

Tetrahedron Letters 42 (2001) 5413-5416

TETRAHEDRON LETTERS

A practical one-pot synthesis of O-unprotected glycosyl thioureas

Inés Maya, Óscar López, José G. Fernández-Bolaños,* Inmaculada Robina and José Fuentes

Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 553, E-41071, Seville, Spain Received 13 June 2001; accepted 14 June 2001

Abstract—An expeditious and high-yielding one-pot procedure to prepare different types of *O*-unprotected *N*- β -D-glycopyranosyl, *N*'-substituted thioureas and di- β -D-glucopyranosyl thioureido bolaamphiphiles from β -D-glycopyranosylamines via *O*-unprotected glycopyranosyl isothiocyanates has been developed. © 2001 Elsevier Science Ltd. All rights reserved.

Isothiocyanates are attractive synthons in organic chemistry due to their availability and their tendency to undergo nucleophilic additions and cycloadditions.^{1,2} Particularly, sugar isothiocyanates have been used for the synthesis of a wide spectrum of carbohydrate derivatives, mostly having thiourea structure, of synthetic, biological and pharmaceutical interest.³⁻⁵ Antiviral, antibacterial and antitumor agents have been prepared by reaction of glycosyl isothiocyanates with biologically active amines.^{3,6} Recently, glycosyl isothiocyanates are being used to prepare glycodendrimers and glycoclusters, as mimetics of natural oligo- and polysaccharides that interact with the carbohydrate recognition domains of cell surface lectins.7-9 Bridged thiourea calix-sugars have been prepared for molecular recognition studies.¹⁰

The facility of reaction between the NCS group and the hydroxyl groups of a sugar radical means that the availability of glycosyl isothiocyanates is practically limited to O-protected derivatives,³ which have been prepared by reaction of acylated glycosyl halides with silver thiocyanate following the classical Fischer's method,¹¹ and variants including the use of potassium thiocyanate under phase-transfer catalysis¹² or melting the acylated glycosyl bromide with potassium thiocyanate.¹³ Other methods involve the use of trimethylsilyl isothiocyanate and tin tetrachloride on peracetylated aldopyranoses² or the reaction of glycals with silicasupported KSCN in the presence of iodine.¹⁴ Isothiocyanation of glycosylamines has been performed via N-protection as enamines, O-protection, removal of the enamine group and treatment with thiophosgene.¹⁵

Scheme 1. Reagents and conditions: (i) 1.2 equiv. $CSCl_2$, pH 8 (NaHCO₃/CO₂), -10°C, 30 min, 1:1 dioxane-water; (ii) 1.2 equiv. of **7a-h** (0.6 equiv. of **7i,j**), pH 9 (NaHCO₃/CO₂), rt, 2–5 h.

Keywords: isothiocyanates; thiocarbamates; thioureas; thiophosgene; bolaamphiphiles.

^{*} Corresponding author. Tel.: +34 95 4557151; fax: 34 95 4624960; e-mail: bolanos@cica.es

The transformation of O-unprotected glucosyl (maltosyl, lactosyl)amines into glycosyl isothiocyanates by reaction with thiophosgene has been reported^{16–19} and they have been used as potent irreversible glycosidase inhibitors and as affinity labels of proteins involved in the transport of carbohydrates across cell membranes.

Table 1. Conversion of β -D-glycosylamines (1, 2) into thioureas 8 (D-gluco) and 9 (D-galacto)

Entry	R ³ R ⁴ NH	7	Products	8, 9	Yield $(\%)^a$
1	H ₃ C	7a		8a	66
				9a	58
2	CH ₃ (CH ₂) ₃ NH ₂	7b	$HO \rightarrow OH \rightarrow H $	8b	63
				8c	72
3	$CH_3(CH_2)_7NH_2$	7c	HO OH S (CH ₂) ₇ CH ₃	9c	61
4	∧ _N ∧ H	7d	HO OH H N 8d		
				8d	62
5		7e		8e	
			HO OH S		74
6	HO3S NH2	7f	HO OH SO3Na	8f	72
	ОН				
7	HOHO NH2	7g	HO OH N N HO OH	8g	55
8	HO OH HO NH ₂	7h		8h	73
	10		S _OH OH		
9	H2N(CH2)6NH2	7i		8i	84
			S S III		
10		7:		8;	79
10	$H_2N(CH_2)_{12}NH_2$	' J	UH II ^{· 12} II HO S S HO	օյ	70

^a Isolated yields

However, these compounds were later shown to undergo fast decomposition under physiological conditions²⁰ and no further chemistry has been described. β -D-Glucopyranosyl isothiocyanate (3) was prepared in low yield (22%) and this compound was spectroscopically characterised only by an IR absorption, and no reactions of the NCS group were described.¹⁷

We have investigated various approaches for the synthesis of **3** and obtained the most convenient results by reacting β -D-glucopyranosyl amine²¹ (1) with thiophosgene (Scheme 1) in a buffered medium (NaHCO $_3$ /CO $_2$, pH 8). After standard workup and purification procedure, a mixture of 3 and the corresponding 1,2-cyclic thiocarbamate 5 was obtained (64%);²² the 3:5 ratio measured by integration of ¹H NMR signals was 1:5 in $(CD_3)_2$ SO and 3:2 in D₂O, showing that 3 and 5 are in a solvent dependent equilibrium. This mixture could be transformed into thioureas (Table 1) by adding alkyl or aryl amines 7a-c, diethylamine 7d,²³ the aminoacids glycine or taurine 7e,f, or O-unprotected glycosylamines 7g,h to the same flask where 3/5 were formed. Similarly, bolaamphiphiles²⁴ 8i and 8j were prepared using α, ω -polymethylenediamines 7i and 7i.

Thioureas **8a–d** were purified by silica gel column chromatography and more polar compounds **8e–j** were purified by gel filtration chromatography. Similarly, we have obtained **9a** and **9c** starting from β -D-galactopyranosylamine **2**.

The reaction of β -D-mannopyranosylamine **10** with thiophosgene in the conditions described above for the synthesis of **3** produced the *cis* bicyclic thiocarbamate **11** (46%), which did not react with amines as latent isothiocyanate. The ¹H NMR spectrum in D₂O of **11** showed no signals for mannopyranosyl isothiocyanate. The different behaviour of the *cis*- and *trans*-hydrindanes-type systems **11** and **5** (**6**) could be explained by the strain of the ring fusion in the *trans*-isomer, as a consequence of the unfavourable puckering of the six-membered ring.²⁵

The widely used methodology for the synthesis of glycosyl thioureas involves the coupling of *O*-acylated glycosyl isothiocyanates with amines or aminosugars followed by Zemplen deacetylation.^{3,26,27} However, this reaction has been found to be occasionally unsuccessful or low yielding.³ In addition, an unexpected basecatalysed anomerisation reaction for α and β -Dmannopyranosyl thioureido derivatives has been described upon Zemplen deacetylation.^{28,29} This result contrasts with the preparation of **8h**, which did not show anomerisation.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (Grant no PB 97/0730) and the Junta de Andalucia (FQM134) for financial support. O.L. thanks the Ministerio de Educación y Cultura for a fellowship. This work is part of the European Programme COST D13/0001/98.

References

- 1. Mukerjee, A. K.; Ashare, R. Chem. Rev. 1991, 91, 1-24.
- Al-Masoudi, N.; Hassan, N. A.; Al-Soud, Y. A.; Schmidt, P.; Gaafar, A. E.-D. M.; Weng, M.; Marino, S.; Schoch, A.; Amer, A.; Jochins, J. C. J. Chem. Soc., Perkin Trans. 1 1998, 947–953.
- García Fernández, J. M.; Ortiz Mellet, C. Adv. Carbohydr. Chem. Biochem. 2000, 55, 35–135.
- Gasch, C.; Pradera, M. A.; Salameh, B. A. B.; Molina, J. L.; Fuentes, J. *Tetrahedron: Asymmetry* 2001, *12*, 1267– 1277.
- Fernández-Bolaños, J. G.; Zafra, E.; López, O.; Robina, I.; Fuentes, J. *Tetrahedron: Asymmetry* **1999**, *10*, 3011– 3023 and references cited therein.
- (a) Todoulou, O. G.; Papadaki-Valiraki, A. E.; Filippatos, E. C.; Ikeda, S.; De Clercq, E. *Eur. J. Med. Chem.* **1994**, *29*, 127–131; (b) Povarov, L. S.; Potapova, N. P.; Bakina, E. V.; Preobrazhenskaya, M. N.; Rozynov, B. V. *Bioorg. Khim.* **1992**, *18*, 1117–1126.
- 7. Roy, R. Curr. Opin. Struct. Biol. 1996, 6, 692-702.
- Lindhorst, T. K.; Kieburg, C. Angew. Chem., Int. Ed. Engl. 1996, 108, 2083–2086.
- Walter, M.; Lindhorst, T. K. 20th International Carbohydrate Symposium; Hamburg, Germany, 2000, abstr. B-134, p. 125.
- Saitz-Barrie, C.; Torres-Pinedo, A.; Santoyo González, F. Synlett 1999, 1891–1894.
- 11. Fischer, E. Ber. Dtsch. Chem. Ges. 1914, 47, 1377-1393.
- Camarasa, M. J.; Fernández-Resa, P.; García-López, M. T.; de la Heras, F. G.; Menéndez-Castrillón, P. P.; San Félix, A. *Synthesis* 1984, 509–510.
- 13. Lindhorst, T. K.; Kieburg, C. Synthesis 1995, 1228-1230.
- Santoyo González, F.; García-Calvo-Flores, F.; Isac-García, J.; Hernández-Mateo, F.; García-Mendoza, P.; Robles-Díaz, R. *Tetrahedron* 1994, 50, 2877–2894.
- 15. Pradera, M. A.; Molina, J. L.; Fuentes Mota, J. Tetrahedron 1995, 51, 923–934.
- Taverna, R. D.; Langdon, R. G. Biochem. Biophys. Res. Commun. 1973, 54, 593–599.
- Khorlin, A. Ya.; Shiyan, S. D.; Lakhtima, O. E.; Shulman, M. L. *Bioorg. Khim.* **1975**, *1*, 393–395.

- Shulman, M. L.; Lakhtina, O. E.; Khorlin, A. Ya. Biochem. Biophys. Res. Commun. 1977, 74, 455–459.
- 19. Mullins, R. E.; Langdon, R. G. Biochemistry 1980, 19, 1199–1205.
- Rees, W. D.; Gliemann, J.; Holman, G. D. *Biochem. J.* 1987, 241, 857–862.
- 21. Isbell, H. C.; Frush, H. L. J. Org. Chem. 1958, 23, 1309–1319.
- 22. Selected data for **3**: IR 2045 cm⁻¹ (NCS); ¹H NMR (500 MHz, D₂O): δ 4.94 (d, 1H, $J_{1,2}$ =8.2 Hz, H-1), 3.43 (t, 1H, $J_{2,3}$ =8.2 Hz, H-2) ppm; ¹³C NMR (125.7 MHz, D₂O): δ 143.2 (NCS), 86.9 (C-1); selected data for **5**: ¹H NMR (500 MHz, D₂O): δ 5.09 (d, 1H, $J_{1,2}$ =9.6 Hz, H-1), 4.07–4.09 (m, 1H, H-2) ppm; ¹³C NMR (125.7 MHz, D₂O): δ 193.7 (CS), 88.2 (C-1) ppm; HREIMS for **3** and **5** calcd for C₇H₁₁NO₅S [M]⁺ 221.0358, found 221.0356.
- 23. Selected data for 8d: mp 104–106°C (from ethanol); $[\alpha]_D^{28}$ -8.5 (*c* 1.17 in water); ¹H NMR (500 MHz, D₂O): δ 5.67 (d, 1H, J_{1,2}=8.8, H-1) ppm; ¹³C NMR (125.7 MHz,

D₂O): δ 180.0 (C=S), 86.4 (C-1) ppm.

- Fuhrhop, J.-H.; Helfrich, W. Chem. Rev. 1993, 93, 1565– 1582.
- 25. Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic Compounds; Wiley: New York, 1994; pp. 771–787.
- Broan, C. J.; Butler, A. R. J. Chem. Soc., Perkin Trans. 2 1989, 731–740.
- 27. Fuentes, J.; Molina, J. L.; Pradera, M. A. Tetrahedron: Asymmetry 1998, 9, 2517–2532.
- Benito, J. M.; Ortiz Mellet, C.; Sadalapure, K.; Lindhorst, T. K.; Defaye, J.; Fernández, J. M. *Carbohydr. Res.* 1999, *320*, 37–48.
- Blanco, J. L.; Barria, C. S.; Benito, J. M.; Ortiz Mellet, C.; Fuentes, J.; Santoyo-González, F.; Fernández, J. M. Synthesis 1999, 1907–1914.
- García Fernández, J. M.; Ortiz Mellet, C.; Maciejewski, S.; Defaye, J. Chem. Commun. (Cambridge) 1996, 2741– 2742.
- Prata, C.; Mora, N.; Polidori, A.; Lacombe, J.-M.; Pucci, B. *Carbohydr. Res.* **1999**, *321*, 15–23.