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Abstract: The total synthesis of (–)-colletallol via a ring-closing
metathesis protocol is reported.
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Colletallol (1), a diolide belonging to a series of structur-
ally related macrolides, was isolated from plant pathogen
Colletrichum capsici.1 This diolide and its congeners at-
tracted the attention of many synthetic organic chemists
worldwide since isolation, but only two syntheses of 1
were reported so far, out of which one was an enantio-
selective total synthesis by Zwanenburg et al.2 using ep-
oxy diazomethyl ketone as the starting material and its
photo-induced rearrangement to 4-hydroxy-2-alkenoate
as the useful intermediate en route and the other one being
a racemic synthesis way back in 1985.3 Subsequently, a
14-epimer was synthesized by Floćh et al.4 using two con-
secutive Wittig olefination reactions as an alternative
methodology to classical macrolactonization strategy. As
a part of our ongoing program on the metathesis-based
synthesis of natural products,5 herein we describe a stere-
oselective total synthesis of natural (–)-colletallol (1) via
Grubbs catalyst assisted ring-closing metathesis protocol
of the corresponding diester derivative 2 (Scheme 1).

The retrosynthetic analysis envisioned for 1 is depicted in
Scheme 1, using a ring-closing metathesis (RCM) of the
corresponding diester derivative 2 followed by the depro-
tection of the MOM protecting group. Compound 2 in turn
could be synthesized from 3 on PMB deprotection and
acryloylation. Compound 3 should be accessible through
the esterification of acid 4 with alcohol 5 that were inde-
pendently synthesized from the commercially available
propylene oxide as starting material.

Thus, the synthesis began in the direction of accessing
both the acid 4 and the alcohol 5 components indepen-
dently. Firstly, acid 4 was accessed based on the literature
procedure6 wherein the synthesis of its enantiomer was re-
ported.

Subsequently, alcohol 5 was also prepared from propy-
lene oxide (Scheme 2) using a literature-inspired route.7

Accordingly, propylene oxide upon Jacobsen’s hydrolytic

kinetic resolution8/epoxide ring-opening reaction with al-
lyl magnesium chloride and protection of the ensuing hy-
droxyl group as its silyl ether afforded 6. The terminal
olefin was used in two ways, firstly Sharpless asymmetric
dihydroxylation (AD-mix-b, t-BuOH–H2O (1:1), 48 h)
furnished diol 7 (84%) albeit in 63% de. Further purifica-
tion of 7 led to diminished yields. Consequently, an alter-
nate Jacobsen’s hydrolytic kinetic resolution (HKR)
based strategy was adopted and the loss in chemical yield
was circumvented by a two-step recycling of the resoluted
diol 7a into the requisite epoxide 8.9 Thus both enhanced
chemical and optical yields were met through this strate-
gy. Epoxide 8 obtained by both methods was found to
have comparable spectral data. Later, ring-opening
reaction10 (Me3S

+I–, THF, –20 °C to r.t., 3 h) of epoxide 8
gave allylic alcohol 9 (85%) which was protected as its
MOM ether 10 under conventional conditions. TBS
deprotection (TBAF, THF, r.t., 2 h) in 10 furnished the
corresponding alcohol 5 (85%) as the suitable intermedi-
ate for the next reaction.

Scheme 1 Retrosynthetic analysis
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Scheme 2 Reagents and conditions: route A: (a) AD-mix-b,
t-BuOH–H2O (1:1), 48 h, 84%, 63% de; (b) i) TsCl, Et3N, CH2Cl2,
r.t.; ii) K2CO3, MeoH, r.t., 1 h, 72% (over two steps); route B: (a¢) (i)
MCPBA, CHCl3, 0 °C to r.t., 2 h, 90%; (ii) (R,R)-(salen)CoIII(OAc),
0.55 equiv H2O, r.t., 18 h,; (b¢) ref. 9; (c) n-BuLi, Me3S

+I–, THF,
–20 °C to r.t., 3 h, 85%; (d) MOMCl, DIPEA, DMAP (cat.) CH2Cl2,
0 °C to r.t., 8 h, 98%; (e) TBAF, THF, r.t., 2 h, 85%.

Having both the intermediates 4 and 5 in hand, the next
task was to couple them as an ester (Scheme 3). Accord-
ingly, esterification (DCC, DMAP, CH2Cl2, r.t.) of 4 and
5 afforded 3 (80%) which was characterized by its spec-
tral data. For instance, 1H NMR spectrum of ester 3 re-
vealed the characteristic signals due to the ester-linked
proton shifting downfield to d = 4.90–4.98 ppm as a mul-
tiplet while the rest of the protons resonated at their ex-
pected chemical shifts. Also, the characteristic olefinic
protons present in conjugation with the a,b-unsaturated
ester revealed the a-proton at d = 5.57–5.67 ppm integrat-
ing for 1 H, while the b-proton appeared at d = 6.85–6.94
ppm. The terminal olefinic protons integrating for 3 H re-
tained their expected chemical shifts. The HRMS was in
good agreement {m/z calcd for C23H34O6Na [M + Na]+:
429.2253; found: 429.2263} with the expected structure.
Next, the PMB group was deblocked under DDQ condi-
tions; the corresponding hydroxyl group was acryloylated
(acryloyl chloride, DIPEA, CH2Cl2, r.t.) to furnish the
crucial intermediate 2 (95%). Diester 2 was then subjected
to ring-closing metathesis reaction (Grubbs II, toluene, re-
flux, 4 h) to afford diolide 11 in good yields albeit as an E/
Z mixture in a 85:15 ratio.11 The required E-isomer was
purified by column chromatography and characterized by
its spectral data. For instance, the 1H NMR spectrum of
(E)-11 displayed the absence of chemical shifts due to ter-
minal olefinic protons, the emergence of two nonequiva-
lent a-protons: one at d = 5.79 ppm as a doublet (J = 15.1
Hz) and the other at d = 5.87 ppm as a double doublet
(J = 16.1, 1.4 Hz); while one of the two b-protons appear-
ing at d = 6.68–6.75 ppm as a multiplet and the other one
at d = 6.81 ppm as a double doublet (J = 15.6, 4.3 Hz) of

the a,b-unsaturated esters marked the formation of the
product. The HRMS spectrum displayed the m/z [M +
Na]+ 335.1475, calculated 335.1470 for the molecular for-
mula C16H24O6Na. Later, deprotection of MOM ether in
11 under Hannessian conditions12 resulted in the natural
product 1 (95%). The physical and spectroscopic data of
synthetic 1 is consistent with the reported values.1,2,13

Scheme 3 Reagents and conditions. a) DCC, DMAP, CH2Cl2, r.t.,
80%; b) (i) DDQ, CH2Cl2, 0 °C to r.t., 95%; (ii) acryloyl chloride,
DIPEA, CH2Cl2, 4 h, r.t., 95%; c) Grubbs II (10 mol%), toluene, ref-
lux, 4 h, 80%; d) TMSCl, n-Bu4N

+Br–, CH2Cl2, –10 °C to 0 °C, 2 h,
95%.

In summary, synthesis of (–)-colletallol was accom-
plished via the RCM of the highly substituted diester 2
with Grubbs II catalyst in good yields and selectivity. The
key intermediates 4 and 5 were accessed from a common,
inexpensive starting material viz. (±)-propylene oxide
through simple transformations using Jacobsen’s HKR
protocol as the means of introducing chirality.
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Compound 5: colorless liquid; [a]D

25 +243.0 (c 0.15, 
CHCl3). 

1H NMR (500 MHz, CDCl3): d = 5.73–5.58 (m, 1 
H), 5.24–5.13 (m, 2 H), 4.64 (d, J = 6.8 Hz, 1 H), 4.48 (d, 
J = 6.8 Hz, 1 H), 4.04–3.96 (m, 1 H), 3.83–3.73 (m, 1 H), 
3.35 (s, 3 H), 1.68–1.39 (m, 4 H), 1.17 (d, J = 6.0 Hz, 3 H). 
13C NMR (75 MHz, CDCl3): d = 138.0, 117.2, 93.7, 77.4, 
67.8, 55.4, 34.7, 31.7, 23.4. MS (EI): m/z = 113 [M – 
OMOM].
Compound 3: colorless liquid; [a]D

25 +90.0 (c 0.25, CHCl3). 
1H NMR (500 MHz, CDCl3): d = 7.19 (d, J = 8.3 Hz, 2 H), 
6.94–6.85 (m, 1 H), 6.80 (d, J = 8.3 Hz, 2 H), 5.80 (d, 
J = 15.6 Hz, 1 H), 5.67–5.57 (m, 1 H), 5.23–5.13 (m, 2 H), 
4.98–4.90 (m, 1 H), 4.67–4.61 (m, 1 H), 4.49–4.24 (m, 2 H), 
4.37 (d, J = 11.2 Hz, 1 H), 3.98–3.90 (m, 1 H), 3.78 (s, 3 H), 
3.63–3.56 (m, 1 H), 3.3 (s, 3 H), 2.49–2.4 (m, 1 H), 2.37–
2.27 (m, 1 H), 1.67–1.54 (m, 4 H), 1.24 (d, J = 5.8 Hz, 3 H), 
1.18 (d, J = 6.3 Hz, 3 H). 13C NMR (75 MHz, CDCl3): d = 
165.9, 145.1, 137.9, 129.0, 123.5, 117.4, 113.7, 93.6, 77.0, 

73.1, 70.6, 70.1, 55.3, 55.2, 39.2, 31.7, 31.1, 19.9, 19.6. 
HRMS: m/z calcd for C23H34O6Na [M + Na]+: 429.2253; 
found: 429.2263.
Compound 2: colorless liquid; [a]D

25 +155.9 (c 0.5, CHCl3). 
1H NMR (500 MHz, CDCl3): d = 6.92–6.84 (m, 1 H), 6.39 
(d, J = 17.0 Hz, 1 H), 6.09 (d, J = 17.0, 10.2 Hz, 1 H), 5.90–
5.80 (m, 2 H), 5.70–5.61 (m, 1 H), 5.24–5.17 (m, 2 H), 5.12–
5.06 (m, 1 H), 4.99–4.93 (m, 1 H), 4.68 (d, J = 6.8 Hz, 1 H), 
4.52 (d, J = 6.8 Hz, 1 H), 4.00–3.94 (m, 1 H), 3.36 (s, 3 H), 
2.55–2.44 (m, 2 H), 1.69–1.55 (m, 4 H), 1.28 (d, J = 6.3 Hz, 
3 H), 1.24 (d, J = 6.3 Hz, 3 H). 13C NMR (75 MHz, CDCl3): 
d = 165.7, 165.5, 143.2, 137.9, 130.7, 128.5, 124.5, 117.5, 
93.7, 77.0, 71.4, 69.3, 55.4, 38.3, 31.7, 31.2, 20.3, 19.6. 
HRMS: m/z calcd for C18H28O6Na [M + Na]+: 363.1783; 
found: 363.1773.
Compound 11: brown colored liquid; [a]D

25 +123.8 (c 0.06, 
CHCl3). 

1H NMR (500 MHz, CDCl3): d = 6.75–6.71 (dd, 
J = 16.1, 5.4 Hz, 1 H), 6.70–6.63 (m, 1 H), 5.82 (d, J = 16.1 
Hz, 1 H), 5.71 (d, J = 15.6 Hz, 1 H), 5.28–5.22 (m, 1 H), 
5.16–5.11 (m, 1 H), 4.56 (s, 2 H), 4.44–4.40 (m, 1 H), 3.32 
(s, 3 H), 2.54–2.48 (m, 2 H), 2.05–1.97 (m, 2 H), 1.81–1.74 
(m, 1 H), 1.67–1.61 (m, 1 H), 1.45 (d, J = 6.3 Hz, 3 H), 1.17 
(d, J = 6.8 Hz, 3 H). 13C NMR (75 MHz, CDCl3): d = 168.3, 
165.5, 149.2, 143.6, 126.2, 122.1, 94.5, 74.0, 69.1, 68.3, 
55.4, 40.6, 27.7, 26.5, 20.7, 17.5. HRMS: m/z calcd for 
C16H24O6Na [M + Na]+: 335.1470; found: 335.1475.
Compound 1: colorless syrup; [a]D

25 –85.5 (c 0.1 CHCl3). 
1H 

NMR (500 MHz, CDCl3): d = 6.81 (dd, J = 15.6, 4.3 Hz, 1 
H), 6.75–6.68 (m, 1 H), 5.87 (dd, J = 16.1, 1.4 Hz, 1 H), 5.79 
(d, J = 15.1 Hz, 1 H), 5.26–5.16 (m, 2 H), 4.60 (s, 1 H), 2.53 
(m, 1 H), 2.38–2.24 (m, 2 H), 2.17 (d, J = 2.9 Hz, 1 H), 1.79–
1.67 (m, 2 H), 1.36 (d, J = 6.3 Hz, 3 H), 1.19 (d, J = 6.8 Hz, 
3 H). 13C NMR (75 MHz, CDCl3): d = 170.0, 165.6, 150.9, 
143.5, 126.2, 121.3, 70.4, 69.1, 68.4, 40.6, 32.2, 29.1, 20.6, 
17.4. HRMS: m/z calcd for C14H20O5Na [M + Na]+: 
291.1208; found: 291.1210.
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