Tetrahedron Letters 52 (2011) 1303-1305

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

An expedient atom-efficient synthesis of the cannabinoid CB₁ receptor inverse agonist ibipinabant

Jos H. M. Lange*, Hans J. Sanders, Jeroen van Rheenen

Abbott Healthcare Products B.V., Chemical Design & Synthesis Unit, C.J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands

ARTICLE INFO

Article history: Received 16 November 2010 Revised 21 December 2010 Accepted 14 January 2011 Available online 21 January 2011

ABSTRACT

A novel synthetic route to the highly selective and orally active cannabinoid CB_1 receptor inverse agonist ibipinabant is described which combines the use of inexpensive, commercially available reagents and mild reaction conditions with a high degree of atom-efficiency. The method is expected to enable the rapid synthesis of a variety of sulfonylguanidines.

© 2011 Elsevier Ltd. All rights reserved.

The endocannabinoid system plays a key role in many physiological processes.¹ Moreover, cannabinoid CB₁ receptor antagonists/inverse agonists have shown clinical efficacy in the treatment of obesity and related cardiovascular and metabolic risk factors,^{2,3} and have been related^{4,5} to the potential treatment of addiction.^{6,7} cognitive disorders⁸ and peripherally mediated disorders, such as liver fibrosis, cancer, arthritis and chronic bronchitis. However, the risk of psychiatric side-effects has led to the termination⁹ of many developmental programmes on CB₁ receptor blockers for the treatment of obesity. More recently, suggestions have been made aimed at possible therapeutic applications in peripheral pathologies¹⁰ and continuation of obesity clinical trials, while safeguarding the safety of patients and clinical trial subjects.¹¹ The majority of the reported $^{12-14}$ CB₁ receptor antagonists and inverse agonists can be described in terms of a general pharmacophore model.15-19

The dihydropyrazole derivative **1** (ibipinabant, SLV319)²⁰ is a thousand-fold CB_1/CB_2 selective and an orally active cannabinoid CB_1 receptor inverse agonist which constitutes an important pharmacological tool for investigation of the physiological role of the cannabinoid CB_1 receptor in vitro and in vivo (Fig. 1). It should also be noted that **1** showed negligible off-target activities in a panel of more than hundred receptor and enzyme biological targets.

Several synthetic approaches to 1^{20} and 2 (SLV330)²¹ and structural analogues^{22–24} have been reported, and routes to general structure **3** are summarized in Scheme 1.^{20–22} Typically, the key building block **4** was coupled with various electrophilic reagents **5–7** to furnish intermediates **8–10**, respectively, which were further converted into the racemic CB₁ inverse agonists of general formula **3**.

Although the routes outlined in Scheme 1 are well-suited to produce pyrazolines, such as **1** and **2** on small scale under laboratory conditions, the use of corrosive and highly toxic reagents (e.g., $HgCl_2$) has rendered them less useful for synthesis on a larger scale.

For example, in the described²⁰ synthetic route to **1**, the corrosive chlorinating agent PCl_5 was used at reflux temperature in chlorobenzene. At elevated temperatures, PCl_5 is known to slowly decompose into PCl_3 and highly toxic chlorine gas. Large scale use of such compounds would create considerable safety hazards.

A novel synthetic route to pyrazoline derivatives of the more general formula **3**, under milder reaction conditions, would enable the inclusion of additional sensitive functionalities without the need for complicated protecting group strategies. Furthermore, it should be emphasized that the efficient synthetic methods are characterized by a high degree of atom economy,²⁵ that is, the maximum number of atoms from the reactants appearing in the product.

The above mentioned considerations prompted the design of a general and easily scalable route toward sulfonylguanidines,²⁶ in particular those in which one of the guanidine nitrogen atoms is part of a heterocyclic ring,²⁷ such as **1** and **2**, combining the use of mild reaction conditions and inexpensive, commercially available reactants with a high degree of atom-efficiency.²⁸ Such an

Figure 1. CB₁ receptor inverse agonists 1 and 2.

^{*} Corresponding author. Tel.: +31 294 479731; fax: +31 294 477138.

^{0040-4039/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.01.068

Scheme 1. Reported synthetic conversions of 4 into compounds of general structure 3.

improvement in synthetic access will be of importance since the (sulfonyl)guanidine moiety constitutes a key structural element in many biologically active compounds²⁹ and natural products.³⁰

The resulting novel synthetic route starts from commercially available **4**³¹ which was reacted with methylisothiocyanate in ethanol to furnish the corresponding carbothioamide **11** in 90% yield,

Scheme 2. Reagents and conditions: (a) CH₃N=C=S, EtOH, N₂, reflux, 3 h (90%); (b) MeI, MeOH, N₂, 40 °C, 16 h (99%); (c) RSO₂NH₂, MeCN, reflux, 16 h (82–87%).

which can equilibrate with its tautomer **12** (Scheme 2). Subsequent reaction of **11** with methyl iodide in methanol gave **13** in almost quantitative yield (99%). Gratifyingly, no chromatographic purification was required for these first two steps. The racemic target compound **14** was obtained³² in 87% yield by the reaction of **13** with commercially available 4-chlorophenylsulfonamide in acetonitrile. The overall yield of this reaction sequence was 78% which is substantially higher than the original route²⁰ (~60%). The atom-efficiency of this novel route was 75% which is considerably higher than those of the previously described routes. Analogously, piperidine analogue **15** was prepared in 82% yield from **13** and commercially available piperidine-1-sulfonamide. The resultant overall yield in this sequence was 73% being much higher than the original route²¹ (~45%).

Application of preparative chiral HPLC enabled the active 4S enantiomers $\mathbf{1}$ and $\mathbf{2}$ to be obtained^{20,21} in multi-kilogram amounts after scale-up.

A crucial step herein constituted racemisation of the corresponding 4*R* enantiomers, which were also collected during the preparative chiral HPLC procedure, under basic conditions and subsequently recycling the respective racemates **14** and **15** in the chiral HPLC separation process. It was found that treatment with 2 N NaOH in ethanol at room temperature for 20 h resulted in clean racemisation which is in line with the observed epimerization³³ in structural analogues of **1** and **2**.

In conclusion, a novel synthetic approach to the highly selective and orally active cannabinoid CB_1 receptor inverse agonist ibipinabant (**1**) and a structural analogue **2** is disclosed. This route combines the use of inexpensive, commercially available reagents and mild reaction conditions with a high degree of atom-efficiency. It can be anticipated that the outlined synthetic methodology will enable easy access to a wide variety of sulfonylguanidine derivatives. Work in this area is currently in progress.

Acknowledgements

Chris Kruse, Fabrice Guillier and Uwe Schön are gratefully acknowledged for their helpful suggestions and Syncom BV (The Netherlands) for synthetic support. Belal Shadid is thanked for his contribution to the described racemisation procedure.

References and notes

- 1. Lambert, D. M.; Fowler, C. J. J. Med. Chem. 2005, 48, 5059-5087.
- Van Gaal, L. F.; Rissanen, A. M.; Scheen, A. J.; Ziegler, O.; Rössner, S. Lancet 2005, 365, 1389–1397.
- 3. Antel, J.; Gregory, P. C.; Nordheim, U. J. Med. Chem. 2006, 49, 4008–4016.
- 4. Lange, J. H. M.; Kruse, C. G. Chem. Rec. 2008, 8, 156-168.
- 5. Di Marzo, V. Nat. Rev. Drug Disc. 2008, 7, 438-455.
- Beardsley, P. M.; Thomas, B. F.; McMahon, L. R. Int. Rev. Psychiatry 2009, 21, 134–142.
- De Bruin, N. M. W. J.; Lange, J. H. M.; Kruse, C. G.; Herremans, A. H.; Schoffelmeer, A. N. M.; van Drimmelen, M.; de Vries, T. J. Behav. Brain Res. 2011, 217, 408–415.
- De Bruin, N. M. W. J.; Prickaerts, J.; Lange, J. H. M.; Akkerman, S.; Andriambeloson, E.; de Haan, M.; Wijnen, J.; van Drimmelen, M.; Hissink, E.; Heijink, L.; Kruse, C. G. *Neurobiol. Learn. Mem.* **2010**, 93, 522–531.
- 9. Jones, D. Nat. Rev. Drug Disc. 2008, 7, 961-962.
- 10. Bifulco, M.; Pisanti, S. Nat. Rev. Drug Disc. 2009, 8, 594.
- 11. Le Foll, B.; Gorelick, D. A.; Goldberg, S. R. Psychopharmacology **2009**, 205, 171– 174.
- 12. Högenauer, E. K. Expert Opin. Ther. Patents 2007, 17, 1457-1476.
- 13. Jagerovic, N.; Fernandez-Fernandez, C.; Goya, P. Curr. Top. Med. Chem. 2008, 8, 205–230.
- 14. Janero, D. R.; Makriyannis, A. Expert Opin. Emerg. Drugs 2009, 14, 43-65.
- 15. Reggio, P. H. Curr. Pharm. Des. 2003, 9, 1607–1633.
- 16. Lange, J. H. M.; Kruse, C. G. Curr. Opin. Drug Discov. Devel. 2004, 7, 498-506.
- Lange, J. H. M.; Kruse, C. G. Drug Discovery Today 2005, 10, 693–702.
 Wang, H.; Duffy, R. A.; Boykow, G. C.; Chackalamannil, S.; Madison, V. S. J. Med.
- Chem. 2008, 51, 2439–2446.

- Foloppe, N.; Benwell, K.; Brooks, T. D.; Kennett, G.; Knight, A. R.; Misra, A.; Monck, N. J. T. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 4183–4190.
- Lange, J. H. M.; Coolen, H. K. A. C.; van Stuivenberg, H. H.; Dijksman, J. A. R.; Herremans, A. H. J.; Ronken, E.; Keizer, H. G.; Tipker, K.; McCreary, A. C.; Veerman, W.; Wals, H. C.; Stork, B.; Verveer, P. C.; den Hartog, A. P.; de Jong, N. M. J.; Adolfs, T. J. P.; Hoogendoorn, J.; Kruse, C. G. J. Med. Chem. 2004, 47, 627– 643.
- Lange, J. H. M.; van Stuivenberg, H. H.; Veerman, W.; Wals, H. C.; Stork, B.; Coolen, H. K. A. C.; McCreary, A. C.; Adolfs, T. J. P.; Kruse, C. G. *Bioorg. Med. Chem. Lett.* 2005, *15*, 4794–4798.
- Lange, J. H. M.; van der Neut, M. A. W.; den Hartog, A. P.; Wals, H. C.; Hoogendoorn, J.; van Stuivenberg, H. H.; van Vliet, B. J.; Kruse, C. G. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 1752–1757.
- Lange, J. H. M.; den Hartog, A. P.; van der Neut, M. A. W.; Kruse, C. G. Bioorg. Med. Chem. Lett. 2009, 19, 5675–5678.
- Lange, J. H. M.; Coolen, H. K. A. C.; van der Neut, M. A. W.; Borst, A. J. M.; Stork, B.; Verveer, P. C.; Kruse, C. G. J. Med. Chem. 2010, 53, 1338–1346.
- 25. Trost, B. M. Science 1991, 254, 1471-1477.
- (a) Thai, K.; Gravel, M. Tetrahedron: Asymmetry 2010, 21, 751–755; (b) Shi, Y.; Li, C.; O'Connor, S. P.; Zhang, J.; Shi, M.; Bisaha, S. N.; Wang, Y.; Sitkoff, D.; Pudzianowski, A. T.; Huang, C.; Klei, H. E.; Kish, K.; Yanchunas, J.; Liu, E. C.-K.; Hartl, K. S.; Seiler, S. M.; Steinbacher, T. E.; Schumacher, W. A.; Atwal, K. S.; Stein, P. D. Bioorg. Med. Chem. Lett. 2009, 19, 6882–6889; (c) Qin, C.; Li, J.; Fan, E. Synlett 2009, 2465–2468; (d) Martin, N. I.; Liskamp, R. M. J. J. Org. Chem. 2008, 73, 7849–7851; (e) Flemer, S.; Madalengoitia, J. S. Synthesis 2007, 12, 1848– 1860; (f) Shepherd, J.; Gale, T.; Jensen, K. B.; Kilburn, J. D. Chem. Eur. J. 2006, 12, 713–720; (g) Gluszok, S.; Goossens, L.; Depreux, P.; Hénichart, J.-P. Tetrahedron Lett. 2006, 47, 6087–6090; (h) Jensen, K. B.; Braxmeier, T. M.; Demarcus, M.; Frey, J. G.; Kilburn, J. D. Chem. Eur. J. 2002, 8, 1300–1309; (i) Zhang, J.; Shi, Y. Tetrahedron Lett. 2000, 41, 8075–8078; (j) Bonnat, M.; Bradley, M.; Kilburn, J. D. Tetrahedron Lett 1996, 37, 5409–5412; (k) Deprez, P.; Vevert, J.-P. Synth. Commun. 1996, 4299–4310.
- (a) Zhang, Y.; Kennan, A. J. Org. Lett. 2001, 3, 2341–2344; (b) Levallet, C.; Lerpiniere, J.; Ko, S. Y. Tetrahedron 1997, 53, 5291–5304; (c) Himbert, G.; Schwickerath, W. Liebigs Ann. Chem. 1982, 12, 2105–2118.
- 28. Sheldon, R. A. Pure Appl. Chem. 2000, 72, 1233-1246.
- (a) Saczewski, F.; Balewski, L. Expert Opin. Ther. Patents 2009, 19, 1417–1448;
 (b) Hirsh, A. J.; Sabater, J. R.; Zamurs, A.; Smith, R. T.; Paradiso, A. M.; Hopkins, S.; Abraham, W. M.; Boucher, R. C. J. Pharmacol. Exp. Ther. 2004, 311, 929–938;
 (c) Tsuji, S.; Kawano, S.; Tsujii, M.; Kawai, N.; Gunawan, E. S.; Sun, W. H.; Hori, M. Arzneimittelforschung 2001, 51, 46–50.
- Berlinck, R. G. S.; Burtoloso, A. C. B.; Trindade-Silva, A. E.; Romminger, S.; Morais, R. P.; Bandeira, K.; Mizuno, C. M. Nat. Prod. Rep. 2010, 27, 1871–1907.
- 31. Grosscurt, A. C.; Van Hes, R.; Wellinga, K. J. Agric. Food Chem. 1979, 27, 406-409. Yields refer to isolated pure products unless otherwise noted and were not optimized. Selected data for compounds 14 and 15. Synthesis of compound 14: A mixture of 4 (30 g, 117 mmol), absolute EtOH (180 ml) and methyl isothiocyanate (11.1 g, 152 mmol) was stirred under an N₂ atmosphere at reflux temperature for 3 h. The resulting solid was filtered off and washed with EtOH $(3 \times 70 \text{ ml})$ and dried under vacuum to give **11** as a white solid (35 g, 90%)yield). Melting point: 181-183 °C. ¹Η NMR (400 MHz, CDCl₃): δ 3.25 (d, 7.36 (m, 5H), 7.44 (br s, 1H), 7.56 (d, J = 8.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 31.5, 50.6, 58.6, 127.2 (2C), 127.8, 128.5 (2C), 128.85, 128.88 (2C), 129.4 (2C), 136.2, 139.6, 155.9, 177.0. To a stirred solution of 11 (5 g, 15.2 mmol) in MeOH (150 ml) was added MeI (9.5 ml, 152 mmol). The mixture was heated at 40 °C (oil bath temperature) overnight under an N2 atmosphere. The solution was concentrated in vacuum with an oil bath temperature below 45 °C. The residue was dissolved in CH₂Cl₂ (300 ml) and washed with saturated aqueous NaHCO₃ solution (70 ml) and brine (70 ml), dried over $N_{42}SO_4$, filtered and concentrated under vacuum to afford **13** (5.2 g, 99% yield) as a yellow solid. $^1\mathrm{H}$ NMR (400 MHz, CDCl₃): δ 2.64 (s, 3H), 3.25 (s, 3H), 3.88 (dd, J = 11 and 4.5 Hz, 1H), 4.37 (t, J = 11 Hz, 1H), 4.56 (dd, J = 11 and 4.5 Hz, 1H), 7.15–7.33 (m, 7H), 7.56 (d, J = 8.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 16.7, 38.5, 49.8, 58.1, 127.2 (2C), 127.4, 127.7 (2C), 128.6 (2C), 129.1 (2C), 130.1, 134.7, 140.0, 152.5, 154.1. A stirred solution of 13 (4.00 g, 11.62 mmol) and 4chlorobenzenesulfonamide (2.34 g, 12.20 mmol) in MeCN (90 ml) was heated at reflux temperature for 16 h. The resulting mixture was evaporated under vacuum. The obtained crude residue was further purified by flash chromatography gradient: petroleum [silica gel, eluent ether/ EtOAc = $90:10 \rightarrow 60:40 (v/v/)$] to afford **14** (4.93 g, 87% yield) as a solid. The ¹H NMR spectrum and other analytical data of **14** were in accordance with reported data.²⁰ Synthesis of compound **15**: A solution of **13** (5.0 g, 14.5 mmol) and piperidine-1-sulfonamide (2.5 g, 15.23 mmol) in MeCN (110 ml) was stirred at reflux temperature overnight. The resulting yellow solution was evaporated under vacuum. Purification by column chromatography on alumina (Act. III) eluting with an heptane/EtOAc gradient from 3:1 to 1:1 gave 15 (5.5 g, 82% yield, 99% HPLC purity) as a white solid. Compound 15 crystallized in the test tubes upon collection from the column (heptane/EtOAc, 2:1). Melting point: 175-177 °C. The ¹H NMR spectrum and other analytical data of 15 were in accordance with reported data.²¹
- Donohue, S. R.; Pike, V. W.; Finnema, S. J.; Truong, P.; Andersson, J.; Gulyás, B.; Halldin, C. J. Med. Chem. 2008, 51, 5608–5616.