ELSEVIER

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstruc

C–H...N hydrogen bonds mediated solid state structures of 2,2'-*bis* (4-pyridylsulfanylmethyl)-1,1'-biphenyl and 9-(4-pyridylsulfanyl)phenanthrene

Ketaki Upadhye, J. PrakashaReddy, V.R. Pedireddi*

Solid State & Supramolecular Structural Chemistry Lab, Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India

ARTICLE INFO

Article history: Received 30 July 2009 Received in revised form 17 August 2009 Accepted 19 August 2009 Available online 23 August 2009

Keywords: Supramolecular assemblies Noncovalent interactions Hydrogen bonds

1. Introduction

Design and synthesis of organic and metal-organic assemblies with exotic supramolecular architectures utilizing various noncovalent interactions, in particular, hydrogen bonds, are of current research interest due to the potential applications of these assemblies in the areas of separation technology, catalysis, pharmaceutics, etc. [1-11]. Thus, numerous reports of a myriad of supramolecular assemblies utilizing different types of organic ligands possessing varied functionalities like carboxylates, aza-donor groups etc., are well known in the recent literature [12-15]. However, development of novel supramolecular assemblies is always a challenging, especially choosing co-crystal former with required functional moieties. Since most of the assemblies are generally associated with rigid molecules [16-18], exploration of supramolecular structures through molecules substituted with functional moieties associated with topology, properties, etc., of the conformational flexibility would provide a lot of advantages for tuning the ultimate supramolecular assemblies [19-22]. For this purpose, thio-based pyridylsulfanylmethyl derivatives, with multi-armed tripodal geometry have now used as novel ligands for the evaluation in organic and metal-organic assemblies. In this regard, earlier, we reported [23] a systematic study of coordination assemblies of 1,3,5-tris(4-pyridylsulfanylmethyl)-2,4,6-trimethylbenzene, with different mercuric halides. In continuation of our endeavors to prepare such assemblies with other pyridylsulfanyl compounds, 2,2'-bis(4-pyridylsulfanylmethyl)-1,1'-biphenyl and

E-mail address: vr.pedireddi@ncl.res.in (V.R. Pedireddi).

ABSTRACT

Solid state structure elucidation of sulfanyl ligands, 2,2'-*bis*(4-pyridylsulfanylmethyl)-1,1'-biphenyl, L_1 and 9-(4-pyridylsulfanyl)phenanthrene, L_2 are reported. In the structures L_1 and L_2 , the molecules are self-assembled through C-H...N hydrogen bonds, yielding ensembles of cyclic and helical networks. © 2009 Elsevier B.V. All rights reserved.

9-(4-pyridylsulfanyl)phenanthrene have been prepared. In this process, the native structures of these ligands are found to be not known in the literature, so we carried out structure determination of these pyridylsulfanyl ligands by single crystal X-ray diffraction methods. Herein, we report the salient features of solid state structures of 2,2'-bis(4-pyridylsulfanylmethyl)-1,1'-biphenyl and 9-(4-pyridylsulfanyl)phenanthrene, which form different types of networks in the crystal lattices (see Chart 1).

2. Results and discussion

Refluxing a methanol solution of 2,2'-*bis*(bromomethyl)-1,1'biphenyl with pyridine-4-thiol (also exists as pyridinethione) [24–26] at 35 °C, obtained a product 2,2'-*bis*(4-pyridylsulfanylmethyl)-1,1'-biphenyl but the same reaction mixture refluxing at 80 °C for 48 h, however, gave ligand, 9-(4-pyridylsulfanyl)phenanthrene (Chart 2). Both the compounds upon purification, by recrystallization, gave good quality single crystals, suitable for the structure elucidation by X-ray diffraction methods.

2.1. Structure of 2,2'-bis(4-pyridylsulfanylmethyl)-1,1'-biphenyl, L1

Block type single crystals of L_1 obtained by diffusion of petroleum ether into ethyl acetate, at ambient conditions. X-ray diffraction analysis reveals that L_1 is found to be crystallized into triclinic space group, $P\bar{1}$; unit cell parameters and other pertinent crystallographic details are given in Table 1. In the crystal structure of L_1 , molecules are fully ordered and the asymmetric unit is shown in Fig. 1. The two phenyl moieties of biphenyl core are twisted such that they got arranged almost perpendicular to each other. These

^{*} Corresponding author. Fax: +91 20 25902629.

^{0022-2860/\$ -} see front matter @ 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.molstruc.2009.08.020

2,2'-bis(4-pyridylsulfanyl-methyl)-1,1'-biphenyl (L1)

9-(4-pyridylsulfanyl)phenanthrene (L2)

Chart 1.

Chart 2.

Table 1	
Crystallographic data of ligands L_1 and L_2 .	

	L ₁	L ₂
Formula	C ₂₄ H ₂₀ N ₂ S ₂	C ₁₉ H ₁₃ N ₁ S ₁
Fw	400.54	287.36
Crystal shape	Blocks	Blocks
Crystal color	Colorless	Colorless
Crystal system	Triclinic	Monoclinic
Space group	ΡĪ	P21
a (Å)	9.337(5)	9.223(4)
b (Å)	9.923(5)	5.517(2)
c (Å)	12.939(6)	14.147(6)
α (deg)	110.52(1)	90
β (deg)	94.01(1)	105.20(1)
γ (deg)	113.29(1)	90
V (Å ³)	1000.5(9)	694.7(5)
Ζ	2	2
D_{calc} (g cm ⁻³)	1.330	1.374
T (K)	298	298
Мо-Ка	0.71073	0.71073
μ (mm ⁻¹)	0.278	0.224
2θ range (deg)	46.70	46.74
F (000)	420	300
No. reflns. measured	4232	5846
No. unique reflns. [R (int)]	2844 [0.0349]	2001[0.0466]
No. reflns used	2332	1916
No. parameters	333	185
GOF on F^2	1.144	1.214
Flack parameter	-	0.13(14)
$R_1 \left[I > 2\sigma(I) \right]$	0.0717	0.0506
wR_2	0.1595	0.1110

Fig. 1. ORTEP drawing of asymmetric unit in the crystal structure of L1.

2.2. Structure of 9-(4-pyridylsulfanyl)phenanthrene, L2

Compound L_2 crystallizes in a non-centrosymmetric and chiral space group ($P2_1$), unlike L_1 . The salient features of the crystal structure parameters are given in Table 1. In the crystal structure of L_2 , the pyridyl moiety exists like a pendant group on the phenanthrene moiety, as shown in Fig. 3. Further, in accordance with the chiral space group arrangement, the molecules in the crystal structure of L_2 , self-assembled through C–H...N hydrogen bonds (H...N, 2.64 Å) into right-handed helical pattern. The hydrogen bonds are formed between pyridyl N atom and –CH group of the phenanthrene group, as shown in Fig. 4.

molecules interact with the surrounding ones through C–H. . .N hydrogen bonds (H. . .N, 2.46 Å).

However, in the structure of L_1 , the hydrogen bonds are formed between pyridyl N atoms and –CH group of pyridyl moieties. Thus, cyclic networks of dimers are present in the crystal structure of L_1 as shown in Fig. 2a. Such dimeric units are further held together through C–H...N bonds (H...N, 2.69 Å) using methylene hydrogen atoms and pyridyl N atoms constituting a bracelet network, as shown in Fig. 2b.

Fig. 2. (a) Dimers of molecules of L₁ formed through C-H...N hydrogen bonds. (b) Packing of cyclic moieties in the extended structure, within the crystal lattice L₁.

Fig. 3. ORETP drawing of the asymmetric unit in the crystal structure of L₂.

The structures of both L_1 and L_2 indeed signify the effectiveness of weak hydrogen bonds like C–H...N towards stabilizing the molecular aggregation in the solid state. Also the cyclic network observed in L_1 , could be evaluated for the possible incorporation of guest species by increasing the dimensions of the empty space through co-crystallization of it with appropriate receptors.

3. Conclusion

We have reported two solid structures of the pyridylsulfanyl compounds L_1 and L_2 , mediated by C–H...N hydrogen bonds with different topological arrangement, in the form of cyclic and helical networks.

4. Experimental

4.1. Synthesis of 2,2'-bis(4-pyridylsulfanylmethyl)-1,1'-biphenyl, L1

Pyridine-4-thiol (222 mg, 2 mmol) and KOH (560 mg, 10 mmol) were stirred in methanol at 0 °C. To the above mixture 2,2'-*bis*(bro-momethyl)-1,1'-biphenyl (340 mg, 1 mmol) was added slowly and stirred for about 24 h at room temperature. The mixture was poured into ice-cold water, filtered the crude product and pure product was separated by column chromatography to give pure colorless microcrystalline solid. Yield: 75%, melting point: 137–139 °C. Crystals of L₁, suitable for single crystal X-ray diffraction, were obtained by diffusion of petroleum ether into a solution of ethyl acetate.

4.2. Synthesis of 9-(4-pyridylsulfanyl)phenanthrene, L2

The same procedure, as that of the preparation of ligand L_1 , was followed for the preparation of L_2 as well except that the mixture was refluxed at 80 °C. The solution was poured into ice-cold water, filtered the crude product and separated by column chromatography to give pure colorless microcrystalline solid. Yield: 70%, melting point: 185–187 °C. Single crystals of L_2 suitable for X-ray diffraction were obtained from chloroform solution after 2 days.

4.3. Crystal structure determination

Good quality single crystals of L_1 and L_2 , grown as described above were carefully chosen with the aid of polarized optical microscope and glued to glass fiber to mount on an X-ray diffractometer goniometer equipped with CCD area detector [27]. The data collection proceeded without any complication and processed using the Bruker suite of software. The structures were determined and refined using SHLEXTL suite of programmes, and absorption

Fig. 4. (left) Hydrogen bonds between the adjacent molecules in a helix formed in the crystals of L₂. (right) Representation of a typical helical arrangement.

corrections were made on all the crystals using SADABS [28]. All the non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in the calculated positions. The structural parameters were given in Table 1. All the intra and intermolecular distances were computed using PLATON [29] software. The packing diagrams were generated by using DIAMOND version 3.1f [30].

Acknowledgements

We thank DST for the generous funding. One of us (J.P.) thanks Council of Scientific and Industrial Research (CSIR), New Delhi, for the research fellowship.

References

- J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim, 1995.
- [2] J.C. MacDonald, G.M. Whitesides, Chem. Rev. 94 (1994) 2383.
- [3] G.R. Desiraju, Angew. Chem., Int. Ed. 46 (2007) 8342.
- [4] V.R. Pedireddi, S. Chatterjee, A. Ranganathan, C.N.R. Rao, J. Am. Chem. Soc. 119 (1997) 10867.
- [5] M.H. Mir, S. Kitagawa, J.J. Vittal, Inorg. Chem. 47 (2008) 7728.
- [6] O. Ohmori, M. Fujita, Chem. Commun. (2004) 1586.
- [7] P. Vishweshwar, J.A. McMahon, J.A. Bis, M.J. Zaworotko, J. Pharm. Sci. 95 (2006) 499.

- [8] L. Pan, D.H. Olson, L.R. Ciemnolonski, R. Heddy, J. Li, Angew. Chem., Int. Ed. 45 (2006) 616.
- [9] A.V. Trask, W.D.S. Motherwell, W. Jones, Cryst. Growth Des. 5 (2005) 1013.
 [10] B. Chen, C. Liang, J. Yang, D.S. Contreras, Y.L. Clancy, E.B. Lobkovsky, O.M. Yaghi,
- S. Dai, Angew. Chem., Int. Ed. 45 (2006) 1390. [11] C.N.R. Rao, S. Natarajan, R. Vaidhyanathan, Angew. Chem., Int. Ed. 43 (2004) 1466
- [12] A. Delori, E. Suresh, V.R. Pedireddi, Chem. Eur. J. 14 (2008) 6967.
- [13] R. Santra, N. Ghosh, K. Biradha, New. J. Chem. 32 (2008) 1673.
- [14] C.B. Aakeroy, J. Desper, B. Leonard, J.F. Urbina, Cryst. Growth Des. 5 (2005) 865.
- [15] N. Shan, E. Batchelor, W. Jones, Tetrahedron Lett. 43 (2002) 8721.
- [16] K.K. Arora, V.R. Pedireddi, J. Org. Chem. 68 (2003) 9177.
- [17] N. Shan, A.D. Bond, W. Jones, New J. Chem. 27 (2003) 365
- [18] V.R. Pedireddi, N. SeethaLekshmi, Tetrahedron Lett. 45 (2004) 1903.
- [19] D.A. McMorran, P.J. Steel, Tetrahedron 59 (2003) 3701.
- [20] D.J. Bray, L.L. Liao, B. Antonioli, K. Gloe, L. Lindoy, J.C. McMurtrie, G. Wei, X.Y. Zhang, Dalton Trans. (2005) 2082.
- [21] M. Hong, W. Su, R. Cao, M. Fujita, J. Lu, Chem. Eur. J. 6 (2000) 427.
- [22] R. Peng, D. Li, T. Wu, X.P. Zhou, S.W. Ng, Inorg. Chem. 45 (2006) 4035.
- [23] J. PrakashaReddy, V.R. Pedireddi, Eur. J. Inorg. Chem. (2007) 1150.
- [24] P. Beak Jr., F.S. Fry, J. Lee, F. Steele, J. Am. Chem. Soc. 98 (1976) 171.
- [25] S. Muthu, J.J. Vittal, Cryst. Growth Des. 4 (2004) 1181.
- [26] S. Stoyanov, I. Petkov, L. Antonov, T. Stoyanova, Can. J. Chem. 68 (1990) 1482.
- [27] Bruker, SMART and SAINT-Plus, Bruker AXS Inc., Madison, Wisconsin, USA,
- 1997.
- [28] G.M. Sheldrick, SADABS, University of Gottengen, Germany, 1996.
- [29] A.L. Spek, PLATON, Molecular Geometry Program, University of Utrecht, Utrecht, The Netherlands, 1995.
- [30] Diamond-Crystal and Molecular Structure Visualization, Version 3.1 f, Crystal Impact Brandenburg and Putz, Bonn, 2008.