The synthesis and molecular structures of 2,5-diarylpyrroles, $[pyr^{Ar_2}]H$ (Ar = Ph, 2,4-Xyl)

Joseph M. Tanski⁽¹⁾ and Gerard Parkin⁽¹⁾*

Received October 4, 2001

2,5-Di(2,4-xylyl)pyrrole, $[pyr^{2,5-Xyl_2}]H$, has been synthesized by reaction of the diketone $[XylC(O)CH_2]_2$ with NH₄OAc in AcOH; the diketone itself is obtained by condensation of XylC(O)Me with XylC(O)CH₂Br in the presence of Ti(OPrⁱ)₄. The molecular structures of both $[pyr^{2,5-Ph_2}]H$ and $[pyr^{2,5-Xyl_2}]H$ have been determined by single crystal X-ray diffraction, thereby demonstrating that an *ortho* methyl substituent increases the dihedral angle between the aryl and pyrrolyl groups from 14.5° in $[pyr^{2,5-Ph_2}]H$ to 24.1° in $[pyr^{2,5-Xyl_2}]H$.

KEY WORDS: pyrroles; interplanar angles; dihedral angles.

Introduction

Although much less ubiquitous than cyclopentadienyl, pyrrolyl ligands $[pyr^{R_n}]^{(2)}$ have applications in both main group and transition metal chemistry.¹ Pyrrolyl ligands may bind to a metal center by a variety of means, which include η^1 -, η^5 - and bridging coordination modes.^{1,2} Substituents on the pyrrolyl ring play a key role in influencing the binding mode of the ligand, with bulky groups in the 2,5-positions increasing the relative stability of η^5 -coordination. We are presently interested in the application of pyrrolyl ligands that feature aryl substituents, and in this paper we report on the synthesis and molecular structures of the pyrrole compounds, $[pyr^{2,5-Ar_2}]H$ (Ar = Ph, 2,4-Xyl).

Results and Discussion

It has been proposed that bulky substituents in the 2- and 5-positions of the pyrrolyl ligand favor η^5 -coordination over η^1 -coordination, since the latter coordination mode would force the substituents directly toward the metal center.^{1,3,4} For example, the 2,5-di-t-butylpyrrolyl ligand [pvr^{2,5-Bu^t}] has been crystallographically identified to coordinate in an η^5 -mode to elements as diverse as titanium⁵ and the lanthanides.⁶ In contrast, incorporation of substituents into the ortho positions of aryl groups of 2,5diarylpyrrolyl ligands [pyr^{2,5-Ar₂}] may, however, have the potential of promoting η^1 -coordination as a result of destabilizing a conformation in which the pyrrolyl and aryl rings are coplanar (Fig. 1). For example, the phenyl-substituted complex $[pyr^{2,5-Ph_2}]Zr(NMe_2)_3$ exhibits η^5 coordination, whereas the xylyl counterpart $[pyr^{2,5-Xyl_2}]Zr(NMe_2)_3$ exhibits η^1 -coordination.⁷ To address further this issue, we sought to determine the influence of an ortho methyl substituent on the interplanar angle of the parent

⁽¹⁾ Department of Chemistry, Columbia University, New York, New York 10027.

 $^{^{(2)}}$ Pyrrolyl ligands, $(C_5 R_n H_{4-n} N)$ are represented by the abbreviation $[pyr^{R_n}]$, where the superscript indicates the number and type of substituents.

^{*} To whom correspondence should be addressed. E-mail: parkin@ chem.columbia.edu.

Tanski and Parkin

Fig. 1. Relative stability of η^1 - and η^5 -pyrrolyl coordination as a function of the aryl/pyrrolyl dihedral angle.

pyrrole derivatives, $[pyr^{2,5-Ar_2}]H$ (Ar = Ph, 2,4-Xyl).

The compound 2,5-diphenylpyrrole $[pyr^{2,5-Ph_2}]H$ is readily obtained by the reaction of the 1,4-diketone $[PhC(O)CH_2]_2$ with NH₄OAc in AcOH.⁸ Similarly, the corresponding reaction of $[XylC(O)CH_2]_2$, obtained by the condensation of XylC(O)Me with $XylC(O)CH_2Br$ promoted by Ti(OPrⁱ)₄,⁹ with NH₄OAc in AcOH yields $[pyr^{2,5-Xyl_2}]H$ (Scheme 1).

The molecular structures of $[pyr^{2,5-Ph_2}]H$ and $[pyr^{2,5-Xyl_2}]H$ were determined by single crystal X-ray diffraction, as illustrated in Figs. 2 and

Scheme 1.

Fig. 2. Molecular structure of [pyr^{2,5-Ph}₂]H.

3. Selected bond lengths and angles are listed in Tables 1 and 2. The metrical parameters are unremarkable, with the dimensions of the pyrrole ring being very similar to those of 2.5-di-tertbutylpyrrole.² For example, the average $N-C_{\alpha}$ C_{α} — $C_{\beta'}$ and C_{β} — $C_{\beta'}$ bond lengths of 2,5-ditert-butylpyrrole are 1.377(9) Å, 1.365(5) Å, and 1.420(3) Å, respectively; furthermore, these values are very similar to that of pyrrole itself [1.365(2) Å, 1.357(2) Å, and 1.423(3) Å, respectively].¹⁰ The crystal structures of [pyr^{2,5-Ph₂}]H and [pyr^{2,5-Xyl₂}]H differ from pyrrole, however, in terms of their molecular packing. Specifically, pyrrole exhibits intermolecular N-H... π -system hydrogen bonding interactions involving the C_{β} --C_{\beta} bond. Examination of the molecular packing diagrams demonstrates that no such interactions are present in [pyr^{2,5-Ph₂}]H and $[pyr^{2,5-Xyl_2}]H$ (Figs. 4 and 5).

The most noteworthy aspect of the structures of [pyr^{2,5-Ph}₂]H and [pyr^{2,5-Xyl}₂]H in the present study is concerned with the dihedral angle between the pyrrolyl and aryl groups. Specifically, the xylyl rings are twisted out of the pyrrolyl plane

Fig. 3. Molecular structure of [pyr^{2,5-Xyl₂}]H.

Bond lengths			
N-C(1)	1.372(3)	N-C(4)	1.380(3)
C(1)–C(2)	1.384(4)	C(3)-C(4)	1.381(4)
C(2)-C(3)	1.408(4)	N-H(1)	0.99(4)
C(1)-C(21)	1.459(3)	C(4)-C(11)	1.455(4)
Bond angles			
N-C(1)-C(2)	106.5(2)	C(2)-C(3)-C(4)	108.3(3)
C(1) - C(2) - C(3)	108.0(2)	C(1)– N – $C(4)$	111.0(2)
C(3) - C(4) - N	106.2(2)	C(3)-C(4)-C(11)	130.4(3)
C(2) - C(1) - C(21)	130.0(2)	N-C(4)-C(11)	123.3(2)
N-C(1)-C(21)	123.5(2)	C(4)-C(11)-C(12)	122.7(2)
C(1)-C(21)-C(22)	122.5(2)	C(4)-C(11)-C(16)	120.1(3)
C(1) - C(21) - C(26)	119.9(3)		

Table 1. Selected Bond Lengths (Å) and Angles (deg) for $[pyrr^{2,5\text{-}Ph_2}]H$

of $[pyr^{2.5-xyl_2}]H (24.1^{\circ})^{(3)}$ to a greater degree than are the phenyl rings of $[pyr^{2,5-Ph_2}]H (14.5^{\circ})^{(4)}$ as illustrated in Fig. 6; for comparison, the dihedral angle in simple polyphenyl complexes is ca. 13.3°.¹¹ Thus, steric interactions between the *ortho* methyl groups and the β -hydrogens of the pyrrolyl ring increase the orthogonality of the aryl and pyrrolyl groups, but the steric interaction is insufficient to overcome the completely planar structure that is favored by electronic delocalization across the three aromatic rings.

Experimental Section

General Considerations

NMR spectra were recorded on Bruker Avance 300wb DRX, Bruker Avance 400 DRX, and Bruker Avance 500 DMX spectrometers. ¹H and ¹³C chemical shifts are reported in parts per million (ppm) relative to SiMe₄ ($\delta = 0$) and were referenced internally with respect to the protio solvent impurity or the ¹³C resonances, respectively. All coupling constants are reported in hertz (Hz). Mass spectra were obtained using a JEOL LC Mate mass spectrometer in APCI+ ionization mode using a methanol/water solution (80/20). C, H, and N elemental analyses

 Table 2. Selected Bond Lengths (Å) and Angles (deg) for
 [pyrr^{2,5-Xyl}₂]H

Bond lengths			
N-C(1)	1.379(2)	N-C(4)	1.380(2)
C(1)-C(2)	1.378(2)	C(3)–C(4)	1.379(2)
C(2)-C(3)	1.402(2)	N-H(1)	0.86(2)
C(1)-C(13)	1.465(2)	C(4)-C(5)	1.470(2)
Bond angles			
N(1)-C(1)-C(2)	105.6(1)	C(1)-C(2)-C(3)	108.7(1)
C(2)-C(3)-C(4)	108.4(1)	C(3)-C(4)-N	105.7(1)
C(1)-N-C(4)	111.5(1)	C(2)-C(1)-C(13)	133.8(1)
C(3)-C(4)-C(5)	133.9(1)	N-C(1)-C(13)	120.6(1)
N-C(4)-C(5)	120.3(1)	C(1)-C(13)-C(14)	123.4(1)
C(4)-C(5)-C(6)	123.2(1)	C(1)-C(13)-C(20)	119.0(1)
C(4)-C(5)-C(12)	119.3(1)		

Fig. 4. Packing diagram of $[pyr^{2,5-Ph_2}]H$ (down *b* axis).

 $^{^{(3)}}$ The individual dihedral values for $[pyr^{2,5\text{-}Xyl_2}]H$ are 21.5° and $26.7^\circ.$

 $^{^{(4)}}$ The individual dihedral values for $[pyr^{2,5\text{-}Ph_2}]H$ are 13.7° and $15.2^\circ.$

Fig. 5. Packing diagram of $[pyr^{2,5-Xyl_2}]H$ (down *b* axis).

were measured using a Perkin-Elmer 2400 CHN Elemental Analyzer. 2,4-Dimethylacetophenone [(2,4-Xyl)C(O)Me] was obtained from Aldrich, 2-bromo-2',4'-dimethylacetophenone [(2,4-Xyl) C(O)CH₂Br] was obtained from Maybridge Chemical Company, Cornwall, UK (*via* Ryan Scientific), and Ti(OPrⁱ)₄ was obtained from Aldrich. [pyr^{2,5-Ph₂}]H was prepared by the literature method.⁸

Fig. 6. Comparison of the aryl/pyrrolyl dihedral angles of $[pyr^{2,5-Ph_2}]H$ (upper) and $[pyr^{2,5-Xyl_2}]H$ (lower).

Synthesis of [*XylC*(*O*)*CH*₂]₂

A mixture of 2,4-XylC(O)Me (9.8 g, 66 mmol) and (2,4-Xyl)C(O)CH₂Br (10.0 g, 44 mmol) in dry CCl₄ (50 mL) was treated with freshly distilled $Ti(OPr^i)_4$ (20.8 mL, 20.0 g, 70 mmol) and stirred at room temperature under an inert atmosphere for 1 h. The mixture was allowed to stand for 1 week, over which period white crystals were deposited. The flask was cooled to 0°C, and the product was isolated by filtration, washed successively with cold (0°C) CCl₄, cold (0°C) HCl_{aq} (10%), and cold (0°C) methanol, and dried in vacuo, giving [XylC(O)CH₂]₂ (4.6 g, 35%—unoptimized). Analysis calcd. for C₂₀H₂₂O₂: C, 81.6%; H, 7.6%. Found: C, 79.8%; H, 7.6%. LC/MS(MeOH/H₂O): m/z = 295.4 (MH⁺, 100%). ¹H NMR (CDCl₃): 2.34 [s, 2 CH₃ of 2 Xyl], 2.46 [s, 2 CH₃ of 2 Xyl], 3.30 [s, (CH₂)₂], 7.01-7.08 [m, 4 *m*-H of 2 Xyl], 7.72 [d, ${}^{3}J_{\text{H-H}} = 7.8$, 2 *o*-<u>H</u> of 2 Xyl]. ${}^{13}\text{C}{}^{1}\text{H}$ NMR (CDCl₃): 21.4 [2 CH₃ of 2 Xyl], 21.5 [2 CH₃ of 2 Xyl], 35.4[(CH₂)₂], 126.3 [2 C of 2 Xyl (CH)], 129.1 [2 C of 2 Xyl (CH)], 132.8 [2 C of 2 Xyl (CH)], 134.8 [2 C of 2 Xyl (quarternary)], 138.6 [2 C of 2 Xyl (quarternary)], 141.8 [2 C of 2 Xyl(quarternary)], 202.0 [CO].

Synthesis of [pyr^{2,5-Ph2}]H

A mixture of [XylC](O)CH₂]₂ (4.5 g, 15 mmol) and NH₄OAc (15.9 g, 206 mmol) was refluxed in AcOH (50 mL) overnight under an inert atmosphere. The reaction mixture was allowed to cool to room temperature and poured into ice-cold water (1.5 L). The mixture was stirred for several hours, after which the white precipitate was isolated by filtration, washed with cold water, and dried in vacuo giving [pyr^{2,5-Xyl₂}]H (3.4 g, 81%). Analysis calcd. for C₂₀H₂₁N: C, 87.2%; H, 7.7%; N, 5.1%. Found: C, 87.4%; H, 7.8%; N, 4.6%. LC/MS(MeOH/H₂O): m/z = 276.4 (MH⁺, 100%). ¹H NMR (CDCl₃): 2.33 [s, 2 *p*-CH₃ of 2 Xyl], 2.47 [s, 2 *o*-CH₃ of 2 Xyl], 6.36 [d, ⁴J_{H-H} = 2.7, 2 H of N (C₄Xyl₂H₂),

7.04 [d, ${}^{3}J_{\text{H-H}} = 7.8$, 2 m-<u>H</u> of 2 Xyl], 7.08 [s, 2 m-<u>H</u> of Xyl], 7.28 [d, ${}^{3}J_{\text{H-H}} = 7.8$, 2 o-<u>H</u> of 2 Xyl], 8.21 [br s, N<u>H</u>]. ${}^{13}\text{C}{}^{1}\text{H}$ NMR (CDCl₃): 21.0 [2 p-<u>C</u>H₃ of 2 Xyl], 21.3 [2 o-<u>C</u>H₃ of 2 Xyl], 109.4 [2 C of N(<u>C</u>₄Xyl₂H₂) (CH)], 126.8 [2 m-C of 2 Xyl (CH)], 127.7 [2 o-C of 2 Xyl (CH)], 129.9 [2 *ipso*-C of 2 Xyl (quarternary)], 131.4 [2 C of N(<u>C</u>₄Xyl₂H₂ (quarternary)], 131.9 [2 m-C of 2 Xyl (CH)], 134.7 [2 o-C of 2 Xyl (quarternary)], 136.4 [2 p-C of 2 Xyl (quarternary)].

X-ray Structure Determinations

Crystals of [pyr^{2,5-Ph₂}]H and [pyr^{2,5-Xyl₂}]H were obtained from benzene and CDCl₃, respectively. X-ray diffraction data were collected on a Bruker P4 diffractometer equipped with a SMART CCD detector, and crystal data, data collection, and refinement parameters are summarized in Table 3. The structures were solved

Table 3. Crystal, Intensity Collection, and Refinement Data

	[pyr ^{2,5-Ph} 2]H	[pyr ^{2,5-Xyl} 2]H
Lattice	Monoclinic	Monoclinic
Formula	C16H13N	C20H21N
CCDC deposit no.	CCDC-1003/6141	CCDC-1003/6142
Formula weight	219.17	275.38
Space group	$P2_{1}/n$	C2/c
a/Å	7.475(1)	47.431(3)
$b/\text{\AA}$	5.967(1)	5.2104(4)
c/Å	26.301(5)	12.7162(10)
$\beta/^{\circ}$	93.715(4)	97.817(1)
$V/Å^3$	1170.6(4)	3113.4(4)
Z	4	8
Temperature (K)	233	243
Radiation (λ , Å)	0.71073	0.71073
ho (calcd.), g cm ⁻³	1.244	1.175
μ (Mo K α), mm ⁻¹	0.072	0.068
θ max, deg.	28.3	28.3
Total no. of data	7974	9807
No. of data	2726	3502
R _{merge}	0.0682	0.0276
No. of parameters	207	275
R_1	0.0774	0.0458
wR_2	0.2115	0.0993
GOF	1.070	1.085

using direct methods and standard difference map techniques, and were refined by full-matrix least-squares procedures on F^2 with SHELXTL (Version 5.03).¹² All hydrogen atoms were located and refined.

Conclusions

2,5-Di(2,4-xylyl)pyrrole, $[pyr^{2,5-Xyl_2}]H$, has been synthesized by reaction of the diketone $[XylC(O)CH_2]_2$ with NH₄OAc in AcOH. The molecular structures of $[pyr^{2,5-Ph_2}]H$ and $[pyr^{2,5-Xyl_2}]H$ indicate that an *ortho* methyl substituent increases the dihedral angle between the aryl and pyrrolyl groups from 14.5° in $[pyr^{2,5-Ph_2}]H$ to 24.1° in $[pyr^{2,5-Xyl_2}]H$.

Acknowledgment

We thank the National Science Foundation (CHE 99-87432) for support of this research.

References

- Kuhn, N. Bull. Soc. Chim. Belg. 1990, 99, 707–715; Zakrzewski, J. Heterocycles 1990, 31, 383–396; Kershner, D.L.; Basolo, F. Coord. Chem. Rev. 1987, 79, 279–292; Pannell, K.H.; Kalsotra, B.L.; Parkanyi, C. J. Heterocyclic Chem. 1978, 15, 1057–1081; Nief, F. Eur. J. Inorg. Chem. 2001, 891–904; Sadimenko, A.P.; Garnovskii, A.D.; Retta, N. Coord. Chem. Rev. 1993, 126, 237– 318.
- Westerhausen, M.; Wieneke, M.; Nöth, H.; Seifert, T.; Pfitzner, A.; Schwarz, W.; Schwarz, O.; Weidlein, J. *Eur. J. Inorg. Chem.* 1998, 1175–1182.
- Bynum, R.V.; Zhang, H.M.; Hunter, W.E.; Atwood, J.L. Can. J. Chem. 1986, 64, 1304–1307.
- Dias, A.R.; Galvão, A.M.; Galvão, A.C.; Salema, M.S. J. Chem. Soc., Dalton Trans. 1997, 1055–1061; Dias, A.R.; Galvão, A.M.; Galvão, A.C. Collect. Czech. Chem. Comm. 1998, 63, 182–186.
- Kuhn, N.; Stubenrauch, S.; Boese, R.; Bläser, D. J. Organomet. Chem. 1992, 440, 289–296.
- Schumann, H.; Rosenthal, E.C.E.; Winterfeld, J.; Weimann, R.; Demtschuk, J. J. Organomet. Chem. 1996, 507, 287–289; Schumann, H.; Winterfeld, J.; Hemling, H.; Kuhn, N. Chem. Berichte 1993, 126, 2657–2659; Schumann, H.; Rosenthal, E.C.E.; Winterfeld, J.; Kociok-Köhn, G. J. Organomet. Chem. 1995, 495, C12–C14.
- 7. Tanski, J.M.; Parkin, G. Organometallics 2002, 21, 587-589.
- Patterson, J.M.; Soedigdo, S. J. Org. Chem. 1968, 33, 2057– 2061.

- Kulinkovich, O.G.; Kel'in, A.V.; Senin, P.V. Russ J. Org. Chem. 1995, 31, 1060–1062.
- Goddard, R.; Heinemann, O.; Krüger, C. Acta Cryst. 1997, C53, 1846–1850.
- Baudour, J.L. Acta Crystallogr. Sect. B-Struct. Commun. 1991, 47, 935–949; Corish, J.; MortonBlake, D.A.; Odonoghue, F.;

Baudour, J.L.; Beniere, F.; Toudic, B. *Theochem-J. Mol. Struct.* **1995**, *358*, 29–38.

 Sheldrick, G.M. SHELXTL, An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data; University of Göttingen: Göttingen, Federal Republic of Germany, 1981.