Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and CHK1 inhibitory potency of Hymenialdisine analogues

Jean-Gilles Parmentier^a, Bernard Portevin^a, Roy M. Golsteyn^{b,†}, Alain Pierré^b, John Hickman^b, Philippe Gloanec^a, Guillaume De Nanteuil^{a,*}

^a Medicinal Chemistry Division D, Institut de Recherche Servier, 11 rue des Moulineaux, 92150 Suresnes, France ^b Division of Cancerology, Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy sur Seine, France

ARTICLE INFO

Article history: Received 22 October 2008 Revised 28 November 2008 Accepted 2 December 2008 Available online 7 December 2008

Keywords: Hymenialdisine CHK1 inhibitor

ABSTRACT

A series of thieno[3,2-*b*]pyrroloazepinones derivatives related to Hymenialdisine were prepared and tested for CHK1 inhibitory activity. Nanomolar inhibitions were achieved when electron-withdrawing substituents were introduced at position 3 of the thiophene ring.

© 2008 Elsevier Ltd. All rights reserved.

Over the last decades, DNA damaging agents have been used as first line agents in cancer chemotherapy. As a consequence of DNA damage by UV light, radiation, or cytotoxic drugs, tumor cells arrest their cycle in S or G_2/M phases to attempt DNA repair or undergo apoptosis.¹ Studies have demonstrated that the Serine/ Threonine checkpoint kinase CHK 1 regulates both the G_2/M and intra-S checkpoints and plays an important role in cell-cycle progression, mainly for the P53-defective cancer cells (50–70% of all cancers). Since cell-cycle arrest was found to be necessary for DNA repair following damages induced by genotoxic agents, abrogation of the G_2/M checkpoint by specific inhibitors should increase the sensitivity of P53 deficient tumours to DNA damaging agents without enhancing toxicity toward normal proliferating cells, which are non-mutated P53 proficient cells.^{2,3}

(*Z*)-Hymenialdisine **1**, (*Z*)-2-debromohymenialdisine **2** and (*Z*)-3-bromohymenialdisine **3** (Fig. 1), are three naturally occurring alkaloids isolated from the marine sponges Hymenialcidon, Acanthella, Axinella and Stylissa.⁴ Structurally these compounds bear a pyrrole ring, often substituted with one or two bromine atoms, as well as an imidazolinone. These compounds have been reported to inhibit a large panel of kinases, among which CHK1.^{5.6}

In 2001, Smith-Kline–Beecham patented a series of Myt1 inhibitors exemplified here by the indole derivative **4**.⁷ This compound was later described by Tepe as a potent CHK1 inhibitor and its preparation was given.⁸ In our hands, in vitro potency and selectivity as well as in vivo activity of this family of inhibitors showed that improvement was needed in order to obtain a candidate for development. X-ray crystallography of Debromohymenialdisine in the ATP binding site of apo human CHK1 suggested that structural opportunities may still exist to enhance affinity against the enzyme by filling a pocket in the pyrroloazepinone region.⁹ Thus, we decided to explore the replacement of the phenyl ring of the indole system in **4** with other heterocycles. We report here our efforts in preparing and evaluating the potency against CHK1 of thieno-[3,2-*b*]-pyrroloazepinones analogues of *Z*-hymenialdisine **1**.

The synthesis of this family of compounds is depicted in Scheme 1. Conveniently substituted 2-formylthiophenes 5 were engaged in an alkylidenation reaction with ethyl 2-azido acetate in the presence of sodium ethoxide as a base according to the strategy of Hemetsberger and Knittel.¹⁰ Cyclisation of the ethyl azido thiophene carboxylates 6 was realized in refluxing xylene and gave the ethyl thieno[3,2-b]pyrrole-5-carboxylates 7. The corresponding acids 8 were obtained by saponification in a mixture of aqueous sodium hydroxide and ethanol in quantitative yields. Coupling these acids with β -alanine ethyl ester gave esters **9** in good yields. A second saponification using aqueous potassium hydroxide in refluxing ethanol allowed us to obtain the acids 10 in very good yields. Cyclisation of these compounds to give the thieno[3,2-b]pyrroloazepinones 11 proved to be more tedious: the expected compounds were only obtained using a mixture of MeSO₃H and P₂O₅ warmed at 80-100 °C for 1-4 h with yields ranging from 15% to 93%. Protection of the nitrogen atom of the pyrrole ring was realized with pmethoxybenzyl bromide to give compounds 12. At this stage, this nitrogen atom was also methylated (K₂CO₃, CH₃I, DMF, 63%). To incorporate the glycocyamidine ring, we capitalized on the observation made by Tepe et al.,¹¹ and succeeded in condensing thiohydantoine and rhodanine with ketones 12 using the previously

^{*} Corresponding author. Tel.: +33 1 55 72 22 34; fax: +33 1 55 72 24 30. *E-mail address:* guillaume.denanteuil@fr.netgrs.com (G. De Nanteuil).

 ¹ Present address: Department of Biological Sciences, University of Lethbridge, Lethbridge, Alta., Canada T1K 3M4.

Figure 1.

reported Ti(IV)-pyridine reagent. Yields of **13** were predominantly low to moderate. These intermediates were further transformed into Hymenialdisine analogues by reacting **13** with a variety of amines in the presence of terbutyl-hydroperoxide as an oxidant,¹² to produce **14**. **14p** and **14q** were obtained by condensation with ethanolamine and **14r** with morpholin-1-yl-ethylamine.

Otherwise, ammonia was used. Final deprotection of the thieno[3,2-*b*]pyrroloazepine moiety with trifluoroacetic acid afforded the final inhibitors **15** after reverse phase HPLC purification. The preparation of **150** necessitated two more steps, first coupling with Boc-glycine (HATU, DIEA, DMF, 48 h, rt, 62%) followed by deprotection with TFA (CH₂Cl₂, 2 h, rt, 42%).

Compound **9e** was found to be the starting material for structural modifications at position 3 on the thieno[3,2-*b*] pyrrole ring (Scheme 2). Substitution of the bromide was realized by standard cyanation conditions resulting in the obtention of **9g**, which was subsequently hydrolysed in acidic media to give **9h**. On the other hand, introduction of a phenyl group at position 3 of **9e** was successfully realized by a Suzuki-Miyaura reaction involving phenyl boronic acid according to the conditions described by Buchwald to produce **9i** in excellent yield.¹³ These intermediates were engaged in the following steps as described above.

 IC_{50} for Chk1 inhibition are given in Table 1. First, it is worth noting that the potencies of the debromo and dibromo derivatives **2** and **3**, as well as the indole analog **4** were found in the same range of activity at IC_{50} between 0.10 and 0.47 μ M, indicating that substitutions on the pyrrole ring as well as its coupling with a phenyl to give the indole ring hardly influenced activity. Hymenialdi-

Scheme 1. Typical synthesis of inhibitors. Reagents and conditions: (a) ethyl 2-azido acetate, EtONa, 2 h, 20–55%; (b) xylene, reflux, 0.5 h, 70–75%; (c) 1 N NaOH, EtOH–H₂O, 20 h, 52–95%; (d) β-alanine ethyl ester, DCC-HOBT-DIEA, DMF, 2 h, 80–100%; (e) 1 N KOH, EtOH–H₂O, 3–6 h, 85–97%; (f) CH₃SO₃H–P₂O₅, 1–4 h, 15–93%; (g) *p*-methoxybenzyl bromide (PMB-Br), K₂CO₃, CH₃CN, 4–10 h, 75–85%; (h) thiohydantoine (X = NH) or rhodanine (X = S), TiCl4-pyridine-THF, 3 h at –5 °C, 11–62%; (i) R4-NH₂, *t*BuOOH–EtOH, 8 h, 12–55%; (j) refluxing TFA, 12 h, 25–52%.

Scheme 2. Modifications of 9e at position 3. Reagents and conditions : (a) Cu(CN)₂, DMF, 6 h, 41%; (b) 4 N HCl, dioxane, 100 °C, 3 h, 64%; (c) phenyl boronic acid, Pd₂(dba)₃, 2'-dicyclohexylphosphino-2,6-dimethoxy-1,1'-biphenyl (S-Phos), K₃PO₄, toluene, 10 h, 64%.

Table 1ChK1 IC50 values for compounds 1-4, 14a-b, 15a-s

Compound	\mathbb{R}^1	R ²	R ³	\mathbb{R}^4	Х	CHK1 IC ₅₀ (µM)
1	-	-	Н	Н	NH	1.9*
2	_	_	Н	Н	NH	0.33
3	_	_	Н	Н	NH	0.10
4	_	_	Н	Н	NH	0.47
14a	Н	Н	CH ₃	Н	NH	>10
14b	Н	Br	4-MeOBn	Н	NH	>10
15a	Н	Н	Н	Н	NH	0.15
15b	Cl	Н	Н	Н	NH	0.30
15c	Н	Cl	Н	Н	NH	0.14
15d	Cl	Cl	Н	Н	NH	0.89
15e	Br	Н	Н	Н	NH	0.46
15f	Н	Br	Н	Н	NH	0.014
15g	Н	CN	Н	Н	NH	0.029
15h	Н	CONH ₂	Н	Н	NH	0.15
15i	Н	Ph	Н	Н	NH	1.3
15j	Phenyl ring		Н	Н	NH	0.23
15k	Н	Н	Н	Н	S	0.18
151	Н	Br	Н	Н	S	0.19
15m	Н	Ph	Н	Н	S	>10
15n	Phenyl ring		Н	Н	S	>10
150	Н	Br	Н	HOOC-CH ₂	NH	0.26
15q	Н	Н	Н	$HO(CH_2)_2$	NH	1.7
15r	Н	Br	Н	$HO(CH_2)_2$	NH	0.28
15s	Н	Н	Н	Morpholin-1-ethyl	NH	>5

* Literature value Ref. 8.

sine **1** was not tested in house, but its IC_{50} value reported by Tepe at 1.9 μ M can be considered if one compares IC_{50} 's for DBH **2** at 0.72 μ M in Tepe's paper and 0.33 μ M in our hands. As far as the thieno-[3,2-*b*]-pyrroloazepinone ring system was concerned, we studied first the alkylation of the nitrogen atom of the central pyrrole ring. A methyl group in **14a** or a *p*-methoxy benzyl group in **14b** suppressed the activity, with IC_{50} greater than 10 μ M. This set us to thinking that this nitrogen atom could be engaged in a donor-acceptor bond with the active site of the enzyme. Suppressing

this substitution in **15a** restored an inhibitory activity similar to that of the reference molecules, with an IC₅₀ of 0.15 μ M. Equivalent activities were found when a chlorine or a bromine atom were introduced at position 2 (**15b**: 0.3 μ M and **15e**: 0.46 μ M) or when a chlorine atom was introduced at position 3 (**15c**: 0.14 μ M). The 2,3-dichloro substitution present in compound **15d** slightly decreased the activity with an IC₅₀ of 0.89 μ M. The breakthrough in these structural studies was obtained when bromine or nitrile were introduced at position 3, giving rise to a substantial gain in

activity for inhibitors **15f** and **15g** with IC_{50} of 0.014 and 0.029 μ M, respectively. Conversion of the nitrile moiety to an amide in **15h** resulted in loss of potency at 0.15 μ M. Introduction of a phenyl ring at position 3 in **15i** was rather deleterious for activity with an IC_{50} of 1.3 μ M, but fusing this phenyl with the thiophene ring in compound **15j** restored the activity, giving an IC_{50} of 0.23 μ M.

We then turned our attention to the imidazolinone ring. The protonated nitrogen atom was replaced by a sulphur atom to give the more lipophilic rhodanine derivative **15k** which maintained the inhibitory potency at 0.18 μ M. Curiously enough, one order of magnitude in the potency was lost with the 3-bromo derivative **15l** (0.19 μ M vs 0.014 μ M for **15f**). Furthermore, **15m** and **15n**, the analogs of compounds **15i** and **15j**, were found to be barely active, with activities greater than 10 μ M.

Finally, substitution of the exocyclic nitrogen atom of the imidazolinone ring gave compounds **15o–s**. Activity was decreased of one order of magnitude compared to the non-substituted parent compounds **15a** or **15f**.

In summary, we explored a new series of thieno-[3,2-*b*]-pyrroloazepinones analogues of the natural Hymenialdisine family. Substitution of the thiophene ring with electron-withdrawing groups such as bromo or cyano afforded novel inhibitors **15f** and **15g** which produced a 10-fold improvement in the enzymatic inhibitory potency at IC₅₀ of 14 and 29 nM against Chk1, respectively. In contrast, small structural variations located on the imidazolinone ring resulted in extensive erosion of inhibitory activity. **15f** was submitted to a selectivity profiling against a panel of 220 kinases. Like Hymenialdisine and several other CHK1 inhibitors, **15f** proved to be a multi-targeted kinase inhibitor, giving 52 hits (>80% inhibition at 1 μ M). Nanomolar IC₅₀ were found for the inhibition of kinases such as FLT3, GSK3 β , ARK5 or SIK. The lead compounds have also been evaluated at the cellular level as well as in vivo against a panel of tumoral cell lines. These results will be reported shortly.

Acknowledgment

Sandrine Calis is warmly thanked for her skillful technical assistance.

References and notes

- 1. (a) Zhou, B. B. S.; Bartek, J. J. Nat. Rev. Cancer 2004, 4, 1; (b) Bartek, J.; Lukas, J. Cancer Cell 2003, 3, 421.
- 2. Li, Q.; Zhu, G. D. Curr. Top. Med. Chem. 2002, 2, 939.
- 3. Hector, S.; Porter, C. W.; Kramer, D. L.; Clark, K.; Prey, J.; Kisiel, N.; Diegelman, P.; Chen, Y.; Pendyala, L. Mol. Cancer Ther. **2004**, 3, 813.
- Tasdemir, D.; Mallon, R.; Greenstein, M.; Feldberg, L. R.; Kim, S. C.; Collin, K.; Wojciechowicz, D.; Mangalindan, G. C.; Concepción, G. P.; Harper, M. K.; Ireland, C. M. J. Med. Chem. 2002, 45, 529.
- Curman, D.; Cinel, B.; Williams, D. E.; Rundle, N.; Block, W. D.; Goodarzi, A. A.; Hutchins, J. R.; Clarke, P. R.; Zhou, B.-B.; Lees-Miller, S. P.; Andersen, R. J.; Roberge, M. J. Biol. Chem. 2001, 276, 17914.
- Meijer, L.; Thunnissen, A.-M. W. H.; White, A. W.; Garnier, M.; Nikolic, M.; Tsai, L.-H.; Walter, J.; Cleverley, K. E.; Salinas, P. C.; Wu, Y.-Z.; Biernat, J.; Mandelkow, E.-M.; Kim, S.-H.; Pettit, G. R. *Chem. Biol.* **2000**, *7*, 51.
- 7. Lago, M. A. WO Patent 01/64680, 2001; *Chem. Abstr.* **2001**, *135*, 211033.
- 8. Sharma, V.; Tepe, J. J. Bioorg. Med. Chem. Lett. 2004, 14, 4319.
- Foloppe, N.; Fisher, L. M.; Francis, G.; Howes, R.; Kierstan, P.; Potter, A. Bioorg. Med. Chem. 2006, 14, 1792.
- (a) Hemetsberger, H.; Knittel, D. Monasth. Chem. **1972**, *103*, 194; (b) Eras, J.; Gálvez, C.; García, F. J. Heterocyclic Chem. **1984**, *21*, 215; (c) Iriarte, J.; Martinez, E.; Muchowski, J. M. J. Heterocyclic Chem. **1976**, *13*, 393.
- (a) Sharma, V.; Lansdell, T. A.; Jin, G.; Tepe, J. J. *J. Med. Chem.* **2004**, *47*, 3700; (b) Prager, R. H.; Tsopelas, C. *Aust. J. Chem.* **1992**, *45*, 1771.
- (a) Lindel, T.; Hoffmann, H. *Tetrahedron Lett.* **1997**, *38*, 8935; (b) Portevin,
 B.; Golsteyn, R. M.; Pierré, A.; De Nanteuil, G. *Tetrahedron Lett.* **2003**, *44*, 9263
- 13. Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L. Angew. Chem. Int. 2004, 43, 1871.