,4-*trans*-isopropylidene ring, TS-**77a**, which leads to cyclohexane **77**, adopts a conformation in which the bonding orbitals are oriented in different planes in space as shown in TS-**77b**. The less efficient orbital overlap increases the TS energy, which may explain the absence of cyclohexane **77** experimentally. The twist-chair and chair conformation of TSs leading to cycloheptane **49** and **50** are more easily observed from another angle of vision as shown in TS-**49a** and TS-**50a**, respectively. The twist-chair conformation of a seven-membered carbocycle is more stable than the chair conformation with an energy difference tained exclusively.

Apart from the *trans*-isopropylidene blocking group, there are no other functional groups on the carbon chain of the TSs leading to cyclohexanes **83**, **84**, and **85**. The *trans*-acetonide in the C4 and C5 position allows the unsubstituted carbon chain to effect a conformation in which the bonding orbitals of the nitrone and the alkene were aligned on the same plane, to have efficient bonding orbital overlap. The torsional strain on TS-**82** a imposed by the 4,5-*trans*-isopropylidene ring is relieved by adopting a boatlike conformation, which has a relatively higher energy than the chair conformation. Moreover, the bonding orbitals are not oriented closely on the same plane as shown in TS-**82** b and the orbital overlap is inefficient.

Concerning stereoselectivity, the cyclohexane cycloadducts were usually *cis*-fused as in the case of nitrones **64**, **67**, and **80** because of more efficient overlap of bonding orbitals.

Conclusion

A series of hept-6-enoses was synthesized from sugars to investigate the positional effect of the *trans*-acetonide blocking group and the stereochemistry of the substituents on the regio- and stereoselectivity in INAC reactions. Hept-6-enoses with a 2,3-*trans*-acetonide gave a mixture of *exo* and *endo* cycloadducts. Complete formation of *endo* cycloadducts (cycloheptanes) was realized with a 3,4-*trans*-isopropy-lidene ring. However, hept-6-enoses possessing a 4,5-*trans*-acetonide, surprisingly, afforded *exo* cycloadducts (cyclohexanes) exclusively. The regio- and stereochemical outcomes of these reactions were rationalized on the basis of transition-state energies obtained by computation.

By studying the transition state leading to the cycloadducts obtained by computation, the regioselectivity was found to be controlled by the blocking groups that affect the conformation of the transition states. The torsional strain imposed by the *trans*-acetonide significantly affects the con-

www.chemeurj.org

FULL PAPER

of 2.16 kcal mol^{-1,[25]} Such difference in the conformation of the TS may account for the formation of cycloheptane **49** (relative composition 91%) as the major diastereomer.

With nitrone **71**, the C2 substituent of TS-**46a** and TS-**72a** is situated at the axial position. The electronic and steric repulsion between the oxygen atom of the C2 hydroxyl group and that of the nitrone functionality in TS-**72a** is highly unfavorable and increases the TS energy. Cycloheptane **46**, with the heterocyclic ring *anti* to the C2 substituent, was therefore obCHEMISTRY A EUROPEAN JOURNAL

Figure 1. Transition states of the cycloadducts.

formation of the TSs and therefore the extent of the overlap of bonding orbitals.

A cycloheptane TS is more flexible and can exist in more conformations than a cyclohexane TS. It is proposed that

2700 -

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

the TSs leading to the cycloheptanes can better accommodate the 2,3- or 3,4-*trans*-isopropylidene group and the torsional strain imposed by that blocking group is relieved. The bonding orbitals of the TSs leading to the cycloheptanes are oriented on the same plane in space, which results in more efficient orbital overlap and lower TS energy. With a 3,4*trans*-diacetonide, *endo* cycloadducts (cycloheptane) were synthesized exclusively and in excellent yield.

The stereochemistry of the isoxazolidine ring was correlated to the C3 substituent. The cyclohexanes obtained are usually *cis*-fused. In the case of the cycloheptanes, the major isoxazolidine ring is always *anti* to the C3 substituent.

With this novel blocking-group strategy, polyhydroxylated cyclohexanes and cycloheptanes with a nitrogen functionality can be constructed regio- and stereoselectively from sugars by means of the INAC approach.

Experimental Section

NMR spectra were measured at 300.13 (¹H) or 75.47 MHz (¹³C) in CDCl₃, unless stated otherwise. All chemical shifts were recorded in ppm relative to tetramethylsilane (δ =0.0 ppm).

General procedure for the glycol-cleavage reaction: NaIO₄ (3 equiv) was dissolved in a minimum amount of hot water (≈ 80 °C). Silica gel (230–400 mesh, 10×weight of diol) was added to this solution with vigorous swirling and shaking. The mixture was suspended in CH₂Cl₂ and then a solution of diol (1 equiv) in CH₂Cl₂ was added. After vigorous stirring at room temperature for 1 h, the mixture was filtered. The filtrate was concentrated under reduced pressure to give the aldehyde product.

General procedure for selective deprotection with aqueous acetic acid: A solution of diol (1.0 mmol) in 80% aqueous AcOH (8 mL) was stirred at room temperature. The solvent was removed under reduced pressure and the residue was purified by using flash chromatography.

1,2,3-Trideoxy-5,6:7,8-di-*O*-isopropylidene-D-manno-oct-1-enitol (10) and **1,2,3-trideoxy-5,6:7,8-di**-*O*-isopropylidene-D-gluco-oct-1-enitol (11): Diol **9** (1.48 g, 5.63 mmol) was converted into an aldehyde by following the glycol-cleavage procedure. A 1 m solution of allylmagnesium bromide in Et₂O (16.9 mL, 16.9 mmol) was added dropwise to a stirred solution of the aldehyde in Et₂O (50 mL) at -78 °C under N₂ over 30 min. After stirring at -78 °C for a further 1 h and then at room temperature for 12 h, the mixture was quenched with saturated NH₄Cl solution and the aqueous phase was extracted with Et₂O (2×50 mL). The combined organic extracts were dried over anhydrous MgSO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by using flash chromatography (hexane/CH₂Cl₂/EtOAc 10:1:2) to afford firstly alkene **10** (668 mg, 44% overall yield from **9**) and secondly alkene **11** (408 mg, 27% overall yield from **9**) as colorless oils.

Data for **10**: $R_{\rm f}$ =0.35 (hexane/CHCl₃/EtOAc 5:1:1); $[a]_{\rm D}^{20}$ =+6.20 (*c*= 1.75 in CHCl₃); ¹H NMR: δ =1.36–1.38 (2s, 9H), 1.44 (s, 3H), 2.25 (dt, *J*=15.3, 7.5 Hz, 1H), 2.53 (dd, *J*=14.4, 5.4 Hz, 1H), 3.44 (s, 1H), 3.68–3.75 (m, 3H), 4.00 (dd, *J*=9.0, 5.1 Hz, 1H), 4.04–4.08 (m, 1H), 4.19 (dd, *J*=8.1, 5.7 Hz, 1H), 5.10–5.21 (m, 2H), 5.94 ppm (dddd, *J*=16.8, 9.9, 7.5, 6.3 Hz, 1H); ¹H NMR (CDCl₃-D₂O): δ =1.36–1.38 (2s, 9H), 1.44 (s, 3H), 2.25 (dt, *J*=15.3, 7.5 Hz, 1H), 2.53 (ddd, *J*=15.6, 6.3, 3.0, 1.5 Hz, 1H), 3.66–3.74 (m, 3H), 4.00 (dd, *J*=7.8, 5.1 Hz, 1H), 4.05–4.10 (m, 1H), 4.19 (dd, *J*=7.8, 5.7 Hz, 1H), 5.10–5.20 (m, 2H), 5.94 ppm (dddd, *J*=17.1, 10.2, 7.5, 6.6 Hz, 1H); ¹³C NMR: δ =25.5, 26.8, 27.2, 27.3, 38.5, 68.3, 72.1, 76.8, 81.4, 83.2, 109.7, 110.6, 117.9, 135.1 ppm; IR (thin film): \tilde{v} = 3473, 2987, 2936, 1372, 1215, 1070, 844, 512 cm⁻¹; MS (CI): *m/z* (%): 273 (26) [*M*+H]⁺, 85 (56), 71 (89), 69 (100), 67 (70); HRMS (CI): *m/z* calcd for C₁₄H₂₄O₅ [*M*+H]⁺: 273.1697; found: 273.1695.

Data for 11: R_f =0.26 (hexane/CHCl₃/EtOAc 5:1:1); $[a]_D^{20}$ =-2.77 (c= 1.44 in CHCl₃); ¹H NMR: δ =1.34 (s, 3H), 1.38 (s, 3H), 1.41-1.42 (2s,

6H), 2.15 (d, J=9.0 Hz, 1 H), 2.27–2.44 (m, 2 H), 3.76 (q, J=7.8 Hz, 1 H), 3.89–4.00 (m, 3 H), 4.05 (ddd, J=8.1, 5.7, 4.5 Hz, 1 H), 4.14 (dd, J=8.1, 6.0 Hz, 1 H), 5.10–5.18 (m, 2 H), 5.89 ppm (ddt, J=17.4, 10.2, 7.2 Hz, 1 H); ¹H NMR (CDCl₃–D₂O): δ =1.34 (s, 3 H), 1.38 (s, 3 H), 1.41–1.42 (2s, 6 H), 2.27–2.41 (m, 2 H), 3.76 (t, J=6.3 Hz, 1 H), 3.89–4.00 (m, 3 H), 4.05 (dt, J=7.8, 4.8 Hz, 1 H), 4.14 (dd, J=8.1, 5.7 Hz, 1 H), 5.10–5.17 (m, 2 H), 5.89 ppm (ddt, J=17.1, 10.2, 6.9 Hz, 1 H); ¹³C NMR: δ =25.7, 27.1, 27.5, 27.6, 39.7, 68.2, 69.9, 77.6, 82.7, 109.8, 110.2, 117.9, 135.2 ppm; IR (thin film): \tilde{v} =2496, 2986, 1371, 1214, 1067, 845, 511 cm⁻¹; MS (CI): m/z (%): 273 (78) $[M+H]^+$, 257 (18) $[M-OCH_3]^+$, 215 (76), 157 (100), 139 (57); HRMS (CI): m/z calcd for $C_{14}H_{24}O_5$ $[M+H]^+$: 273.1697; found: 273.1703.

Triol 10a: By following the aqueous acetic acid deprotection procedure and purification by using flash chromatography (hexane/EtOAc 5:1 to 1:2) always **10** (120 mg 0.510 mmg)

1:3), alkene **10** (139 mg, 0.510 mmol) gave firstly starting material **10** (6.90 mg, 5%) and secondly triol **10a** (108 mg, 96% based on recovering starting material) as a colorless oil. Data for **10a**: R_f =0.19 (hexane/ EtOAc 1:2); $[a]_D^{20}$ =+5.33 (c=1.32 in CHCl₃); ¹H NMR: δ =1.37 (s, 6H), 2.22 (dt, J=14.4, 8.1 Hz, 1 H), 2.63 (dddd, J=14.4, 6.3, 2.7, 1.5 Hz, 1 H),

3.07 (brs, 1H), 3.61–3.89 (m, 7H), 5.16–5.22 (m, 2H), 5.87 ppm (dddd, J=18.3, 10.5, 8.1, 6.3 Hz, 1H); ¹H NMR (CDCl₃–D₂O): $\delta=1.37$ (s, 6H), 2.22 (dt, J=14.4, 8.1 Hz, 1H), 2.62 (dddd, J=12.9, 6.3, 3.1, 1.5 Hz, 1H), 3.61–3.86 (m, 6H), 5.16–5.22 (m, 2H), 5.87 ppm (dddd, J=18.3, 10.5, 8.1, 6.3 Hz, 1H); ¹³C NMR: $\delta=27.2$, 27.3, 39.2, 64.2, 72.3, 73.0, 80.8, 82.5, 109.7, 119.2, 134.3 ppm; IR (thin film): $\bar{\nu}=3339$, 2986, 2935, 1372, 1214, 1071, 872 cm⁻¹; MS (FAB): m/z (%): 233 (28) $[M+H]^+$, 185 (100), 93 (85); HRMS (FAB): m/z calcd for C₁₁H₂₀O₅ $[M+H]^+$: 233.1384; found: 233.1386.

Triol 11 a: By following the aqueous acetic acid deprotection procedure and purification by using flash chromatography (hexane/EtOAc 5:1 to 1:3), alkene **11** (200 mg, 0.734 mmol)

gave firstly starting material **11** (33.2 mg, 17%) and secondly triol **11a** (136 mg, 95% based on recovering starting material) as a colorless oil. Data for **11a**: $R_{\rm f}$ =0.16 (hexane/EtOAc 1:2); $[a]_{\rm D}^{20}$ =-8.06 (c=1.60 in CHCl₃); ¹H NMR: δ =1.39 (s, 3H), 1.42 (s, 3H), 2.30 (ddd, J=14.4, 8.7,

7.5 Hz, 1H), 2.47 (dt, J=14.1, 6.0 Hz, 1H), 2.57–2.64 (m, 2H), 3.36 (brs, 1H), 3.69–3.72 (m, 2H), 3.81–3.84 (m, 2H), 3.97 (t, J=6.6 Hz, 1H), 4.03 (dd, J=7.8, 2.4 Hz, 1H), 5.12–5.19 (m, 2H), 5.87 ppm (ddt, J=17.1, 10.2, 7.2 Hz, 1H); ¹³C NMR: δ =27.4, 27.5, 38.9, 64.2, 69.8, 73.1, 81.7, 109.8, 118.5, 135.0 ppm; IR (thin film): $\tilde{\nu}$ =3387, 2986, 1373, 1215, 1068, 872 cm⁻¹; MS (FAB): m/z (%): 233 (35) [M+H]⁺, 185 (85), 93 (100); HRMS (FAB): m/z calcd for C₁₁H₂₀O₅ [M+H]⁺: 233.1384; found: 233.138806.

4-O-Benzyl-1,2,3-trideoxy-5,6:7,8-di-O-isopropylidene-D-manno-oct-1-

enitol (14): Sodium hydride (80%, 1.76 g, 43.2 mmol) was suspended in dry THF (50 mL) under nitrogen at 0°C. A solution of alkene 10 (2.31 g, 8.47 mmol) in THF (100 mL) was added dropwise over 1 h at 0°C, and then the mixture was stirred for 1 h at 0°C. Benzyl bromide (2.56 mL, 21.6 mmol) was added dropwise over 20 min and tetra-*n*-butylammonium iodide (319 mg, 0.863 mmol) was added. The reaction mixture was stirred at room temperature for 12 h. Water was then added slowly at 0°C to destroy the excess of hydride, and this was followed by the addition of saturated NH₄Cl solution. The aqueous layer was extracted with Et₂O (2× 50 mL). The combined organic extracts were washed with brine, dried over MgSO₄, and filtered. Concentration of the filtrate followed by purification using flash chromatography (hexane/Et₂O 3:1) gave benzyl ether 14 (3.07 g, 100%) as a colorless oil. R_f =0.53 (hexane/Et₂O 3:1); $[\alpha]_D^{20}$ =+11.7 (*c*=2.27 in CHCl₃); ¹H NMR: δ =1.33–1.40 (4s, 12 H), 2.44 (t, *J*=6.0 Hz, 2H), 3.65 (q, *J*=6.0 Hz, 1H), 3.92–4.00 (m, 2H), 4.03–4.17

FULL PAPER

(m, 3 H), 4.64 (2d, J=11.7, 11.7 Hz, 2 H), 5.07 (dd, J=9.9, 1.5 Hz, 1 H), 5.14 (dd, J=17.4, 1.8 Hz, 1 H), 5.88 (ddt, J=17.1, 9.9, 6.9 Hz, 1 H), 7.26–7.37 ppm (m, 5 H); ¹³C NMR: $\delta=25.8$, 26.9, 27.8, 35.1, 67.3, 72.6, 77.4, 79.1, 79.4, 81.1, 109.9, 110.2, 117.7, 128.0, 128.4, 128.7, 135.3, 138.7 ppm; IR (thin film): $\tilde{\nu}=2986$, 1371, 1213, 1069, 848, 698 cm⁻¹; MS (EI): m/z (%): 347 (32) $[M-OCH_3]^+$, 143 (100), 91 (100); HRMS (EI): m/z calcd for $C_{21}H_{30}O_5 [M-OCH_3]^+$: 347.1853; found: 347.1850.

Diol 14a: By following the aqueous acetic acid deprotection procedure and purification by using flash chromatography (hexane/EtOAc 10:1 to 3:1), benzyl ether **14** (1.02 g, 2.81 mmol) gave firstly starting material **14**

(51.2 mg, 5%) and secondly diol **14a** (821 mg, 95%) and secondly diol **14a** (821 mg, 95%) based on recovering starting material) as a colorless oil. Data for **14a**: R_t =0.52 (hexane/ EtOAc 1:2); $[a]_D^{20}$ =-49.6 (c=2.34 in CHCl₃); ¹H NMR: δ =1.35-1.36 (2s, 6H), 2.27 (brs, 1H), 2.49 (ddd, J= 15.0, 7.8, 4.2 Hz, 1H), 2.71 (ddd, J= 15.0, 6.0, 4.5 Hz, 1H), 3.54-3.62 (m,

3H), 3.70–3.74 (m, 2H), 3.82 (t, J=7.2 Hz, 1H), 3.92 (dd, J=8.4, 7.2 Hz, 1H), 4.47 (d, J=11.1 Hz, 1H), 4.76 (d, J=11.1 Hz, 1H), 5.15–5.29 (m, 2H), 5.93 ppm (dddd, J=16.8, 10.2, 7.8, 6.6 Hz, 1H); ¹H NMR (CDCl₃–D₂O): δ =1.35–1.36 (2s, 6H), 2.49 (ddd, J=14.7, 7.8, 3.9 Hz, 1H), 2.71 (ddd, J=15.0, 6.3, 4.8 Hz, 1H), 3.55–3.66 (m, 3H), 3.71 (dd, J=11.1, 3.9 Hz, 1H), 3.82 (t, J=7.5 Hz, 1H), 3.92 (dd, J=8.4, 7.2 Hz, 1H), 4.47 (d, J=11.1 Hz, 1H), 4.76 (d, J=11.1 Hz, 1H), 5.15–5.25 (m, 2H), 5.93 ppm (dddd, J=17.1, 10.2, 7.8, 6.6 Hz, 1H); ¹³C NMR: δ =27.1, 27.2, 34.8, 64.3, 72.0, 73.3, 79.8, 79.9, 80.9, 109.8, 118.8, 128.8, 128.9, 129.0, 133.3, 136.9 ppm; IR (thin film): $\tilde{\nu}$ =3408, 2986, 1381, 1213, 1076, 872, 699 cm⁻¹; MS (FAB): m/z calcd for C₁₈H₂₆O₅ [M+H]⁺: 323.1853; found: 323.1858.

4-O-Benzyl-1,2,3-trideoxy-5,6:7,8-di-O-isopropylidene-D-gluco-oct-1-

enitol (15): By following the same procedure for benzylation of alkene **10** to give benzyl ether **14**, alkene **11** (763 mg, 2.80 mmol) was converted into benzyl ether **15** (945 mg, 93%) as a colorless oil. R_i =0.37 (hexane/Et₂O 3:1); $[a]_{10}^{20}$ =+12.0 (c=3.84 in CHCl₃); ¹H NMR: δ =1.34 (s, 3H), 1.34 (s, 3H), 1.37 (s, 6H), 1.42 (s, 3H), 2.41–2.58 (m, 2H), 3.60 (td, J= 6.9, 2.4 Hz, 1H), 3.89 (dd, J=7.2, 4.2 Hz, 1H), 3.98–4.13 (m, 4H), 4.56 (d, J=11.7 Hz, 1H), 4.70 (d, J=11.7 Hz, 1H), 5.08 (ddd, J=10.2, 2.1, 0.9 Hz, 1H), 5.16 (ddd, J=17.1, 3.0, 1.2 Hz, 1H), 5.88 (ddt, J=10.2, 2.7, 7.2 Hz, 1H), 7.26–7.35 ppm (m, 5H); ¹³C NMR: δ =25.6, 26.9, 27.3, 36.2, 67.9, 72.8, 77.6, 77.9, 82.0, 109.7, 109.9, 117.8, 127.9, 128.0, 128.7, 135.2, 138.9 ppm; IR (thin film): $\vec{\nu}$ =2987, 1371, 1214, 1070, 848, 698, 512 cm⁻¹; MS (EI): m/z (%): 363 (38) [M+H]⁺, 362 (100) [M]⁺, 347 (50) [M-OCH₃]⁺, 143 (100), 101 (55), 91 (99), 43 (64); HRMS (EI): m/z calcd for C₂₁H₃₀O₅ [M]⁺: 362.3088; found: 362.2085.

Diol 15a: By following the aqueous acetic acid deprotection procedure and purification by using flash chromatography (hexane/EtOAc 10:1 to

3:1), benzyl ether **15** (187 mg, 0.512 mmol) gave firstly starting material **15** (19.7 mg, 11%) and secondly diol **15a** (144 mg, 96% based on recovering starting material) as a colorless oil. Data for **15a**: R_t =0.59 (hexane/EtOAc 1:2); $[a]_{D}^{20}$ =+3.17 (c=2.42 in CHCl₃); ¹H NMR: δ =1.36 (s, 3H), 1.40 (s, 3H), 2.19 (t, J= 6.0 Hz, 1H), 2.40 (dt, J=14.4, 8.1 Hz,

1 H), 2.54 (dddt, J=14.4, 6.6, 4.2, 1.5 Hz, 1 H), 3.59–3.67 (m, 3 H), 3.73– 3.82 (m, 2 H), 3.92 (t, J=7.2 Hz, 1 H), 4.00 (dd, J=8.1, 3.3 Hz, 1 H), 4.59 (d, J=11.4 Hz, 1 H), 4.73 (d, J=11.4 Hz, 1 H), 5.10 (ddt, J=9.9, 1.8, 0.9 Hz, 1 H), 5.18 (dq, J=17.1, 1.5 Hz, 1 H), 5.87 (ddt, J=17.1, 9.9, 7.2 Hz, 1 H), 7.31–7.37 ppm (m, 5 H); ¹H NMR (CDCl₃–D₂O): $\delta=1.36$ (s, 3 H), 1.40 (s, 3 H), 2.40 (dt, J=14.4, 7.5 Hz, 1 H), 2.54 (dddt, J=14.4, 6.6, 4.5, 1.5 Hz, 1 H), 3.56–3.67 (m, 2 H), 3.92 (t, J=7.5 Hz, 1 H), 4.00 (dd, J= 8.1, 3.3 Hz, 1 H), 4.59 (d, J=11.4 Hz, 1 H), 4.73 (d, J=11.4 Hz, 1 H), 5.10 (ddt, J=9.9, 1.8, 0.9 Hz, 1 H), 5.18 (dq, J=17.1, 1.5 Hz, 1 H), 5.87 (ddt, $J=17.1, 10.2, 7.2 \text{ Hz}, 1 \text{ H}), 7.31-7.37 \text{ ppm (m, 5H); } {}^{13}\text{C NMR: } \delta=27.3, 27.3, 35.1, 64.4, 73.0, 73.8, 77.0, 77.7, 80.8, 109.5, 118.0, 128.6, 129.0, 135.2, 137.5 \text{ ppm; IR (thin film): } \tilde{\nu}=3407, 2986, 1371, 1213, 1071, 871, 698 \text{ cm}^{-1}; \text{MS (FAB): } m/z \ (\%): 323 \ (56) \ [M+H]^+, 185 \ (27), 93 \ (32), 91 \ (100); \text{HRMS (FAB): } m/z \ \text{calcd for } \text{C}_{18}\text{H}_{26}\text{O}_5 \ [M+H]^+: 323.1853; \text{ found: } 323.1859.$

1,2,3-Trideoxy-5,6:7,8-di-O-isopropylidene-4-O-silyl-D-manno-oct-1-enitol (18): A solution of alkene 10 (105 mg, 0.387 mmol), imidazole (78.9 mg, 1.16 mmol), and TBSCl (117 mg, 0.773 mmol) in dry DMF (1 mL) was stirred at room temperature for 15 h. The mixture was quenched with saturated NaHCO3 solution and the aqueous phase was extracted with Et₂O (2×20 mL). The combined organic extracts were washed with brine, dried over anhydrous MgSO4, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by using flash chromatography (hexane/Et₂O 1:5) to afford silvl ether 18 (150 mg, 100%) as a colorless oil. $R_{\rm f} = 0.70$ (hexane/Et₂O 2:1); $[\alpha]_{\rm D}^{20} = +4.81$ (c= 1.53 in CHCl₃); ¹H NMR: $\delta = 0.08-0.09$ (2s, 6H), 0.91 (s, 9H), 1.34-1.36 (2s, 6H), 1.39 (s, 3H), 1.41 (s, 3H), 2.35-2.39 (m, 2H), 3.86-4.00 (m, 4H), 4.06-4.17 (m, 2H), 5.05-5.13 (m, 2H), 5.85 ppm (ddt, J=17.1, 9.9, 7.2 Hz, 1 H); ¹³C NMR: $\delta = -4.3$, -4.2, 18.2, 25.4, 26.0, 26.6, 27.2, 27.5, 37.7, 66.8, 72.5, 76.7, 77.1, 82.2, 109.5, 117.5, 134.8 ppm; IR (thin film): $\tilde{\nu}$ = 2987, 2933, 2858, 1371, 1256, 1066, 837, 776 cm⁻¹; MS (FAB): m/z(%): 387 (24) [*M*+H]⁺, 185 (50), 101 (64), 73 (100); HRMS (FAB): *m*/*z* calcd for C₂₀H₃₈O₅Si [*M*+H]⁺: 387.2561; found: 387.2573.

3:1), silyl ether **18** (120 mg, 0.311 mmol) gave firstly starting material **18** (40.1 mg, 33%) and secondly diol **18a** (48.7 mg, 68% based on recovering starting material) as a colorless oil. Data for **18a**: $R_{\rm f}$ =0.22 (hexane/Et₂O 1:1); $[\alpha]_D^{2D}$ =-25.3 (*c*= 1.13 in CHCl₃); ¹H NMR: δ =0.14-0.15 (2s, 6H), 0.92 (s, 9H), 1.37-1.38 (2s, 6H), 2.23 (brs, 1H), 2.44-2.48 (m,

2 H), 3.21 (d, J=3.6 Hz, 1 H), 3.65–3.85 (m, 4 H), 3.91–3.97 (m, 2 H), 5.11–5.17 (m, 2 H), 5.88 ppm (ddt, J=18.0, 9.6, 7.2 Hz, 1 H); ¹³C NMR: $\delta = -3.9$, -3.7, 18.5, 26.3, 27.3, 27.4, 38.7, 64.3, 73.5, 74.2, 80.0, 80.9, 110.0, 118.8, 133.3 ppm; IR (thin film): $\tilde{\nu}=3407$, 2930, 1254, 1079, 836, 776 cm⁻¹; MS (FAB): m/z (%): 347 (50) $[M+H]^+$, 185 (82), 93 (64), 75 (67); HRMS (FAB): m/z calcd for C₁₇H₃₄O₅Si $[M+H]^+$: 347.2248; found: 347.2248.

1,2,3-Trideoxy-5,6:7,8-di-*O***-isopropylidene-***4-O***-silyl-D-***gluco***-oct-1-enitol** (19): By following the same procedure for silylation of alkene 10 to give silyl ether 18, alkene 11 (730 mg, 2.68 mmol) was converted into silyl ether 19 (708 mg, 100%) as a colorless oil. $R_{\rm f}$ =0.56 (hexane/Et₂O 4:1); $[\alpha]_{\rm D}^{20}$ = +23.9 (c=3.46 in CHCl₃); ¹H NMR: δ =0.08 (s, 6 H), 0.90 (s, 9 H), 1.34 (s, 3H), 1.41 (s, 6 H), 2.30 (dddt, J=13.8, 7.2, 6.0, 1.2 Hz, 1 H), 2.48 (ddt, J=13.8, 7.2, 1.2 Hz, 1 H), 3.80 (ddd, J=7.5, 6.3, 3.0 Hz, 1 H), 3.85-3.92 (m, 2 H), 3.99 (t, J=7.2 Hz, 1 H), 4.04-4.14 (m, 2 H), 5.04-5.15 (m, 2 H), 2.83 ppm (ddt, J=17.1, 10.2, 7.2 Hz, 1 H); ¹³C NMR: δ =-3.9, -3.7, 18.6, 25.7, 26.3, 26.9, 27.4, 27.8, 39.3, 67.9, 72.0, 77.6, 77.6, 82.2, 109.8, 109.9, 117.8, 135.2 ppm; IR (thin film): $\tilde{\nu}$ =2933, 1371, 1254, 1073, 836, 776 cm⁻¹; MS (EI): m/z (%): 371 (30) [M-OCH₃]⁺, 287 (62), 271 (83), 185 (83), 143 (83), 101 (96), 73 (100); HRMS (EI): m/z calcd for $C_{20}H_{38}O_{5}Si_2$ [M-OCH₃]⁺: 371.2248; found: 371.2251.

Diol 19a: By following the aqueous acetic acid deprotection procedure and purification by using flash chromatography (hexane/EtOAc 10:1 to 3:1), silyl ether **19** (458 mg, 1.18 mmol) gave firstly starting material **19** (90.2 mg, 20%) and secondly diol **19a** (206 mg, 63% based on recovering

starting material) as a colorless oil. Data for **19 a**: $R_{\rm f}$ =0.27 (hexane/Et₂O 1:2); $[a]_{\rm D}^{20}$ =-11.9 (c=1.50 in CHCl₃); ¹H NMR: δ =0.11-0.13 (2s, 6H), 0.90 (s, 9H), 1.37 (s, 3H), 1.39 (s, 3H), 2.21-2.31 (brs, 1H; dt, J=14.1, 7.8 Hz, 1H), 2.52 (ddd, J=14.1, 6.3, 4.5 Hz,

1H), 3.62 (dtd, J=8.4, 5.4, 1.5 Hz, 1H), 3.69–3.73 (m, 1H), 3.81–3.85 (brs, 1H; dd, J=8.4, 3.3 Hz, 1H), 3.93 (t, J=8.1 Hz, 1H), 3.99 (d, J=1.5 Hz, 1H), 4.04 (dt, J=7.8, 3.9 Hz, 1H), 5.06–5.12 (m, 2H), 5.80 ppm (dddd, J=17.1, 10.2, 7.8, 6.6 Hz, 1H); ¹H NMR (CDCl₃–D₂O): $\delta=0.11-0.13$ (2s, 6H), 0.90 (s, 9H), 1.37 (s, 3H), 1.39 (s, 3H), 2.26 (dt, J=14.4, 8.1 Hz, 1H), 2.52 (dddt, J=14.1, 5.7, 4.2, 1.5 Hz, 1H), 3.61 (dt, J=8.1, 3.9 Hz, 1H), 3.71 (dd, J=11.1, 4.5 Hz, 1H), 3.81–3.85 (dd, J=6.3, 3.9 Hz, 1H; dd, J=6.6, 3.0 Hz, 1H), 3.93 (t, J=8.1 Hz, 1H), 4.04 (dt, J=7.8, 3.9 Hz, 1H), 5.06–5.15 (m, 2H), 5.80 ppm (dddd, J=16.8, 10.2, 7.8, 6.6 Hz, 1H); ¹³C NMR: $\delta=-4.1$, -4.0, 18.5, 26.2, 27.3, 27.4, 37.5, 64.3, 71.9, 72.4, 76.9, 83.2, 109.2, 118.3, 135.3 ppm; IR (thin film): $\tilde{\nu}=3403$, 2931, 1463, 1253, 1074, 836, 776 cm⁻¹; MS (FAB): m/z (%): 347 (100) $[M+H]^+$, 185 (57), 75 (40), 73 (49); HRMS (FAB): m/z calcd for $C_{17}H_{34}O_3$ si $[M+H]^+$: 347.2248; found: 347.2256.

Isoxazolidines 22 and 23: By following the glycol-cleavage procedure, triol **10a** (66.5 mg, 0.286 mmol) was converted into aldehyde **12** as a colorless oil. *N*-Methylhydroxylamine hydrochloride (71.7 mg, 0.859 mmol) and NaHCO₃ (120 mg, 1.43 mmol) were added to a solution of aldehyde **12** in CH₃CN (15 mL). The reaction mixture was stirred at room temperature for 30 min until the disappearance of the starting material as shown by using TLC analysis. The mixture was then heated under reflux for 24 h. After cooling, the mixture was partitioned between EtOAc (20 mL) and water (20 mL). The aqueous layer was extracted with EtOAc (2× 20 mL). The combined organic extracts were washed with brine, dried over anhydrous MgSO₄, and filtered. Concentration of the filtrate followed by using flash chromatography (CH₃Cl/MeOH 40:1) gave firstly cycloheptane **23** (53.5 mg, 81% overall yield from **10a**) as a white solid.

Data for **23**: $R_{\rm f}$ =0.26 (EtOAc); m.p. 113–114°C; $[a]_{\rm D}^{20}$ =+24.6 (*c*=1.61 in CHCl₃); ¹H NMR: δ=1.42 (s, 3H), 1.48 (s, 3H), 1.80 (dd, *J*=16.2, 3.0 Hz, 1H), 2.05–2.15 (m, 2H), 2.21 (d, *J*=12.9 Hz, 1H), 2.56–2.65 (m, 4H), 3.54 (dd, *J*=7.2, 2.1 Hz, 1H), 3.92 (dd, *J*=8.7, 2.1 Hz, 1H), 4.24– 4.30 (m, 2H), 4.56 ppm (dt, *J*=9.3, 2.7 Hz, 1H); ¹H NMR (CDCl₃–D₂O): δ=1.42 (s, 3H), 1.48 (s, 3H), 1.79 (dd, *J*=15.9, 3 Hz, 1H), 2.09 (ddd, *J*= 16.2, 6.9, 2.7 Hz, 1H), 2.22 (d, *J*=12.6 Hz, 1H), 2.56–2.65 (m, 4H), 3.54 (dd, *J*=7.2, 1.8 Hz, 1H), 3.93 (dd, *J*=9.0, 2.1 Hz, 1H), 4.25–2.29 (m, 2H), 4.56 ppm (dt, *J*=9.3, 2.7 Hz, 1H); ¹³C NMR: δ=27.3 (CH₃), 27.4 (CH₃), 31.4 (CH₂), 38.8 (CH₂), 47.3 (CH₃), 63.9 (CH), 65.7 (CH), 75.4 (CH), 76.3 (CH), 78.3 (CH), 108.6 ppm (C); IR (thin film): $\tilde{\nu}$ =3468, 2984, 2929, 1379, 1230, 1073, 856, 754 cm⁻¹; MS (ESI): *m/z* (%): 230 (100) [*M*+H]⁺; HRMS (ESI): *m/z* calcd for C₁₁H₁₉O₄N [*M*+H]⁺: 230.1387; found: 230.1386; elemental analysis calcd (%) for C₁₁H₁₉O₄: C 57.63, H 8.35, N 6.11; found: C 57.51, H 8.40, N 6.08.

Data for 22: $R_f = 0.17$ (EtOAc); m.p. 87–88 °C; $[\alpha]_D^{20} = -51.7$ (c = 1.42 in CHCl₃); ¹H NMR: $\delta = 1.44-1.45$ (2s, 6H), 1.89–2.05 (dt, J = 15.0, 5.4 Hz, 1H; dt, J=15.3, 4.5 Hz, 1H), 2.36 (brs, 1H), 2.70 (s, 3H), 3.03-3.05 (m, 2H), 3.45 (dd, J=10.2, 3.3 Hz, 1H), 3.71 (m, 1H), 4.04 (t, J=9.0 Hz, 1 H), 4.15 (t, J = 8.4 Hz, 1 H), 4.32 ppm (q, J = 3.9 Hz, 1 H); ¹H NMR (CDCl₃–D₂O): δ = 1.44–1.45 (2s, 6H), 1.87–2.05 (dt, J = 15.6, 5.7 Hz, 1H; dt, J=15.3, 4.8 Hz, 1 H), 2.70 (s, 3 H), 2.92-3.06 (m, 2 H), 3.42 (dd, J= 10.2, 3.3 Hz, 1 H), 3.71 (t, J=8.1 Hz, 1 H), 4.04 (t, J=9.6 Hz, 1 H), 4.15 (t, J=8.4 Hz, 1 H), 4.30 ppm (q, J=3.6 Hz, 1 H); ¹H NMR (CDCl₃/C₆D₆ 5:1): $\delta = 1.41 - 1.42$ (2s, 6H), 1.78–1.83 (m, 1H), 1.93 (dt, J = 15.3, 3.9 Hz, 1H), 2.30 (brs, 1H), 2.66 (s, 3H), 2.87-2.96 (m, 2H), 3.37 (dd, J=10.2, 3.0 Hz), 3.66 (brs, 1H), 3.99–4.12 (dd, J=9.6, 7.8 Hz, 1H; m, 1H), 4.25 ppm (q, J = 3.3 Hz, 1H); ¹H NMR (CDCl₃/C₆D₆ (5:1)–D₂O): $\delta =$ 1.41-1.42 (2s, 6H), 1.80 (dt, J=15.0, 5.7 Hz, 1H), 1.93 (ddd, J=15.3, 4.8, 3.9 Hz, 1 H), 2.66 (s, 3 H), 2.85-2.97 (m, 2 H), 3.36 (dd, J=10.2, 3.0 Hz, 1H), 3.66 (t, J=7.8 Hz, 1H), 3.99-4.10 (m, 2H), 4.23 ppm (q, J=3.6 Hz, 1 H); $^{13}{\rm C}$ NMR: $\delta\!=\!27.1$ (CH_3), 27.6 (CH_3), 30.3 (CH_2), 38.9 (CH), 45.0 (CH₃), 65.3 (CH), 70.5 (CH), 71.6 (CH₂), 73.2 (CH), 79.2 (CH), 111.3 ppm (C); MS (FAB): m/z (%): 230 (20) [M+H]+, 186 (87), 185 (74), 93 (100); IR (thin film): $\tilde{\nu} = 3430$, 2984, 2932, 1439, 1372, 1229, 1095, 1031, 845, 789 cm⁻¹; HRMS (FAB): m/z calcd for $C_{11}H_{19}O_4N [M+H]^+$: 230.1387; found: 230.1390; elemental analysis calcd (%) for C₁₁H₁₉O₄: C 57.63, H 8.35, N 6.11; found: C 57.55, H 8.39, N 6.06.

Cycloheptane 23 from 27: A 1 M solution of TBAF in THF (0.29 mL, 0.288 mmol) was added to a solution of silyl ether **27** (66.0 mg, 0.192 mmol) in THF (6 mL). The reaction mixture was stirred at room temperature for 5 d and the solvent was removed under reduced pressure. Flash chromatography of the residue (CHCl₃/MeOH 40:1) afforded cycloheptane **23** (43.0 mg, 98%) as a white solid.

Isoxazolidines 24 and 25: By following the glycol-cleavage procedure, diol **14a** (1.04 g, 3.24 mmol) was converted into aldehyde **16** as a colorless oil. By following the cyclization procedure of aldehyde **12** and purification by using flash chromatography (hexane/EtOAc 1:1), aldehyde **16** gave firstly cycloheptane **25** (784 mg, 76% overall yield from **14a**) as a white solid and secondly cyclohexane **24** (193 mg, 19% overall yield from **14a**) as a colorless oil.

Data for 25: $R_f = 0.33$ (hexane/EtOAc 1:2); m.p. 53–54 °C; $[\alpha]_D^{20} = +7.06$ $(c=1.52 \text{ in CHCl}_3)$; ¹H NMR: $\delta=1.47$ (s, 3H), 1.49 (s, 3H), 1.90 (ddd, J=15.6, 3.3, 1.2 Hz, 1 H), 2.00 (ddd, J=15.9, 5.7, 2.1 Hz, 1 H), 2.34 (d, J= 12.6 Hz, 1 H), 2.56 (ddd, J=12.6, 9.3, 7.5 Hz, 1 H), 2.64 (s, 3 H), 3.55 (dd, J=7.5, 2.1 Hz, 1 H), 4.06–4.12 (d, J=5.7 Hz, 1 H; dd, J=9.0, 2.1 Hz, 1 H), 4.32 (d, J = 9.0 Hz, 1H), 4.56–4.62 (d, J = 11.7 Hz, 1H; m, 1H), 4.79 (d, J = 11.7 Hz, 1 H), 7.26–7.34 ppm (m, 5 H); ¹H NMR (CDCl₃/C₆D₆ 2:1): $\delta = 1.37$ (s, 3H), 1.42 (s, 3H), 1.65 (ddd, J = 15.9, 3.6, 1.2 Hz, 1H), 1.80 (ddd, J=15.9, 6.0, 2.1 Hz, 1 H), 2.11 (d, J=12.6 Hz, 1 H), 2.26 (ddd, J= 12.6, 9.3, 7.2 Hz, 1 H), 2.45 (s, 3 H), 3.33 (dd, J=7.2, 2.1 Hz, 1 H), 3.91 (d, J = 5.7 Hz, 1H), 3.97 (dd, J = 6.0, 2.4 Hz, 1H), 4.28 (d, J = 9.0 Hz, 1H), 4.33 (d, J=9.3 Hz, 1 H), 4.44 (d, J=12.0 Hz, 1 H), 4.66 (d, J=12.0 Hz, 1 H), 7.09–7.24 ppm (m, 6 H); 13 C NMR: $\delta = 27.3$ (CH₃), 27.4 (CH₃), 31.1 (CH₂), 38.2 (CH₂), 47.4 (CH₃), 64.1 (CH), 73.4 (CH₂), 73.5 (CH), 75.6 (CH), 76.7 (CH), 78.3 (CH), 108.8 (C), 127.6 (CH), 127.8 (CH), 128.7 (CH), 139.3 ppm (C); MS (EI): *m/z* (%): 320 (6) [*M*+H]⁺, 319 (22) $[M]^+$, 154 (28), 91 (100), 84 (45); IR (thin film): $\tilde{\nu} = 3983$, 2922, 1368, 1236, 1236, 1075, 756 cm⁻¹; HRMS (EI): m/z calcd for $C_{18}H_{25}O_4N$ [M]⁺: 319.1778; found: 319.1774; elemental analysis calcd (%) for $C_{18}H_{25}O_4N$: C 67.69, H 7.89, N 4.38; found: C 67.38, H 7.90, N 4.19.

Data for **24**: $R_{\rm f}$ =0.26 (hexane/EtOAc 1:2); $[a]_{\rm D}^{20}$ =-16.3 (*c*=2.67 in CHCl₃); ¹H NMR: δ =1.45–1.46 (2s, 6H), 1.81 (ddd, *J*=15.3, 6.3, 4.5 Hz, 1H), 2.13 (d, *J*=15.6 Hz, 1H), 2.70 (s, 3H), 2.98–2.31 (m, 1H), 3.16 (t, *J*=8.1 Hz, 1H), 3.51 (dd, *J*=10.2, 2.5 Hz, 1H), 3.85 (t, *J*=8.7 Hz, 1H), 4.12–4.22 (m, 3H), 4.57 (d, *J*=12.0 Hz, 1H), 4.90 (d, *J*=12.0 Hz, 1H), 7.26–7.33 ppm (m, 5H); ¹³C NMR: δ =27.1 (CH₃), 27.6 (CH₃), 29.1 (CH₂), 38.4 (CH), 45.2 (CH₃), 70.4 (CH), 71.1 (CH₂), 73.2 (CH₂), 73.3 (CH), 80.2 (CH), 110.6 (C), 127.4 (CH), 127.7 (CH), 128.7 (CH), 139.2 ppm (C); IR (thin film): $\tilde{\nu}$ =2984, 2929, 1369, 1227, 1101, 846, 736, 698 cm⁻¹; MS (EI): *m/z* (%): 320 (30) [*M*+H]⁺, 319 (100) [*M*]⁺, 91 (100); HRMS (EI): *m/z* calcd for C₁₈H₂₅O₄N [*M*]⁺: 319.1778; found: 319.1775.

Cycloheptane 25 from 23: By following the same procedure for benzylation of alkene **10** to give benzyl ether **14**, cycloheptane **23** (11.6 mg, 0.051 mmol) was converted into cycloheptane **25** (9.90 mg, 61%) as a white solid.

Isoxazolidines 26 and 27: By following the glycol-cleavage procedure, diol **18a** (25.8 mg, 0.0745 mmol) was converted into aldehyde **20** as a colorless oil. By following the cyclization procedure of aldehyde **12** and purification by using flash chromatography (hexane/Et₂O 2:3), aldehyde **20** gave firstly cycloheptane **27** (22.2 mg, 87% overall yield from **18a**) and secondly cyclohexane **26** (2.00 mg, 7% overall yield from **18a**) as white solids.

Data for **27**: R_f =0.44 (hexane/EtOAc 1:1); m.p. 50–51 °C; $[a]_{D}^{20} = -2.80$ (*c* = 3.84 in CHCl₃); ¹H NMR: δ =0.05 (s, 3H), 0.09 (s, 3H), 0.89 (s, 9H), 1.39 (s, 3H), 1.46 (s, 3H), 1.62–1.69 (m, 3H), 2.00 (ddd, *J*=15.6, 5.7, 2.1 Hz, 1H), 2.36 (d, *J*=12.6 Hz, 1H), 2.54 (ddd, *J*=12.3, 9.0, 7.2 Hz, 1H), 2.63 (s, 3H), 3.53 (dd, *J*=7.2, 2.1 Hz, 1H), 3.97 (dd, *J*=9.0, 2.4 Hz, 1H), 4.18 (d, *J*=9.0 Hz, 1H), 4.24 (d, *J*=5.4 Hz, 1H), 4.56 ppm (d, *J*= 9.6 Hz, 1H); ¹H NMR (CDCl₃–D₂O): δ =0.05 (s, 3H), 0.08 (s, 3H), 0.89 (s, 9H), 1.39 (s, 3H), 1.46 (s, 3H), 1.65 (ddd, *J*=15.6, 3.6, 1.2 Hz, 1H), 2.00 (ddd, *J*=15.6, 5.4, 2.1 Hz, 1H), 2.37 (d, *J*=12.6 Hz, 1H), 2.54 (ddd, *J*=12.6, 9.3, 7.5 Hz, 1H), 2.63 (s, 3H), 3.53 (dd, *J*=7.2, 2.1 Hz, 1H), 3.97 (dd, *J*=8.7, 2.1 Hz, 1H), 4.18 (d, *J*=9.0 Hz, 1H), 4.24 (d, *J*=5.1 Hz, 1H), 4.56 ppm (d, *J*=9.3 Hz, 1H); ¹³C NMR: δ =-4.7, -4.2, 18.4, 26.2, 27.4, 27.4, 30.8, 41.1, 47.5, 64.1, 66.7, 75.6, 76.4, 77.9, 108.7 ppm; IR (thin film):

Chem. Eur. J. 2009, 15, 2693-2707

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

2703

 $\bar{\nu}$ =2955, 2930, 2857, 1238, 1118, 1077, 990, 837, 776 cm⁻¹; MS (FAB): *m/z* (%): 344 (24) [*M*+H]⁺, 343 (35) [*M*]⁺, 99 (69), 75 (56), 73 (100); HRMS (FAB): *m/z* calcd for C₁₇H₃₃O₄NSi [*M*+H]⁺: 344.2252; found: 344.2252. *Data for* **26**: *R*_f=0.30 (hexane/EtOAc 1:1); m.p. 69–70 °C; [*a*]_D²⁰ = −50.6 (*c* = 1.61 in CHCl₃); ¹H NMR (CDCl₃/C₆D₆ 1:5): δ = 0.05 (s, 3H), 0.09 (s, 3H), 0.89 (s, 9H), 1.41–1.43 (2s, 6H), 1.57 (ddd, *J*=15.3, 6.9, 3.9 Hz, 1H), 1.82 (d, *J*=14.7 Hz, 1H), 2.61 (s, 3H), 2.79–2.86 (m, 1H), 3.00 (brs, 1H), 3.21 (dd, *J*=9.9, 2.1 Hz, 1H), 3.85 (dd, *J*=9.3, 6.9 Hz, 1H), 4.01 (dd, *J*=9.3, 7.2 Hz, 1H), 4.10 (brs, 1H), 4.21 ppm (q, *J*=2.7 Hz, 1H); ¹³C NMR: δ = −4.8, −4.2, 18.5, 26.1, 27.2, 27.7, 31.3, 38.4, 45.4, 67.3, 70.4, 71.0, 72.5, 79.8, 110.3 ppm; IR (thin film): $\bar{\nu}$ =2930, 2857, 1229, 1102, 1052, 838, 777 cm⁻¹; MS (FAB): *m/z* (%): 344 (42) [*M*+H]⁺, 185 (66), 93 (90), 73 (100), 57 (52); HRMS (FAB): *m/z* calcd for C₁₇H₃₃O₄NSi [*M*+H]⁺: 344.2252; found: 344.2256.

Isoxazolidines 28 and 29: By following the glycol-cleavage procedure, triol **11a** (108 mg, 0.463 mmol) was converted into aldehyde **13** as a colorless oil. By following the cyclization procedure of aldehyde **12** and purification by using flash chromatography (CH₃Cl/MeOH 40:1), aldehyde **13** gave firstly cyclohexane **28** (32.9 mg, 31% overall yield from **11a**) and secondly cycloheptane **29** (66.8 mg, 63% overall yield from **11a**) as white solids.

Data for 28: $R_{\rm f} = 0.26$ (EtOAc); m.p. 107–108 °C; $[\alpha]_{\rm D}^{20} = -32.8$ (c = 2.78 in CHCl₃); ¹H NMR: $\delta = 1.43 - 1.44$ (2s, 6H), 1.61–1.70 (m, 4H), 2.14 (dt, J=14.7, 6.0 Hz, 1 H), 2.35 (br s, 1 H), 2.72 (s, 3 H), 3.04 (m, 1 H), 3.17 (dtd, J=15.3, 7.8, 6.0 Hz, 1 H), 3.39-3.55 (t, 2m, J=8.1 Hz, 3 H), 4.05 (q, J = 6.6 Hz, 1H), 4.19 ppm (t, J = 8.7 Hz, 1H); ¹H NMR (CDCl₃-D₂O): $\delta\!=\!1.43\text{--}1.44$ (2 s, 6 H), 1.65 (ddd, $J\!=\!14.7,\,6.6,\,6.3$ Hz, 1 H), 2.14 (dt, $J\!=$ 14.4, 6.0 Hz, 1 H), 2.72 (s, 3 H), 3.05 (t, J=7.2 Hz, 1 H), 3.17 (dtd, J=15.6, 7.8, 6.0 Hz, 1 H), 3.39–3.54 (t, J=8.1 Hz, 3 H), 4.05 (q, J=6.6 Hz, 1 H), 4.20 ppm (t, 2m, J=8.4 Hz, 1H); ¹H NMR (CDCl₃/C₆D₆ 4:1): $\delta = 1.41-$ 1.53 (s, dt, J=14.1, 6.3 Hz, 7H), 1.97-2.04 (m, 2H), 2.66 (s, 3H), 2.89-2.92 (m, 2H), 3.35–3.40 (m, 2H), 3.52 (t, J=9.6 Hz, 1H), 3.89 (br s, 1H), 4.05 ppm (t, J = 8.4 Hz, 1H); ¹H NMR (CDCl₃/C₆D₆ (4:1)-D₂O): $\delta =$ 1.41-1.53 (2s, dt, J=14.4, 6.3 Hz, 7H), 1.97 (dt, J=15.0, 6.0 Hz, 1H), 2.65 (s, 3H), 2.92–2.99 (m, 2H), 3.29 (t, J=7.8 Hz, 1H), 3.37–3.40 (brs, 1H), 3.45 (t, J=8.7 Hz, 1H), 3.89 (q, J=6.6 Hz, 1H), 4.04 ppm (t, J=8.1 Hz, 1 H); 13 C NMR: $\delta = 27.4$ (CH₃), 32.8 (CH₂), 39.3 (CH), 44.9 (CH₃), 68.8 (CH), 69.8 (CH), 70.7 (CH₂), 82.6 (CH), 111.8 ppm (C); IR (thin film): $\tilde{\nu} = 3370, 2931, 1455, 1231, 1078, 1018, 843, 754, 509 \text{ cm}^{-1}$; MS (FAB): *m*/*z* (%): 230 (24) [*M*+H]⁺, 185 (100), 93 (76); HRMS (FAB): m/z calcd for C₁₁H₁₉O₄N [M+H]⁺: 230.1387; found: 230.1387; elemental analysis calcd (%) for $C_{11}H_{19}O_4N$: C 57.63, H 8.35, N 6.11; found: C 57.35, H 8.36, N 6.08.

Data for **29**: R_f =0.22 (EtOAc); m.p. 137–138 °C; $[a]_D^{20}$ =+62.1 (*c*=3.73 in CHCl₃); ¹H NMR: δ =1.42 (s, 3H), 1.48 (s, 3H), 1.71 (d, *J*=13.2 Hz, 1H), 1.80 (ddd, *J*=15.0, 8.4, 2.4 Hz, 1H), 2.13 (ddd, *J*=15.0, 7.2, 3.6 Hz, 1H), 2.27 (brs, 1H), 2.59–2.69 (m, 4H), 3.35 (dd, *J*=8.7, 2.1 Hz, 1H), 3.51 (dd, *J*=7.2, 1.8 Hz, 1H), 3.82 (q, *J*=8.4 Hz, 1H), 4.17 (dd, *J*=10.2, 9.0 Hz, 1H), 4.59 ppm (dt, *J*=9.6, 2.7 Hz, 1H); ¹³C NMR: δ =27.1 (CH₃), 27.5 (CH₃), 32.1 (CH₂), 39.9 (CH₂), 47.2 (CH₃), 63.3 (CH), 68.2 (CH), 74.6 (CH), 78.8 (CH), 81.4 (CH), 109.8 ppm (C); IR (thin film): $\tilde{\nu}$ =3455, 2980, 2940, 1370, 1232, 1076, 946, 808, 773, 576 cm⁻¹; MS (FAB): *m/z* (%): 230 (41) [*M*+H]⁺, 186 (64), 185 (100), 93 (75); HRMS (FAB): *m/z* calcd for C₁₁H₁₉O₄N [*M*+H]⁺: 230.1387; found: 230.1390; elemental analysis calcd (%) for C₁₁H₁₉O₄N: C 57.63, H 8.35, N 6.11; found: C 57.26, H

Cyclohexane 28 from 32: By following the desilylation procedure of cycloheptane **27** to give cycloheptane **23**, silyl ether **32** (69.1 mg, 0.201 mmol) was converted into cyclohexane **28** (43.7 mg, 95%) as a white solid.

Cycloheptane 29 from 33: By following the desilylation procedure of cycloheptane **27** to give cycloheptane **23**, silyl ether **33** (38.3 mg, 0.112 mmol) was converted into cycloheptane **29** (24.1 mg, 94%) as a white solid.

Isoxazolidines 164 and 165: By following the glycol-cleavage procedure, diol **15a** (103 mg, 0.319 mmol) was converted into aldehyde **17** as a colorless oil. By following the cyclization procedure of aldehyde **12** and purification by using flash chromatography (hexane/EtOAc 2:1) aldehyde **17**

gave firstly cyclohexane **30** (44.2 mg, 44% overall yield from **15a**) as a colorless oil and secondly cycloheptane **31** (49.4 mg, 49% overall yield from **15a**) as a white solid.

Data for **30**: R_t =0.48 (hexane/EtOAc 1:1); $[\alpha]_D^{20} = -54.0$ (c=2.48 in CHCl₃); ¹H NMR: δ =1.43 (s, 3 H), 1.45 (s, 3 H), 1.75 (ddd, J=15.0, 5.4, 3.9 Hz, 1 H), 2.01 (ddd, J=14.7, 9.9, 6.3 Hz, 1 H), 2.75 (s, 3 H), 2.84 (t, J= 9.6 Hz, 1 H), 3.03–3.16 (m, 1 H), 3.38 (t, J=7.5 Hz, 1 H), 3.54–3.69 (dd, J=10.2, 8.4 Hz, 1 H; dd, J=10.5, 7.2 Hz, 1 H), 3.87 (td, J=6.6, 3.6 Hz, 1 H), 4.15 (t, J=8.4 Hz, 1 H), 4.58 (d, J=11.7 Hz, 1 H), 4.74 (d, J= 12.0 Hz, 1 H), 7.26–7.36 ppm (m, 5 H); ¹³C NMR: δ =27.5 (CH₃), 27.6 (CH₃), 31.3 (CH₂), 39.9 (CH), 44.7 (CH₃), 70.3 (CH), 71.3 (CH₂), 71.5 (CH₂), 75.9 (CH), 77.3 (CH), 82.5 (CH), 111.9 (C), 128.0 (CH), 128.7 (CH), 138.6 ppm (C); IR (thin film): $\bar{\nu}$ =2870, 1371, 1232, 1096, 842, 737, 698 cm⁻¹; MS (EI): m/z calcd for C₁₈H₂₅O₄N [M]⁺: 319.1778; found: 319.1777; elemental analysis calcd (%) for C₁₈H₂₅O₄N: C 67.69, H 7.89, N 4.38; found: C 67.14, H 7.86, N 4.03.

Data for **31**: R_t =0.26 (hexane/EtOAc 1:1); m.p. 79–80°C; $[a]_D^{20}$ =+12.1 (*c*=3.41 in CHCl₃); ¹H NMR: δ =1.46 (s, 3H), 1.51 (s, 3H), 1.63 (d, *J*=12.9 Hz, 1H), 1.88 (ddd, *J*=15, 8.7, 2.4 Hz, 1H), 2.02 (ddd, *J*=15.0, 7.2, 3.6 Hz, 1H), 2.53–2.61 (m, 1H), 2.63 (s, 3H), 3.32 (dd, *J*=8.4, 1.8 Hz, 1H), 3.48 (dd, *J*=7.2, 1.5 Hz, 1H), 3.55 (q, *J*=8.4 Hz, 1H), 4.33 (dd, *J*=9.9, 8.7 Hz, 1H), 4.54 (dt, *J*=9.3, 2.7 Hz, 1H), 4.66 (d, *J*=12.6 Hz, 1H), 4.81 (d, *J*=12.6 Hz, 1H), 7.26–7.38 ppm (m, 5H); ¹³C NMR: δ =27.1 (CH₃), 27.6 (CH₃), 31.9 (CH₂), 39.1 (CH₂), 47.2 (CH₃), 63.3 (CH), 72.0 (CH₂), 74.5 (CH), 74.5 (CH), 78.7 (CH), 82.0 (CH), 109.4 (C), 127.8 (CH), 128.0 (CH), 128.6 (CH), 139.3 ppm (C); IR (thin film): $\tilde{\nu}$ =2928, 1368, 1235, 1073, 737, 698 cm⁻¹; MS (EI): *m/z* (%): 320 (5) [*M*+H]⁺, 319 (13) [*M*]⁺, 304 (100) [*M*−OCH₃]⁺: 153 (46), 91 (100); HRMS (EI): *m/z* calcd for C₁₈H₂₅O₄N [*M*−OCH₃]⁺: 304.1543; found: 304.1546.

Cycloheptane 31 from 29: By following the same procedure for benzylation of alkene **10** to give benzyl ether **14**, cycloheptane **29** (13.4 mg, 0.058 mmol) was converted into cycloheptane **31** (13.3 mg, 71%) as a white solid.

Isoxazolidines 32 and 33: By following the glycol-cleavage procedure, diol **19a** (76.1 mg, 0.220 mmol) was converted into aldehyde **21** as a colorless oil. By following the cyclization procedure of aldehyde **12** and purification by using flash chromatography (hexane/Et₂O 3:2), aldehyde **21** gave firstly cyclohexane **32** (30.9 mg, 41% overall yield from **19a**) as a colorless oil and secondly cycloheptane **33** (33.9 mg, 45% overall yield from **19a**) as a white solid.

Data for **32**: $R_{\rm f}$ =0.38 (hexane/Et₂O 1:1); $[\alpha]_{\rm D}^{20}$ =-20.8 (*c*=2.21 in CHCl₃); ¹H NMR: δ =0.08-0.09 (2s, 6H), 0.88 (s, 9H), 1.38-1.39 (2s, 6H), 1.58 (dt, *J*=14.7, 5.4 Hz, 1 H), 1.99 (ddd, *J*=14.1, 7.8, 6.0 Hz, 1 H), 2.72 (s, 3 H), 2.87-2.94 (m, 1 H), 3.09 (dtd, *J*=15.9, 7.8, 6.0 Hz, 1 H), 3.5-3.50 (t, 2m, *J*=7.8 Hz, 3 H), 3.98 (q, *J*=6.0 Hz, 1 H), 4.16 ppm (t, *J*=8.7 Hz, 1 H); ¹³C NMR: δ =-4.5 (CH₃), -4.1 (CH₃), 18.7 (C), 26.3 (CH₃), 27.5 (CH₃), 27.6 (CH₃), 34.7 (CH₂), 39.6 (CH), 41.9 (CH₃), 69.9 (CH), 70.4 (CH), 71.3 (CH₂), 77.0 (CH), 83.2 (CH), 111.4 ppm (C); IR (thin film): $\tilde{\nu}$ =2933, 2858, 1462, 1233, 1099, 1061, 831, 778 cm⁻¹; MS (EI): *m/z* (%): 344 (15) [*M*+H]⁺, 343 (71) [*M*]⁺, 228 (100), 198 (90), 98 (100), 75 (92); HRMS (EI): *m/z* calcd for C₁₇H₃₃O₄NSi [*M*]⁺: 343.2173; found: 343.2178.

Data for **33**: *R*_f=0.21 (hexane/Et₂O 1:1); m.p. 90–91 °C; $[a]_{D}^{20}$ =+54.9 (*c*=2.20 in CHCl₃); ¹H NMR: δ=0.05–0.06 (2s, 6H), 0.86 (s, 9H), 1.38 (s, 3H), 1.44 (s, 3H), 1.68 (d, *J*=12.9 Hz, 1H), 1.82 (ddd, *J*=15.0, 7.2, 3.6 Hz, 1H), 2.54–2.64 (m, 4H), 3.28 (dd, *J*=8.7, 2.1 Hz, 1H), 3.47 (dd, *J*=7.2, 1.5 Hz, 1H), 3.76 (dt, *J*=9.9, 8.1 Hz, 1H), 4.12 (dd, *J*=9.6, 8.7 Hz, 1H), 4.52 ppm (dt, *J*=9.3, 2.7 Hz, 1H); ¹³C NMR: δ=–4.6, -3.9, 18.8, 26.2, 27.1, 27.6, 32.0, 42.3, 47.3, 63.4, 69.4, 74.8, 78.7, 81.8, 109.0 ppm; IR (thin film): $\bar{\nu}$ =2928, 2856, 1368, 1245, 1105, 1076, 837, 780 cm⁻¹; MS (EI): *m/z* (%): 343 (8) [*M*]⁺, 228 (70), 84 (100), 75 (67); HRMS (EI): *m/z* calcd for C₁₇H₃₃O₄NSi [*M*]⁺: 343.2173; found: 343.2166.

6-O-Acetyl-1,2,3-trideoxy-4,5:7,8-di-O-isopropylidene-D*altro***-oct-1-enitol** (35): Acetic anhydride (4.21 mL, 44.6 mmol), triethylamine (8.48 mL, 60.8 mmol), and 4-dimethylaminopyridine (DMAP; 248 mg, 4.46 mmol) were added to a stirred solution of alkene **34** (11.0 g, 40.6 mmol) in CH_2Cl_2 (150 mL) at room temperature. The reaction mixture was stirred

FULL PAPER

for 12 h and quenched with saturated NaHCO₃ solution. The aqueous phase was extracted with Et₂O (2×100 mL). The combined organic extracts were washed with brine, dried over anhydrous MgSO₄, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by using flash chromatography (hexane/Et₂O 7:2) to afford acetate **35** (12.5 g, 98%) as a colorless oil. R_t =0.39 (hexane/Et₂O 2:1); $[\alpha]_D^{20}$ =+38.1 (c=1.90 in CHCl₃); ¹H NMR: δ =1.35 (s, 3H), 1.38 (s, 9H), 2.11 (s, 3H), 2.33 (dt, J=14.1, 6.9 Hz, 1H), 2.45 (dt, J=14.4, 5.4 Hz, 1H), 3.80 (dd, J=8.1, 4.5 Hz, 1H), 3.93 (dd, J=8.1, 6.9 Hz, 1H), 5.12 (t, J=4.8 Hz, 1H), 5.86 ppm (ddt, J=17.1, 10.5, 7.2 Hz, 1H); ¹³C NMR: δ =21.3, 25.7, 26.7, 27.2, 27.6, 37.9, 66.1, 72.4, 74.5, 77.7, 79.7, 109.6, 109.8, 118.3, 133.9, 170.3 ppm; IR (thin film): $\tilde{\nu}$ =2987, 1751, 1371, 1227, 1060, 847, 512 cm⁻¹; MS (EI): m/z (%): 299 (41) [M-OCH₃]⁺, 215 (42), 101 (42); HRMS (EI): m/z calcd for C₁₆H₂₆O₆ [M-OCH₃]⁺: 299.1489; found: 299.1482.

Diol 35a: By following the aqueous acetic acid deprotection procedure and purification by using flash chromatography (hexane/EtOAc 5:1 to

1:2), acetate **35** (341 mg, 1.08 mmol) gave firstly starting material **35** (59.4 mg, 17%) and secondly diol **35a** (200 mg, 82% based on recovering starting material) as a colorless oil. Data for **35a**: $R_{\rm f}$ =0.19 (hexane/ EtOAc 1:1); $[\alpha]_{\rm D}^{\rm 20}$ =+30.1 (c=0.82 in CHCl₃); ¹H NMR: δ =1.40–1.42 (2s, 6H), 2.12 (s, 3H), 2.31 (dt, J=14.4,

7.2 Hz, 1H), 2.45 (dt, J=14.7, 5.1 Hz, 1H), 2.56 (s, 1H), 3.05 (d, J= 5.1 Hz, 1H), 3.61–3.75 (m, 2H), 3.87 (dt, J=9.6, 5.4 Hz, 1H), 3.99 (t, J= 6.9 Hz, 1H), 4.09 (td, J=7.2, 3.6 Hz, 1H), 4.97 (t, J=6.3 Hz, 1H), 5.11– 5.16 (m, 2H), 5.86 ppm (ddt, J=17.4, 10.7, 6.9 Hz, 1H); ¹H NMR (CDCI₃-D₂O): δ =1.40–1.42 (2s, 6H), 2.12 (s, 3H), 2.31 (dt, J=14.4, 7.2 Hz, 1H), 2.45 (dt, J=14.7, 5.1 Hz, 1H), 3.62 (dd, J=12.0, 4.2 Hz, 1H), 3.70 (dd, J=12.0, 3.6 Hz, 1H), 3.86 (dt, J=6.0, 4.2 Hz, 1H), 3.99 (t, J=6.9 Hz, 1H), 4.09 (td, J=7.2, 3.6 Hz, 1H), 4.97 (t, J=6.3 Hz, 1H), 5.10–5.16 (m, 2H), 5.86 ppm (ddt, J=17.4, 10.5, 6.9 Hz, 1H); ¹³C NMR: δ =21.3, 27.2, 27.6, 38.2, 62.7, 71.8, 74.2, 78.6, 78.8, 110.1, 118.2, 134.0, 1046 cm⁻¹; MS (FAB): m/z (%): 275 (74) $[M+H]^+$, 217 (100), 185 (47), 92 (47); HRMS (FAB): m/z calcd for C₁₃H₂₂O₆ $[M+H]^+$: 275.1489; found: 275.1493.

1,2,3-Trideoxy-4,5:7,8-di-O-isopropylidene-6-O-tert-butyldimethylsilyl-Daltro-oct-1-enitol (37): By following the same procedure for silylation of alkene 10 to give silyl ether 18, alkene 34 (251 mg, 0.922 mmol) was converted into silyl ether 37 (324 mg, 98%) as a colorless oil. $R_{\rm f}\!=\!0.50$ (hexane/Et₂O 3:1); $[a]_{D}^{20} = +34.1$ (c = 1.16 in CHCl₃); ¹H NMR: $\delta = 0.10-$ 0.11 (2s, 6H), 0.90 (s, 9H), 1.34 (s, 3H), 1.38–1.42 (3s, 9H), 2.32 (dt, J= 14.7, 7.2 Hz, 1 H), 2.45 (dddd, J=14.4, 5.4, 3.9, 1.2 Hz, 1 H), 3.73 (dd, J= 8.1, 3.9 Hz, 1 H), 3.90 (t, J=7.8 Hz, 1 H), 3.95 (t, J=4.2 Hz, 1 H), 3.99-4.16 (dd, J=7.8, 6.6 Hz, 1H; td, J=7.8, 4.2 Hz, 1H), 4.17 (ddd, J=7.5, 6.3, 4.8 Hz, 1 H), 5.10–5.17 (m, 2 H), 5.88 ppm (ddt, J = 17.1, 10.2, 6.66 Hz, 1 H); ¹³C NMR: $\delta = -3.8, -3.5, 18.5, 25.7, 26.4, 26.9, 27.5, 38.6, 66.4, 72.7,$ 76.3, 77.2, 82.1, 109.1, 109.1, 117.8, 134.6 ppm; IR (thin film): $\tilde{\nu}$ =2986, 2933, 2859, 1371, 1254, 1077, 837, 778 cm⁻¹; MS (EI): m/z (%): 371 (27) [M-OCH₃]⁺, 271 (55), 213 (100), 141 (50), 101 (97), 73 (50); HRMS (EI): m/z calcd for C₂₀H₃₈O₅Si [M-OCH₃]+: 371.2248; found: 371.2240. Diol 37a: By following the aqueous acetic acid deprotection procedure

and purification by using flash chromatography (hexane/Et₂O 10:1 to 1:2), silyl ether **37** (324 mg, 0.839 mmol) gave firstly starting material **37** (79.4 mg, 25%) and secondly diol **37a** (151 mg, 69% based on recovering starting material) as a colorless oil. Data for **37a**: $R_{\rm f}$ =0.24 (hexane/Et₂O 1:1); $[a]_{\rm D}^{20}$ =+13.6 (*c*=0.91 in CHCl₃); ¹H NMR: δ =0.12–0.15 (2s, 6H),

ICl₃); 'H NMR: δ = 0.12–0.15 (2s, 6H), 0.91 (s, 9H), 1.39–1.40 (2s, 6H), 2.25– 2.35 (m, 3H), 2.54 (dddd, J=14.7, 6.3, 3.0, 1.5 Hz, 1H), 3.73–3.89 (m, 5H), 4.04 (td, J=8.1, 3.3 Hz, 1H), 5.10–5.16 (m, 2H), 5.88 ppm (ddt, J=17.1, 10.5, 6.9 Hz, 1H); 'H NMR (CDCl₃–D₂O): δ =0.12–0.15 (2s, 6H), 0.91 (s, 9H), 1.386–1.394 (2s, 6H), 2.30 (dt, J=15.0, 7.2 Hz, 1H), 2.54 (dddd, J=14.7, 6.6, 3.0, 1.5 Hz, 1H), 3.67–3.85 (m, 5H), 4.04 (td, J=7.8, 3.3 Hz, 1H), 5.10–5.16 (m, 2H), 5.89 ppm (ddt, J=16.8, 10.2, 6.6 Hz, 1H); ¹³C NMR: $\delta = -3.9, -3.8, 18.5, 26.3, 27.5, 27.7, 38.8, 63.0, 73.8, 75.9, 78.9, 79.3, 109.6, 117.8, 134.6 ppm; IR (thin film): <math>\bar{\nu}=2429, 2932, 2858, 1371, 1255, 1063, 837, 778$ cm⁻¹; MS (FAB): m/z (%): 347 (32) [M+H]⁺, 289 (100) [M-C₄H₃]⁺, 189 (54), 93 (64), 73 (80); HRMS (FAB): m/z calcd for C₁₇H₃₄O₅Si [M+H]⁺: 347.2248; found: 347.2247.

1,2,3-Trideoxy-4,5:7,8-di-O-isopropylidene-6-O-tert-butyldimethylsilyl-D-

gluco-oct-1-enitol (40): By following the same procedure for silylation of alkene 10 to give silyl ether 18, alkene 39 (424 mg, 1.56 mmol) was converted into silyl ether 40 (568 mg, 95%) as a colorless oil. $R_{\rm f}$ =0.67 (hexane/Et₂O 2:1); $[a]_{\rm D}^{20}$ =+0.619 (c=1.72 in CHCl₃); ¹H NMR: δ =0.09 (s, 3H), 0.12 (s, 3H), 0.90 (s, 9H), 1.33 (s, 3H), 1.37 (s, 6H), 1.41 (s, 3H), 2.31 (dt, J=14.4, 7.2 Hz, 1H), 2.40–2.48 (m, 1H), 3.68 (dd, J=8.1, 3.6 Hz, 1H), 3.85 (t, J=3.6 Hz, 1H), 3.90 (t, J=7.8 Hz, 1H), 4.02 (dd, J=8.1, 6.3 Hz, 1H; td, J=7.8, 4.2 Hz, 1H), 4.12 (ddd, J=7.2, 6.3, 4.5 Hz, 1H), 5.09–5.16 (m, 2H), 5.87 ppm (ddt, J=17.1, 10.2, 6.9 Hz, 1H); ¹³C NMR: δ =-3.7, -3.5, 18.7, 25.5, 26.4, 26.9, 27.3, 27.7, 37.9, 66.4, 72.3, 76.1, 77.4, 82.6, 108.8, 117.9, 134.5 ppm; IR (thin film): \tilde{v} =2986, 2933, 2859, 1370, 1254, 1077, 837, 777 cm⁻¹; MS (ESI): m/z (%): 409 (100) [M+Na]⁺; HRMS (ESI): m/z calcd for C₂₀H₃₈O₅Si [M+Na]⁺: 409.2381; found: 409.2383.

Diol 40a: By following the aqueous acetic acid deprotection procedure and purification by using flash chromatography (hexane/Et₂O 10:1 to 1.0) with a three 40 (50 m)

1:2), silyl ether **40** (259 mg, 0.670 mmol) gave firstly starting material **40** (60.2 mg, 23%) and secondly diol **40a** (145 mg, 82% based on recovering starting material) as a colorless oil. Data for **40a**: $R_{\rm f}$ =0.25 (hexane/Et₂O 1:1); $[\alpha]_{\rm D}^{20}$ =-10.6 (*c*= 0.84 in CHCl₃); ¹H NMR: δ =0.10 (s, 3H), 0.14 (s, 3H), 0.92 (s, 9H), 1.40-

1.42 (2s, 6 H), 2.30 (dt, J = 15.6, 7.5 Hz, 1H; brs, 1H), 2.42 (m, 1H), 3.19 (d, J = 4.8 Hz, 1H), 3.69–3.74 (m, 2H), 3.77–3.82 (m, 2H), 3.87 (dd, J = 4.8, 3.0 Hz, 1H), 4.15 (td, J = 7.8, 4.2 Hz, 1H), 5.10–5.17 (m, 2H), 5.87 ppm (ddt, J = 17.1, 10.5, 6.9 Hz, 1H); ¹H NMR (CDCl₃–D₂O): $\delta = 0.10$ (s, 3H), 0.14 (s, 3H), 0.92 (s, 9H), 1.39–1.42 (2s, 6H), 2.30 (dt, J = 14.4, 7.2 Hz, 1H), 2.42 (m, 1H), 3.65–3.74 (m, 2H), 3.75–3.82 (m, 2H), 3.87 (dd, J = 5.1, 3.3 Hz, 1H), 4.15 (td, J = 8.1, 4.2 Hz, 1H), 5.10–5.17 (m, 2H), 5.87 ppm (ddt, J = 17.1, 10.2, 6.9 Hz, 1H); ¹³C NMR: $\delta = -4.2$, -3.9, 18.6, 26.3, 27.2, 27.6, 37.8, 63.8, 71.3, 74.1, 76.3, 81.9, 109.2, 118.61, 134.2 ppm; IR (thin film): $\tilde{\nu} = 3423$, 2931, 2858, 1379, 1253, 1090, 835, 776 cm⁻¹; MS (ESI): m/z (%): 369 (100) [M+Na]⁺; HRMS (ESI): m/z calcd for C₁₇H₃₄O₅Si [M+Na]⁺: 369.2068; found: 369.2069.

Cycloheptane 46: By following the glycol-cleavage procedure, diol 35 a (64.5 mg, 0.235 mmol) was converted into aldehyde 36 as a colorless oil. By following the cyclization procedure of aldehyde 12 and purification by using flash chromatography (CHCl₃/MeOH 40:1), aldehyde 36 was converted into cycloheptane 46 (47.9 mg, 89% overall yield from 35a) as a white solid. $R_{\rm f} = 0.23$ (EtOAc); m.p. 97–98 °C; $[\alpha]_{\rm D}^{20} = -163.0$ (c=2.21 in CHCl₃); ¹H NMR: $\delta = 1.40$ (s, 6H), 1.65 (dd, J = 14.1, 9.9 Hz, 1H), 2.13 (ddd, J=14.1, 6.3, 4.2 Hz, 1 H), 2.26 (d, J=13.5 Hz, 1 H), 2.37-2.49 (m, 2H), 2.65 (s, 3H), 3.47 (t, J=5.7 Hz, 1H), 4.01 (dd, J=9.3, 2.7 Hz, 1H), 4.08-4.20 (m, 2H), 4.65 ppm (dd, J=9.3, 1.5 Hz, 1H); ¹H NMR (CDCl₃- D_2O): $\delta = 1.398-1.401$ (2s, 6H), 1.65 (ddd, J = 14.1, 9.9, 1.2 Hz, 1H), 2.13 (ddd, J=13.8, 6.3, 3.9 Hz, 1 H), 2.26 (d, J=13.5 Hz, 1 H), 2.42 (ddd, J= 13.5, 9.3, 6.9 Hz, 1 H), 2.65 (s, 3 H), 3.47 (dd, J=6.9, 5.1 Hz, 1 H), 4.01 (dd, J=9.3, 2.7 Hz, 1 H), 4.08-4.20 (m, 2 H), 4.65 ppm (dd, J=9.3, 1.5 Hz, 1 H); ¹³C NMR: $\delta = 27.2$ (CH₃), 27.6 (CH₃), 28.2 (CH₂), 34.7 (CH₂), 46.9 (CH₃), 67.6 (CH), 68.1 (CH), 70.9 (CH), 74.7 (CH), 79.2 (CH), 108.6 ppm (C); IR (thin film): $\tilde{\nu}$ =3467, 2985, 2930, 1370, 1240, 1071, 1013, 824, 799 cm⁻¹; MS (FAB): m/z (%): 230 (7) $[M+H]^+$, 185 (100), 93 (74); HRMS (FAB): m/z calcd for $C_{11}H_{19}O_4$ [M+H]⁺: 230.1387; found: 230.1384; elemental analysis calcd (%) for $C_{11}H_{19}O_4$: C 57.63, H 8.35, N 6.11; found: C 57.64, H 8.39, N 6.10.

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

A EUROPEAN JOURNAL

Cycloheptane 48: By following the glycol-cleavage procedure, diol 37 a (41.0 mg, 0.118 mmol) was converted into aldehyde 38 as a colorless oil. By following the cyclization procedure of aldehyde 12 and purification by using flash chromatography (hexane/Et₂O 2:1), aldehyde 38 was converted into cycloheptane 48 (40.3 mg, 99% overall yield from 37a) as a white solid. $R_{\rm f} = 0.45$ (hexane/Et₂O 1:1); m.p. 71–72 °C; $[\alpha]_{\rm D}^{20} = -120.8$ $(c=1.26 \text{ in CHCl}_3)$; ¹H NMR: $\delta=0.08-0.11$ (2s, 6H), 0.90 (s, 9H), 1.36 (s, 6H), 1.62 (dd, J=14.1, 9.6 Hz, 1H), 2.11 (ddd, J=14.1, 6.3, 4.2 Hz, 1H), 2.27-2.42 (m, 2H), 2.64 (s, 3H), 3.18 (t, J=5.7 Hz, 1H), 4.01 (dd, J=9.6, 2.4 Hz, 1 H), 4.09–4.18 (m, 2 H), 4.62 ppm (ddd, J=8.7, 4.2, 2.1 Hz, 1 H); ¹³C NMR: $\delta = -4.7$ (CH₃), -3.9 (CH₃), 18.5 (C), 26.3 (CH₃), 27.5 (CH₃), 27.7 (CH₃), 28.3 (CH₂), 35.7 (CH₂), 47.4 (CH₃), 68.9 (CH), 69.7 (CH), 71.0 (CH), 75.0 (CH), 78.5 (CH), 108.5 ppm (C); IR (thin film): $\tilde{\nu} = 2930$, 2856, 1367, 1251, 1123, 1073, 983, 894, 835, 778, 667 cm⁻¹; MS (FAB): m/z (%): 344 (80) [M+H]+, 343 (10) [M]+, 185 (100), 93 (83); HRMS (FAB): m/z calcd for $C_{17}H_{33}O_4NSi [M+H]^+$: 344.2252; found: 344.226228.

Cycloheptanes 51 and 52: By following the glycol-cleavage procedure, diol **40a** (65.8 mg, 0.190 mmol) was converted into aldehyde **41** as a colorless oil. By following the cyclization procedure of aldehyde **12** and purification by using flash chromatography (hexane/Et₂O 3:1 to 1:2), aldehyde **41** gave firstly cycloheptane **52** (7.70 mg, 12% overall yield from **40a**) and secondly cycloheptane **51** (57.8 mg, 88% overall yield from **40a**) as white solids.

Data for **51**: $R_{\rm f}$ =0.31 (hexane/Et₂O 3:2); m.p. 93–94°C; $[a]_{\rm D}^{20}$ =+56.3 (*c*=2.60 in CHCl₃); ¹H NMR: δ =0.10–0.11 (2s, 6 H), 0.89 (s, 9 H), 1.34–1.36 (2s, 6 H), 1.71 (dd, *J*=13.8, 10.2 Hz, 1H), 1.86 (d, *J*=13.2 Hz, 1H), 2.11 (ddd, *J*=14.1, 6.3, 4.5 Hz, 1H), 2.50 (dt, *J*=13.8, 8.7 Hz, 1H), 2.66 (s, 3 H), 3.19 (d, *J*=5.4 Hz, 1H), 3.51 (dd, *J*=8.7, 2.7 Hz, 1H), 3.66 (td, *J*=9.6, 6.3 Hz, 1H), 4.03 (t, *J*=9.0 Hz, 1H), 4.61 ppm (dd, *J*=9.0, 3.9 Hz, 1H); ¹³C NMR: δ =-4.7 (CH₃), -3.7 (CH₃), 18.7 (C), 26.3 (CH₃), 27.3 (CH₃), 27.6 (CH₃), 30.1 (CH₂), 35.6 (CH₂), 47.7 (CH₃), 70.5 (CH), 73.4 (CH), 74.4 (CH), 76.0 (CH), 80.3 (CH), 108.2 ppm (C); IR (thin film): $\tilde{\nu}$ =2985, 2932, 2855, 1366, 1249, 1108, 857, 779, 671, 509 cm⁻¹; MS (ESI): *m*/*z* (%): 366 (55) [*M*+Na]⁺, 344 (100) [*M*+H]⁺; HRMS (ESI): *m*/*z* calcd for C₁₇H₃₃O₄NSi [*M*+H]⁺: 344.2252; found: 344.2245.

Data for **52**: $R_{\rm f}$ =0.51 (hexane/Et₂O 3:2); m.p. 70–71 °C; $[a]_D^{20}$ =−47.8 (c=2.48 in CHCl₃); ¹H NMR (C₆D₆): δ =0.18 (s, 3H), 0.26 (s, 3H), 1.04 (s, 9H), 1.12 (td, J=12.9, 1.2 Hz, 1H), 1.36–1.39 (2s, 6H), 1.78 (d, J=12.9 Hz, 1H), 1.90 (dt, J=12.9, 8.1 Hz, 1H), 2.33 (dt, J=13.2, 4.5 Hz, 1H), 2.52 (s, 3H), 2.85 (d, J=8.7 Hz, 1H), 3.60 (dd, J=9.6, 6.9 Hz, 1H), 3.96 (d, J=7.2 Hz, 1H), 4.10 (t, J=5.7 Hz, 1H), 4.59 ppm (td, J=10.5, 4.2 Hz, 1H); ¹³C NMR: δ =−4.5, −4.1, 18.6, 26.2, 27.5, 27.6, 32.9, 37.5, 48.6, 72.3, 72.7, 75.6, 84.7, 108.5 ppm; IR (thin film): \bar{v} =2929, 2856, 1248, 1095, 838, 778 cm⁻¹; MS (ESI): m/z (%): 344 (100) [*M*+H]⁺; HRMS (ESI): m/z calcd for C₁₇H₃₃O₄NSi [*M*+H]⁺: 344.2252; found: 344.2250.

Cycloheptane 49 from 51: By following the desilylation procedure of cycloheptane **27** to give cycloheptane **23**, silyl ether **51** (24.8 mg, 0.072 mmol) was converted into cycloheptane **49** (15.1 mg, 91%) as a white solid.

Diol 57: 10% Pd on charcoal (148 mg, 0.139 mmol) was added to a solution of enoate 56 (1.39 g, 4.63 mmol) in EtOH (40 mL) and the mixture was stirred under an atmosphere of H₂ (balloon). After stirring at room temperature under H₂ for 1 h, the mixture was filtered and the filtrate was concentrated to give an ester. A solution of the ester in 80% aqueous AcOH (30 mL) was stirred at room temperature for 5 h. The solvent was removed under reduced pressure and the residue was purified by using flash chromatography (hexane/EtOAc 1:2) to afford diol 57 (903 mg, 74%) as a colorless oil. $R_{\rm f} = 0.30$ (hexane/EtOAc 1:2); $[\alpha]_{\rm D}^{2\ell}$ -32.2 (c = 1.49 in CHCl₃); ¹H NMR: $\delta = 1.26$ (t, J = 7.2 Hz, 3 H), 1.39 (s, 6H), 1.81 (dtd, J = 14.4, 8.4, 6.0 Hz, 1H), 1.97 (dddd, J = 14.1, 9.0, 7.2, 3.3 Hz, 1H), 2.38–2.60 (ddd, J=16.5, 8.4, 7.2 Hz, 1H; ddd, J=16.5, 9.0, 6.0 Hz, 1 H), 3.62–3.73 (m, 4 H), 4.05 (td, J=8.1, 3.0 Hz, 1 H), 4.13 (d, J= 7.2 Hz, 1 H), 4.16 ppm (d, J = 7.2 Hz, 1 H); ¹³C NMR: δ = 14.6, 27.2, 27.7, 28.1, 31.0, 60.9, 65.2, 70.2, 76.5, 81.9, 109.6, 173.7 ppm; IR (thin film): $\tilde{\nu} =$ 3445, 2986, 1732, 1373, 1216, 1082, 880 cm⁻¹; MS (ESI): m/z (%): 285 (100) $[M+Na]^+$; HRMS (ESI): m/z calcd for $C_{12}H_{22}O_6$ $[M+Na]^+$: 285.1309; found: 285.1312.

Ester 58: Triphenylphosphine (2.59 g, 9.87 mmol) was added in one portion to a stirred solution of iodine (1.90 g, 7.40 mmol) and imidazole (672 mg, 9.87 mmol) in dry toluene/acetonitrile (1:1, 20 mL). Diol 57 (645 mg, 2.47 mmol) dissolved in toluene (10 mL) was added to the resulting yellow suspension with stirring. The reaction mixture was then heated at 70°C under N2 for 1 h and then filtered. The filtrate was washed with saturated $Na_2S_2O_3$ solution and then with saturated NaHCO3 solution. The organic layer was concentrated under reduced pressure and flash chromatography of the residue (hexane/Et₂O 4:1) afforded ester 58 (505 mg, 90%) as a colorless oil. $R_f = 0.33$ (hexane/Et₂O 4:1); $[\alpha]_D^{20} = -2.61$ (c=1.60 in CHCl₃) (ref. [26]: $[\alpha]_D^{22} = 0$ (c=0.9 in CHCl₃)); ¹H NMR: $\delta = 1.24$ (t, J = 7.2 Hz, 3H), 1.389–1.391 (2s, 6H), 1.80 (dtd, J=14.4, 8.4, 6.3 Hz, 1 H), 1.95 (dddd, J=13.8, 9.3, 6.6, 3.6 Hz, 1H), 2.34–2.55 (ddd, J=16.2, 8.7, 6.6 Hz, 1H; ddd, J=16.2, 9.0, 6.0 Hz, 1H), 3.69 (td, J=8.4, 3.9 Hz, 1H), 3.99 (t, J=7.8 Hz, 1H), 4.09-4.16 (d, J=7.2 Hz, 1 H; d, J=7.2 Hz, 1 H), 5.25 (dt, J=10.2, 0.6 Hz, 1 H), 5.37 (d, J=17.1 Hz, 1 H), 5.79 ppm (ddd, J=17.1, 10.2, 7.2 Hz, 1 H); ¹³C NMR: $\delta = 14.6, 27.2, 27.3, 27.6, 31.1, 60.8, 79.9, 82.8, 109.2, 119.6, 135.4,$ 173.5 ppm; IR (thin film): $\tilde{v} = 2986$, 1736, 1371, 1242, 1167, 1070, 875 cm⁻¹; MS (ESI): m/z (%): 251 (100) [M+Na]⁺; HRMS (ESI): m/z calcd for C₁₂H₂₀O₄ [*M*+Na]⁺: 251.1254; found: 251.1256.

Alcohol 59: A solution of DIBAL-H (26.9 mL, 26.9 mmol) was added dropwise over 30 min to a solution of ester 58 (2.05 g, 8.96 mmol) in dry THF (80 mL) at -78 °C. The temperature of the resultant solution was allowed to rise to 0°C and was stirred for 3 h. It was then guenched with saturated NH₄Cl solution and filtered through a pad of Celite. The residue was washed with EtOAc. Concentration of the filtrate followed by purification using flash chromatography (hexane/Et₂O 1:1) gave alcohol **59** (1.65 g, 100%) as a colorless oil. $R_{\rm f} = 0.26$ (hexane/Et₂O 1:2); $[\alpha]_{\rm D}^{20} =$ +2.48 (c=1.61 in CHCl₃) (ref. [27]: $[\alpha]_{D}^{22} = -3.06$ (c=0.49 in CHCl₃)); ¹H NMR: $\delta = 1.40-1.41$ (2s, 6H), 1.55–1.62 (m, 1H), 1.66–1.78 (m, 3H), 2.11 (brs, 1 H), 3.64-3.72 (m, 3 H), 3.98 (dd, J=8.1, 7.8 Hz, 1 H), 5.25 (dt, J = 10.2, 0.6 Hz, 1 H), 5.36 (dt, J = 17.1, 0.9 Hz, 1 H), 5.79 ppm (ddd, J = 10.217.4, 10.2, 7.5 Hz, 1 H); ¹³C NMR: $\delta = 27.3$, 27.6, 28.8, 29.8, 62.9, 81.0, 83.2, 109.1, 119.6, 135.4 ppm; IR (thin film): $\tilde{\nu}$ =3418, 2987, 2937, 1371, 1241, 1050 cm⁻¹; MS (ESI): m/z (%): 209 (100) $[M+Na]^+$, 111 (10); HRMS (ESI): m/z calcd for $C_{10}H_{18}O_3$ [*M*+Na]⁺: 209.1148; found: 209.1152.

Cyclohexanes 61, 62, and 63: IBX (458 mg, 1.63 mmol) was added to a solution of alcohol 59 (102 mg, 0.545 mmol) in CH2Cl2/DMSO (1:1, 6 mL) and the mixture was stirred at room temperature for 8 h. The mixture was partitioned between Et₂O (30 mL) and water (30 mL). The aqueous layer was extracted with Et₂O (2×30 mL) and the combined organic extracts were concentrated under reduced pressure to give aldehyde 60 as a colorless oil. BnNHOH (73.8 mg, 0.600 mmol) was added to a solution of aldehyde 60 in CH₃CN (8 mL) and the mixture was stirred at room temperature for 30 min and then heated under reflux for 40 h. The reaction mixture was partitioned between EtOAc (20 mL) and water (20 mL). The aqueous layer was extracted with EtOAc (2×20 mL). The combined organic extracts were washed with brine, dried over anhydrous $MgSO_4$, and filtered. Concentration of the filtrate followed by purification using flash chromatography (hexane/CH₂Cl₂/Et₂O 2:1:1) gave firstly cyclohexane 62 (51.0 mg, 32% overall yield from 59) as a colorless oil, secondly cyclohexane 63 (18.3 mg, 12% overall yield from 59) as a colorless oil, and cyclohexane 61 (32.1 mg, 20% overall yield from 59) as a white solid.

Data for **61**: R_f =0.27 (hexane/Et₂O/CH₂Cl₂ 1:1:1); m.p. 94–95 °C; $[a]_D^{20}$ = +68.3 (c=1.56 in CHCl₃); ¹H NMR: δ =0.43–1.52 (m, 8H), 1.81–1.83 (m, 1H), 2.15–2.21 (m, 1H), 2.44–2.63 (m, 2H), 3.37 (dd, J=9.9, 8.4 Hz, 1H), 3.48 (ddd, J=12.3, 8.7, 4.2 Hz, 1H), 3.77 (dd, J=9.3, 7.2 Hz, 1H), 3.89 (d, J=13.5 Hz, 1H), 4.06 (d, J=13.5 Hz, 1H), 4.15 (t, J=6.3 Hz, 1H), 7.26–7.39 ppm (m, 5H); ¹³C NMR: δ =25.8 (CH₂), 26.0 (CH₂), 27.2 (CH₃), 51.1 (CH), 63.1 (CH₂), 68.0 (CH₂), 70.2 (CH), 80.3 (CH), 81.1 (CH), 111.1 (C), 127.8 (CH), 128.8 (CH), 129.4 (CH), 137.2 ppm (C); MS (ESI): m/z (%): 290 (100) [M+H]⁺; IR (thin film): $\tilde{\nu}$ =2936, 2871, 1454, 1371, 1229, 1179, 1113, 1078, 835, 700 cm⁻¹; HRMS (ESI): m/z calcd for C₁₇H₂₃O₃N [M+H]⁺: 290.1751; found: 290.1751.

Data for 62: $R_{\rm f} = 0.50$ (hexane/Et₂O/CH₂Cl₂ 1:1:1); $[a]_{\rm D}^{20} = -143.4$ (c = 2.15 in CHCl₃); ¹H NMR: $\delta = 1.43$ (s, 6H), 1.64–1.80 (m, 2H), 1.83–1.88 (m, 1H), 1.94-1.98 (m, 1H), 2.66 (ddd, J=10.5, 6.6, 1.8 Hz, 1H), 3.07-3.09 (m, 1H), 3.43 (ddd, J=10.8, 9.3, 3.9 Hz, 1H), 3.73 (dd, J=10.2, 9.6 Hz, 1 H), 3.82 (d, J=13.5 Hz, 1 H), 3.97-4.07 (m, 3 H), 7.23-7.39 ppm (m, 5H); ¹H NMR (C_6D_6): $\delta = 1.02 - 1.15$ (m, 1H), 1.34-1.40 (m, 7H), 1.65-1.79 (m, 2H), 2.16 (dtd, J=10.8, 5.4, 1.5 Hz, 1H), 2.44 (ddd, J=6.9, 5.1, 2.1 Hz, 1 H), 3.19 (td, J=9.3, 5.1 Hz, 1 H), 3.57 (d, J=14.1 Hz, 1 H), 3.65-3.73 (d, J=14.1 Hz, 1H; dd, J=7.8, 5.4 Hz, 1H), 3.84 (dd, J=10.2, 9.3 Hz, 1 H), 3.92 (dd, J=7.5, 0.9 Hz, 1 H), 7.03-7.18 (m, 4 H), 7.34-7.37 ppm (m, 2H); 13 C NMR: $\delta = 24.9$ (CH₂), 25.0 (CH₂), 27.4 (CH₃), 27.4 (CH₃), 48.3 (CH), 62.0 (CH₂), 65.2 (CH), 68.4 (CH₂), 78.9 (CH), 79.7 (CH), 109.8 (C), 127.7 (CH), 128.7 (CH), 129.4 (CH), 137.7 ppm (C); IR (thin film): $\tilde{v} = 2983$, 2943, 2875, 1370, 1236, 1131, 1091, 700 cm⁻¹; MS (ESI): m/z (%): 290 (100) $[M+H]^+$; HRMS (ESI): m/z calcd for C₁₇H₂₃O₃N [*M*+H]⁺: 290.1751; found: 290.1758.

Data for **63**: $R_{\rm f}$ =0.43 (hexane/Et₂O/CH₂Cl₂ 1:1:1); $[a]_{\rm D}^{20}$ =+39.0 (*c*=1.06 in CHCl₃); ¹H NMR: δ =1.41–1.51 (m, 7 H), 1.53–1.64 (m, 1 H), 1.96 (dt, *J*=14.7, 5.4 Hz, 1 H), 2.08 (ddd, *J*=11.7, 9.3, 4.5 Hz, 1 H), 3.27 (q, *J*=7.2 Hz, 1 H), 3.47 (pentet, *J*=7.2 Hz, 1 H), 3.66 (dd, *J*=9.0, 6.6 Hz, 1 H), 3.78–3.83 (m, 2 H), 3.91 (t, *J*=8.1 Hz, 1 H), 3.99 (d, *J*=13.2 Hz, 1 H), 4.17 (t, *J*=8.7 Hz, 1 H), 7.27–7.39 ppm (m, 5 H); ¹³C NMR: δ =25.3 (CH₂), 27.3 (CH₃), 27.4 (CH₃), 60.4 (CH₂), 64.3 (CH), 66.3 (CH₂), 73.6 (CH), 79.0 (CH), 110.1 (C), 127.9 (CH), 128.9 (CH), 129.3 (CH), 137.5 ppm (C); IR (thin film): $\tilde{\nu}$ =2945, 1455, 1369, 1236, 1166, 1131, 1089, 730, 699 cm⁻¹; MS (ESI): *m/z* (%): 290 (100) [*M*+H]⁺; HRMS (ESI): *m/z* calcd for C₁₇H₂₃O₃N [*M*+H]⁺: 290.1751; found: 290.1751.

Acknowledgements

This work was partially supported by a CERG from the Research Grants Council of HKSAR, China (project no. 402805) and was also partially supported by a Grant-in-Aid for the 21st century COE program "KEIO LCC" from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank the Research Center for Computational Science, Okazaki National Institute, for their support with the DFT calculations.

- a) A. E. Koumbis, J. K. Gallos, *Curr. Org. Chem.* 2003, 7, 585–628;
 b) B. von Bernet, A. Vasella, *Helv. Chim. Acta* 1979, 62, 1990–2016;
 c) T. K. M. Shing, D. A. Elsley, J. G. Gillhouley, *J. Chem. Soc. Chem. Commun.* 1989, 1280–1282.
- J. J. Tufariello in 1,3-Dipolar Cycloaddition Chemistry, Vol. 2 (Ed.: A. Padwa), Wiley, New York, 1984, pp. 83–168.
- [3] a) A. Roy, K. Chakrabarty, P.K. Dutta, N. C. Bar, N. Basu, B. Achari, S. B. Mandal, *J. Org. Chem.* **1999**, *64*, 2304–2309; b) R. Patra, N. C. Bar, A. Roy, B. Achari, N. Ghoshal, S. B. Mandal, *Tetrahedron* **1996**, *52*, 11265–11272.
- [4] C. Gravier-Pelletier, W. Maton, T. Dintinger, C. Tellier, Y. L. Merrer, *Tetrahedron* 2003, 59, 8705–8720.
- [5] For recent syntheses, see: a) Y. Zhang, L. S. Liebeskind, J. Am. Chem. Soc. 2006, 128, 465–472; b) D. M. Mans, W. H. Pearson, Org. Lett. 2004, 6, 3305–3308.
- [6] For recent syntheses, see: a) P. R. Skaanderup, R. Madsen, J. Org. Chem. 2003, 68, 2115–2122; b) J. Marco-Contelles, E. de Opazo, J. Org. Chem. 2002, 67, 3705–3717.
- [7] a) B. Dräger, Nat. Prod. Rep. 2004, 21, 211–223; b) N. Asano, Curr. Top. Med. Chem. 2003, 3, 471–484.
- [8] T. K. M. Shing, W. F. Wong, T. Ikeno, T. Yamada, Org. Lett. 2007, 9, 207–209.
- [9] T. K. M. Shing, A. W. F. Wong, T. Ikeno, T. Yamada, J. Org. Chem. 2006, 71, 3253–3263.
- [10] T. Gracza, T. Hasenöhrl, U. Stahl, V. Jäger, Synthesis 1991, 1108– 1118.
- [11] Y. L. Zhong, T. K. M. Shing, J. Org. Chem. 1997, 62, 2622-2624.

- [12] CCDC-242454, CCDC-614145, and CCDC-245397 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [13] CCDC-261413 and CCDC-262043 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [14] CCDC-614146 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif. Ref. [8] contains the experimental procedure for the debenzoylation and the relevant spectroscopic data.
- [15] Ref. [8] contains the spectroscopic data of cycloheptane 53.
- [16] J. S. Yadav, D. K. Barma, Tetrahedron 1996, 52, 4457-4466.
- [17] F. A. Luzzio, M. E. Menes, J. Org. Chem. 1994, 59, 7267-7272.
- [18] M. Frigerio, M Santagostino, S. Sputore, G. Palmisano, J. Org. Chem. 1995, 60, 7272–7276.
- [19] CCDC-607154 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.
- [20] CONFLEX, Version 4.0.2 (Revision T), Conflex Corporation, Tokyo (Japan), 2000.^[20a,b] Although it is well established that the force field approach is useful for the TS search of flexible molecules^[20c] and was successfully applied to 1,3-diplar cycloaddition,^[23e] because CONFLEX does not support the TS molecular mechanics (MM) model and the tricyclic structures investigated in this paper are relatively rigid, TSs were calculated based on the ground-state conformers: a) H. Goto, E. Osawa, J. Am. Chem. Soc. 1989, 111, 8950–8951; b) H. Goto, E. Osawa, J. Chem. Soc. Perkin Trans. 2 1993, 187–198; c) K. N. Houk, M. N. Paddon-row, N. G. Rondan, Y.-D. Wu, F. K. Brown, D. C. Spellmeyer, J. T. Mets, Y. Li, R. J. Loncharich, Science 1986, 231, 1108–1117.
- [21] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; b) C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- [22] Gaussian 98 (Revision A.11), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh PA, **2001**.
- [23] a) F. K. Brown, U. C. Singh, P. A. Kollman, L. Raimondi, K. N. Houk, C. W. Bock, J. Org. Chem. 1992, 57, 4862–4869; b) M. Carda, R. Portolés, J. Murga, S. Ureil, J. A. Marco, L. R. Domingo, R. J. Zaragozá, H. Röper, J. Org. Chem. 2000, 65, 7000–7009; c) J. Liu, S. Niwayama, Y. You, K. N. Houk, J. Org. Chem. 1998, 63, 1064–1073; d) E. C. Magnuson, J. Pranata, J. Comput. Chem. 1998, 19, 1795–1804; e) R. Annunziata, M. Benaglia, M. Cinquini, F. Cozzi, L. Raimondi, Eur. J. Org. Chem. 1998, 1823–1832.
- [24] C. D. Valentin, M. Freccero, R. Gandolfi, A. Rastelli, J. Org. Chem. 2000, 65, 6112–6120.
- [25] J. B. Hendrickson, J. Am. Chem. Soc. 1961, 83, 4537-4547.
- [26] D. Batty, D. Crich, J. Chem. Soc. Perkin Trans. 1 1992, 3193-3204.
- [27] L. Zhu, D. R. Mootoo, Org. Lett. 2003, 5, 3475-3478.

Received: May 7, 2008 Revised: October 28, 2008 Published online: January 29, 2009

FULL PAPER