Supramolecular Alternating Block Copolymers via Metal Coordination

Si Kyung Yang,^[a, b] Ashootosh V. Ambade,^[a] and Marcus Weck^{*[a]}

Abstract: A bimetallic ruthenium olefin metathesis initiator was synthesized and used to polymerize functionalized norbornenes, affording polymers that are living at both polymer chainends. Using this bis-ruthenium initiator strategy and combining it with functional chain-terminators, highly-efficient syntheses of either SCS-Pd^{II} pincer- or pyridine-functionalized symmetrical telechelic polymers were de-

veloped. The terminal functional group incorporation was confirmed by ¹H NMR spectroscopy analyses. The telechelic polymers were self-assembled into block copolymers by means

Keywords: block copolymers • metal coordination • polymerization • ring-opening metathesis • ruthenium • supramolecular chemistry of metal coordination between corresponding terminal recognition units. The self-assembly process was monitored by ¹H NMR spectroscopy revealing nearly quantitative functionalization. The resulting supramolecular block copolymers were further characterized by viscometry and dynamic light scattering.

Introduction

The introduction of noncovalent interactions between polymeric constituents^[1] allows for the modular construction of well-defined supramolecular polymeric assemblies including supramolecular block copolymers, which are of considerable interest owing to their promise for applications ranging from electronics to medicine.^[2] Supramolecular block copolymers can be categorized into diblock^[3] and multiblock copolymers assembled from monotelechelic and ditelechelic polymers, respectively. Multiblock copolymers are of particular interest, since unprecedented polymeric blends with tunable physical properties can be obtained easily by mixing two appropriately functionalized homopolymers.^[4] A number of noncovalent interactions have been used as key

Georgia Institute of Technology 901 Atlantic Drive Atlanta, GA 30332 (USA)

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.200900573.

interactions in multiblock copolymers including hydrogen bonding and metal coordination. For example, Sijbesma and Binder have utilized complementary hydrogen bonding to fabricate supramolecular multiblock copolymers based on telechelic poly(ester)s and poly(isobutylene)s, respectively.^[5] Schubert has used terpyridine-based metal coordination to generate diblock copolymers^[6] and in combination with Upy-based hydrogen bonding multiblock copolymers.^[7] Meijer and Zimmerman have employed quadruple hydrogen bonds with high association constants ($K_a \approx 10^7 \text{ m}^{-1}$) between diamidonaphthyridine (DAN/Napy) and ureidopyrimidinone (Upy) or ureidoguanosine (UG), respectively, to generate supramolecular alternating block copolymers.^[8]

Most synthetic strategies towards multiblock copolymers rely on post-polymerization functionalization steps to introduce the molecular recognition moiety resulting in often non-quantitative conversions and requiring reaction conditions that may be incompatible with other functionalities along the polymer. The successful synthesis of telechelic polymers with complementary binding motifs circumventing the need for post-polymerization functionalization is a desirable prerequisite for the easy and high-yielding preparation of well-defined supramolecular block copolymers. We suggest that the ring-opening metathesis polymerization (ROMP) of cyclic olefins in the presence of bifunctional chain-transfer agents (CTA) is an efficient strategy for the incorporation of supramolecular functionalities onto both chain-ends of a polymer.^[9] In 2005, we employed this methodology to introduce hydrogen bonding and metal coordina-

- 6605

[[]a] S. K. Yang, Dr. A. V. Ambade, Prof. Dr. M. Weck Department of Chemistry and Molecular Design Institute New York University
100 Washington Square East New York, NY 10003 (USA)
Fax: (+1)212-995-4895
E-mail: marcus.weck@nyu.edu
[b] S. K. Yang School of Chemistry and Biochemistry

tion moieties at polymer chain-ends in situ and reported the self-assembly of the resulting telechelic polymers into supramolecular multiblock copolymers.^[10] Although highly advantageous over traditional post-polymerization functionalization, owing to complete incorporation of almost any terminal recognition unit in situ, the ROMP-CTA strategy limits full control over the obtained telechelic polymer properties because it relies on the non-living polymerization of functionalized cyclooctenes. Herein, we report the synthesis of symmetrically end-functionalized polymers in a single step by means of ROMP using a bimetallic ruthenium initiator and functional chain-terminators (CTs). The combination of a living/controlled polymerization with metal-coordinationbased self-assembly allows for the formation of well-defined supramolecular alternating block copolymers (Figure 1).

Alternating Block Copolymer

Figure 1. Schematic representation of the synthetic strategy towards supramolecular alternating block copolymers.

Research design: Our strategy is based on the self-assembly of A-A and B-B bifunctional macromonomers by means of metal coordination. The macromonomers are telechelic polymers bearing a palladated sulfur-carbon-sulfur (SCS) pincer complex or a pyridyl end group, respectively, at both chain-ends. The telechelic polymers are being synthesized by ROMP using a bis-ruthenium initiator designed to be living and tolerant to a broad range of functionalities,^[11] terminated with functional CTs containing metal coordination sites resulting in the formation of perfect telechelic polymers. For our study, we employ the coordination of Pdpincer complexes to functionalized pyridines as the noncovalent interaction. This metal coordination step is unsymmetrical, highly directional and avoids the problem of homodimerization unlike hydrogen-bonded systems.[12] Furthermore, this interaction has been used extensively in sidechain supramolecular polymers and can be tuned easily.^[12] The combination of a bis-ruthenium initiator with functionalized CTs is designed to afford symmetrical telechelic polymers possessing desired recognition motifs with full control over basic polymer properties, such as molecular weight,

degree of polymerization, and polydispersity. Metal coordination between SCS-Pd^{II} pincer complex-containing polymers and ones containing pyridyl end groups should lead to the self-assembly of A–A and B–B macromonomers with tunable block length by the controlled addition of the activating agent AgBF₄. Furthermore, use of differently substituted norbornene monomers for the A–A and B–B macromonomers allows for the preparation of supramolecular alternating block copolymers.

Results and Discussion

Synthesis of bis-ruthenium initiator 4: A bis-alkylidene ruthenium olefin metathesis initiator was used to afford poly-(norbornene)s that are living at both polymer chain-ends, thereby allowing for complete incorporation of terminal recognition units. The synthesis of the bimetallic ruthenium initiator **4** is outlined in Scheme 1. 6-(4-Vinylphenoxy) hexano-

Scheme 1. Synthesis of bis-ruthenium initiator 4.

ic acid 1 was esterified with hydroquinone using *N*-(3-dimethylaminopropyl)-*N*'-ethylcarbodiimide hydrochloride and 4-dimethylaminopyridine to afford bis-styrene 2. Initiator 4 was synthesized by the carbene exchange of 3 with 2 in dichloromethane. ¹H NMR analysis indicated 95% conversion to 4 as seen by a shift of the carbene signals to $\delta = 19.4$ ppm in CD₂Cl₂. After purification by column chromatography, 4 was isolated in 72% yield.

Homopolymerization using initiator 4: We investigated the polymerization behavior of norbornene octyl ester 10. Monomer 10 was polymerized quantitatively using 2.5 mol% of 4 within 10 min at room temperature. Full initiation was observed by a complete shift of the carbene signal from $\delta =$ 19.4 ppm for **4** to 18.6 ppm (for the fully initiated species) in the ¹H NMR spectrum. We carried out a series of homopolymerizations with monomer-to-initiator ratios ([M]/[I]) ranging from 40:1 to 200:1. A linear relationship between $M_{\rm n}$ and [M]/[I] was found for polymers **12a–e** (Figure 2) indicating the controlled nature of the polymerization of 10 using 4. The gel-permeation chromatography (GPC) data of 12a-e are summarized in Table 1. The living nature of the polymerization was further confirmed by the synthesis of a homoblock copolymer. First, a 40 mer was synthesized using 4, which was then used as a macroinitiator for the polymeri-

6606

FULL PAPER

Figure 2. Plot of M_n vs. monomer 10/initiator 4 ratios for polymer 12a-e.

Table 1. Polymer characterization data (GPC) for 12 a-e.[a]

Polymer	[M]/[I]	M_{n}	$M_{ m w}$	PDI
12a	40	13 000	20000	1.56
12b	80	34 000	43 000	1.27
12c	120	55 000	68 000	1.23
12 d	160	73 000	88 000	1.20
12 e	200	96 000	114000	1.19

[a] M_n = number-average molecular weight; M_w = weight-average molecular weight; PDI = polydispersity index.

zation of a 1000 mer. The GPC traces of the homoblock copolymers were unimodal. Furthermore, we observed a complete shift to high molecular weights without traces of terminated low molecular weight polymer (Figure 3). The new bis-ruthenium initiator **4** is thus not only active toward ROMP of norbornenes, but also living at both chain-ends.

Figure 3. GPC traces of homoblock copolymers obtained from **10** by using **4**. Dashed line: polymer after complete conversion of the monomer $([M]/[I]=40:1, M_n=13000, PDI=1.56)$. Solid line: polymer after standing for 2 h and then continued polymerization of the additional monomer $([M]/[I]=1000:1, M_n=258000, PDI=1.25)$.

Synthesis of CTs: We can install any desired functionality in living ROMP through the use of functionalized vinyl ether derivatives that serve as chain-terminators, that is, they terminate the polymerization by incorporating the desired functionality at the polymer chain-end.^[13] To install supramolecular functionalities for metal coordination at both chain-ends of the polymer, SCS-Pd^{II} pincer- and pyridine-based CTs were synthesized as outlined in Scheme 2.

Scheme 2. Synthesis of CTs 8 and 9.

6-Chloro-1-hexenyl methyl ether **5** was reacted with SCS-Pd^{II} pincer precursor **6** or 4-hydroxypyridine **7** by using Williamson etherification to afford CTs **8** and **9**, respectively.

Preparation and characterization of telechelic polymers: ROMP of norbornene octyl ester **10** (for **13** and **14**) or norbornene methyltriglycol ester **11** (for **15**) was carried out with 2.5 mol% of **4** in CH_2Cl_2 followed by the addition of an excess of either **8** to obtain SCS-Pd^{II} pincer-functionalized telechelic polymer **13** or **9** to yield pyridine-functionalized telechelic polymers **14** and **15** (Scheme 3). Complete

Scheme 3. Synthesis of telechelic polymers 12-15.

termination of the ROMP was observed by the disappearance of the polymeric carbene signals in the ¹H NMR spectra. Incorporation of each functionality at both the chainends of each telechelic polymer was confirmed by ¹H NMR analysis (Supporting Information). The molecular weights and PDIs of all the telechelic polymers were determined by GPC analyses revealing monomodal distributions (M_n = 14000, PDI=1.62 for **13**, M_n =13000, PDI=1.57 for **14**, and M_n =18000, PDI=1.51 for **15**). Thus our methodology allows for full control over end group functionalization compared to the CTA-based ROMP in the preparation of symmetrical ditelechelic polymers.^[8b,10]

www.chemeurj.org

Self-assembly: We also investigated the formation of supramolecular multiblock copolymers by means of metal coordination using telechelic polymers 13-15. AgBF₄ is known to remove the Cl ligand on pincer complexes generating a cationic Pd species that can coordinate pyridyl units resulting in the formation of new pincer complexes.^[12] We have previously demonstrated the functionalization of side-chain and main-chain supramolecular polymers containing Pd-pincer complexes.^[10,12] We envisaged that by controlling the ratio of AgBF₄ in the mixture of complementary telechelic polymers to activated Pd-pincer moieties we can control the length of supramolecular block copolymers formed by metal-coordination.

The preparation of supramolecular homoblock copolymers (SHBCs) 13:14(n) and supramolecular alternating block copolymers (SABCs) 13:15(n) is outlined in Scheme 4. SABCs 13:15(n) are based on two chemically different blocks, octyl- and methyltriglycol-substituted poly-(norbornene)s, which may result in phase separation of individual blocks whereas the constituent blocks in SHBCs 13:14(n) should be completely miscible. 13:14(n) and 13:15(n) were synthesized by the addition of n equivalents (n=1, 2, or 3) of AgBF₄ to a solution of 1 equivalent of 13 and 1 equivalent of 14 or 15, respectively. The formation of supramolecular block copolymers was characterized by using ¹H NMR spectroscopy, Ubbelohde viscometry, and dynamic light scattering (DLS).

Telechelic polymers 13a and 14a were employed for the metal coordination because shorter 20 mers allow for easy ¹H NMR spectroscopy characterization. SHBC **13a:14a** was prepared by the addition of 3 equivalents of AgBF₄ to a solution of 1 equivalent each of 13a and 14a in dichloromethane. The formation of SHBC 13a:14a was confirmed from characteristic shifts in the ¹H NMR spectrum. The ¹H NMR spectra of 13a and 14a is shown in Figure 4A,B, respective-

Figure 4. ¹H NMR spectra depicting metal coordination of 13a with 14a in CD₂Cl₂. A) Telechelic polymer 13a; B) telechelic polymer 14a; C) a mixture of telechelic polymers 13a and 14a at a 1:1 ratio: α and $\beta = \alpha$ and β-pyridyl protons, respectively; D) self-assembled telechelic polymer 13a:14a after addition of AgBF₄: α' and $\beta' = \alpha$ - and β -pyridyl protons on pyridyl pincer complex, respectively.

ly. A mixture of 13a and 14a at a 1:1 ratio is shown in Figure 4C; no shifts in the ¹H NMR spectra are observed. Upon addition of AgBF₄, the resulting ¹H NMR spectrum of SHBC 13a:14a shows the characteristic downfield shifts of

6608 -

www.chemeurj.org

the α - and β -pyridyl signals from $\delta = 7.23$ (α) and 6.23 ppm (β) to 7.96 (α') and 7.29 ppm (β'), respectively. In addition to the diagnostic shifts of the pyridyl signals, the aromatic proton signals on the pincer complex broaden and shift slightly from $\delta = 7.79$, 7.36, and 6.63 ppm to 7.74, 7.44, and 6.58 ppm, respectively (Figure 4D). These characteristic shifts indicate quantitative metal coordination between **13a** and **14a**, resulting in the formation of SHBC **13a:14a**.

Viscometry is a simple yet powerful technique to demonstrate the formation of supramolecular multiblock polymers.^[8] The solution properties of SHBCs 13:14(n) and SABCs 13:15(n) in dichloromethane were examined by viscometry, and the results are shown in Figure 5. The specific

Figure 5. Specific viscosity (η_{sp}) at 25 °C in CH₂Cl₂. A) Telechelic polymers **13** and **14**, and SHBCs **13:14(***n***)** after addition of *n* equiv of AgBF₄; B) telechelic polymers **13** and **15**, and SABCs **13:15(***n***)** after addition of *n* equiv of AgBF₄.

viscosity (η_{sp}) of both SHBCs 13:14(*n*) and SABCs 13:15(*n*) increases as the equivalence of AgBF₄ increases from 1 to 2 to 3. Additionally, the relatively slight increases from SHBC 13:14(2) and SABC 13:15(2) to SHBC 13:14(3) and SABC 13:15(3), respectively, represent that 2 equivalents of AgBF₄ are sufficient for efficient metal coordination leading to the formation of supramolecular block copolymers. Compared with SHBCs 13:14(*n*), SABCs 13:15(*n*) show much larger η_{sp} values probably due to, at least partial, phase separation of the two different blocks. As a control experiment, we also carried out viscometry experiments on a 1:1 mixture of pyridine-functionalized telechelic polymer 15 and unfunctionalized polymer 12*a* before and after the addition of AgBF₄. The η_{sp} values after addition of AgBF₄ were unchanged

(Supporting information) supporting our hypothesis that the increase in η_{sp} values is the direct result of the formation of supramolecular alternating block copolymers.

To examine the bulk structure of SHBCs **13:14**(*n*) and SABCs **13:15**(*n*) in more detail, the hydrodynamic radii (R_h) of these materials were determined by DLS (Table 2). The

Table 2. Hydrodynamic radius (R_h) of SHBCs **13:14(***n*) and SABCs **13:15(***n*) measured by DLS at 34 gL⁻¹ (25 °C, CH₂Cl₂).

SHBC	$R_{\rm h}$ [nm]	SABC	$R_{\rm h} [{\rm nm}]$
13:14(1) 13:14(2)	35.8 77 5	13:15(1) 13:15(2)	66.8 119 3
13:14(3)	79.4	13:15(3)	142.0

particle size for both classes of materials increases with increased equivalence of $AgBF_4$ from 1 to 2 to 3, indicating that the polymeric block length can be tuned by the amount of $AgBF_4$ added. Also, a significant increase in size (almost two times) from 1 equivalent to 2 equivalents of $AgBF_4$ indicates the formation of supramolecular block copolymers. The fact that larger aggregates were observed in SABCs **13:15(n)** compared to SHBCs **13:14(n)**, suggests that the phase separation between the blocks results in increased hydrodynamic volume of SABCs with negligible effect on the metal coordination. Thus, the DLS data are consistent with the viscometry results strongly suggesting the formation of supramolecular multiblock copolymers.

Conclusions

We have developed a novel methodology for the synthesis of symmetrical telechelic polymers bearing terminal recognition motifs. A bimetallic ruthenium initiator was synthesized in a straight forward fashion via carbene exchange and used for the incorporation of supramolecular functionalities onto polymer chain-ends. The hydroquinone phenyl ring in the ruthenium initiator offers an opportunity to introduce stimuli-responsive functionalities in the middle of the polymeric backbone. Such functionalities could render these block copolymers pH cleavable or light responsive. Further, termination of the living ROMP with functionalized CTs afforded the symmetrical telechelic polymers in a single step. Self-assembly of the telechelic polymers to afford block copolymers was achieved by metal coordination between recognition units. The formation of supramolecular block copolymers was substantiated using ¹H NMR spectroscopy, viscometry, and DLS. We have also demonstrated that the bulk properties of the supramolecular block copolymers can be tuned by the amount of AgBF₄ added.

Experimental Section

General Methods. All reagents were purchased either from Acros Organics, Alfa Aesar, or Sigma–Aldrich and used without further purification

www.chemeurj.org

unless otherwise noted. CH₂Cl₂ was dried by means of passage through copper oxide and alumina columns. NMR spectra were recorded by using a Bruker AV-400 (1H: 400.1 MHz; 13C: 100.6 MHz) spectrometer. Chemical shifts are reported in ppm and referenced to the corresponding residual nuclei in deuterated solvents. Elemental analyses were performed by using a Carlo Erba 1108 elemental analyzer. Mass spectral analyses were provided by the Georgia Tech Mass Spectrometry Facility using a VG-70 se spectrometer. Viscosity was measured in dichloromethane using a Cannon semi-micro Ubbelohde viscometer (9722-G59) at 25°C. The hydrodynamic radius (R_h) was measured by using a Protein Solutions DLS (DynaPro) at 25°C and analyzed with a Dynamics V6 software. Gel-permeation chromatography (GPC) analyses were carried out by using a Shimadzu pump coupled to a Shimadzu UV detector with tetrahydrofuran (THF) as the eluent and a flow rate of 1 mLmin⁻¹ on an American Polymer Standards column set (100, 1000, 100 000 Å, linear mixed bed). All GPCs were calibrated using poly(styrene) standards and carried out at 25 °C. M_w , M_n , and PDI represent the weight-average molecular weight, number-average molecular weight, and polydispersity index, respectively. 6-(4-Vinylphenoxy) hexanoic acid $\mathbf{1}$,^[14] 6-chloro-1-hexenyl methyl ether 5,[13b] SCS-PdII pincer precursor 6,[15] and monomers 10 and 11^[16] were synthesized according to the previously published procedures.

Bis-styrene 2: To a solution of 6-(4-vinylphenoxy) hexanoic acid 1 (0.59 g, 2.5 mmol) and hydroquinone (0.13 g, 1.2 mmol) in anhydrous DMF (8 mL) were added N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (0.55 g, 2.9 mmol) and 4-dimethylaminopyridine (17 mg, 0.14 mmol). After the mixture was stirred at 25°C for 6 h, the solvent was removed under reduced pressure. Water (30 mL) was added and the mixture was extracted with CH₂Cl₂ (3×30 mL). The combined organic layers were washed with water, dried over MgSO4, filtered, and concentrated under reduced pressure to give a yellow oil that was further purified by column chromatography on silica gel in dichloromethane to yield 0.59 g of a white solid in 96% yield. ¹H NMR (CDCl₃): $\delta = 7.34$ (d, J=8.8 Hz, 4H), 7.09 (s, 4H), 6.85 (d, J=8.8 Hz, 4H), 6.66 (dd, J=17.6, 11.0 Hz, 2H), 5.61 (d, J=17.6 Hz, 2H), 5.12 (d, J=11.0 Hz, 2H), 3.99 (t, *J*=6.4 Hz, 4H), 2.60 (t, *J*=7.6 Hz, 4H), 1.83 (m, 8H), 1.61 ppm (m, 4H); ¹³C NMR (CDCl₃): $\delta = 171.9$, 158.8, 148.1, 136.3, 130.4, 127.4, 122.4, 114.5, 111.5, 67.6, 34.2, 28.9, 25.6, 24.6 ppm; elemental anal (%) calcd for C34H38O6: C 75.25, H 7.06; found: C 74.81, H 7.03; ESI-MS: m/z: calcd for C₃₄H₃₈O₆, 542.2688; found, 543.2741 [*M*+H]⁺.

Bis-ruthenium initiator 4: Bis-styrene **2** (0.10 g, 0.18 mmol) and Grubbs' first-generation initiator **3** (0.60 g, 0.73 mmol) were dissolved in anhydrous, degassed CH₂Cl₂ (10 mL) under an argon atmosphere and stirred at 25 °C for 1 h. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (hexanes/EtOAc, 4:1) to yield 0.26 g of a purple solid in 72 % yield. ¹H NMR (CD₂Cl₂): δ =19.44 (s, 2H), 8.41 (br, 4H), 7.07 (s, 4H), 6.79 (d, *J*= 8.8 Hz, 4H), 4.01 (t, *J*=6.4 Hz, 4H), 2.58 (m, 16H), 1.94–1.12 ppm (m, 132 H). ¹³C NMR (CD₂Cl₂): δ =290.6, 172.3, 160.0, 148.6, 148.2, 134.3, 122.8, 114.4, 68.3, 34.5, 32.4, 30.0, 29.2, 28.3, 27.0, 25.9, 25.0 ppm; elemental anal (%) calcd for C₁₀₄H₁₆₆O₆Cl₄P₄Ru₂: C 63.08, H 8.45; found: C 62.53, H 8.42.

CT 8. To a solution of 6-chloro-1-hexenyl methyl ether 5 (0.20 g, 1.2 mmol) and SCS-Pd^{II} pincer precursor 6 (0.60 g, 1.3 mmol) in anhydrous DMF (10 mL) was added potassium carbonate (0.52 g, 3.8 mmol). After the mixture was stirred at 90 °C for 12 h, the solvent was removed under reduced pressure. Water (20 mL) was added and the mixture was extracted with CH_2Cl_2 (3×20 mL). The combined organic layers were washed with water, dried over MgSO4, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (hexanes/EtOAc, 2:1) (0.38 g, 50 %). ¹H NMR (CDCl₃): $\delta = 7.79$ (dd, J = 7.2, 2.0 Hz, 4H), 7.36 (m, 6H), 6.63 (s, 2H), 6.28 (d, J = 12.4 Hz, 12.4 Hz)0.6H), 5.87 (d, J = 6.4 Hz, 0.4H), 4.70 (td, J = 12.4, 7.6 Hz, 0.6H), 4.64 (br, 4H), 4.33 (dd, J=7.2, 6.4 Hz, 0.4H), 3.88 (t, J=6.4 Hz, 2H), 3.57 (s, 1.2H), 3.50 (s, 1.8H), 2.08 (m, 0.8H), 1.94 (m, 1.2H), 1.75 (m, 2H), 1.41 ppm (m, 4H); 13 C NMR (CDCl₃): $\delta = 226.8$, 157.2, 149.8, 147.2, 146.2, 132.8, 131.7, 129.8, 129.6, 108.0, 106.6, 102.8, 68.1, 59.5, 55.9, 54.5, 30.4, 29.5, 29.2, 27.6, 25.7, 25.4, 23.8 ppm; ESI-MS: m/z: calcd for C₂₈H₃₁ClO₂PdS₂, 604.0489; found, 569.0800 [*M*-Cl]⁺.

CT 9: Potassium carbonate (1.4 g, 10 mmol) was added to a solution of 6chloro-1-hexenyl methyl ether 5 (0.55 g, 3.4 mmol) and 4-hydroxypyridine 7 (0.35 g, 3.7 mmol) in anhydrous DMF (10 mL). After the mixture was stirred at 90 °C for 12 h, the solvent was removed under reduced pressure. Water (20 mL) was added and the mixture was extracted with CH₂Cl₂ (3×20 mL). The combined organic layers were washed with water, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (dichloromethane/methanol, 15:1) (0.45 g, 60%). ¹H NMR (CDCl₃): $\delta = 7.25$ (d, J =8.0 Hz, 2H), 6.36 (d, J=8.0 Hz, 2H), 6.26 (d, J=12.0 Hz, 0.6 H), 5.86 (d, J = 6.4 Hz, 0.4H), 4.65 (td, J = 12.0, 7.2 Hz, 0.6H), 4.33 (dd, J = 7.0, 6.4 Hz, 0.4 H), 3.73 (t, J=7.2 Hz, 2 H), 3.55 (s, 1.2 H), 3.48 (s, 1.8 H), 2.04 (m, 0.8H), 1.91 (m, 1.2H), 1.75 (m, 2H), 1.35 ppm (m, 4H); ¹³C NMR $(CDCl_3): \delta = 147.5, 146.6, 139.5, 139.5, 118.8, 105.8, 102.2, 59.5, 57.0, 56.9,$ 56.0, 30.7, 30.5, 30.1, 28.9, 27.3, 25.5, 25.4, 23.3 ppm; EIMS: m/z: calcd for $C_{13}H_{19}NO_2$, 221.1416; found, 221.1413.

General polymerization procedure: The desired amount of monomer was dissolved in anhydrous, degassed CH_2Cl_2 under an argon atmosphere. Bis-ruthenium initiator 4 was added as a solution in the corresponding solvent. Upon complete polymerization, ethyl vinyl ether (for 12), CT 8 (for 13), or CT 9 (for 14 and 15) was added to quench the polymerization. The polymer was isolated and purified by repeated precipitations into MeOH (for 12-.14) or diethyl ether (for 15).

Self-assembly studies: Polymer 13 was dissolved in CD_2Cl_2 and polymer 14 or 15 was added until a 1:1 equivalency was reached in relation to the Pd-pincer complexes as determined by ¹H NMR spectroscopy. The desired amount of AgBF₄ dissolved in MeNO₂ was added to the reaction mixture. After stirring at 25 °C for 4 h, the precipitated AgCl(s) was removed by centrifugation. The supernatant liquid was filtered through a plug of Celite and subsequently through a 0.2 µm syringe filter. The solvent was removed in vacuo to yield the supramolecular block copolymers.

Acknowledgements

We thank the National Science Foundation (CHE-0239385) and New York University for financial support of this research. This work was supported partially by the MRSEC Program of the National Science Foundation under Award Number DMR-0820341. MW gratefully acknowledges a Camille Dreyfus Teacher/Scholar Award and an Alfred P. Sloan Fellowship.

 [3] a) W. H. Binder, S. Bernstorff, C. Kluger, L. Petraru, M. J. Kunz, Adv. Mater. 2005, 17, 2824–2828; b) X. Yang, F. Hua, K. Yamato, E. Ruckenstein, B. Gong, W. Kim, C. Y. Ryu, Angew. Chem. 2004, 116, 6633–6636; Angew. Chem. Int. Ed. 2004, 43, 6471–6474; c) A. O. Moughton, R. K. O'Reilly, J. Am. Chem. Soc. 2008, 130, 8714–8725.

a) T. F. A. de Greef, E. W. Meijer, *Nature* 2008, 453, 171–173; b) C.-A. Fustin, P. Guillet, U. S. Schubert, J.-F. Gohy, *Adv. Mater.* 2007, 19, 1665–1673; c) G. ten Brinke, J. Ruokolainen, O. Ikkala, *Adv. Polym. Sci.* 2007, 207, 113–177; d) D. Farnik, C. Kluger, M. J. Kunz, D. Machl, L. Petraru, W. H. Binder, *Macromol. Symp.* 2004, 217, 247–266.

^[2] a) S. Sivakova, D. A. Bohnsack, M. E. Mackay, P. Suwanmala, S. J. Rowan, J. Am. Chem. Soc. 2005, 127, 18202-18211; b) A. W. Bosnian, L. Brunsveld, B. J. B. Folmer, R. P. Sijbesma, E. W. Meijer, Macromol. Symp. 2003, 201, 143-154; c) W. C. Yount, H. Juwarker, S. L. Craig, J. Am. Chem. Soc. 2003, 125, 15302-15303; d) L. Shimizu, Polym. Int. 2007, 56, 444-452; e) B. J. B. Folmer, R. P. Sijbesma, R. M. Versteegen, J. A. J. van der Rijt, E. W. Meijer, Adv. Mater. 2000, 12, 874-878; f) R. Hoogenboom, U. S. Schubert, Chem. Soc. Rev. 2006, 35, 622-629; g) A. M. S. Kumar, S. Sivakova, J. D. Fox, J. E. Green, R. E. Marchant, S. J. Rowan, J. Am. Chem. Soc. 2008, 130, 1466-1476; h) S. Sivakova, S. J. Rowan, Chem. Soc. Rev. 2005, 34, 9-21.

^{6610 -}

FULL PAPER

- [4] a) T. Park, S. C. Zimmerman, J. Am. Chem. Soc. 2006, 128, 11582–11590; b) W. H. Binder, L. Petraru, T. Roth, P. W. Groh, V. Pálfi, S. Keki, B. Ivan, Adv. Funct. Mater. 2007, 17, 1317–1326; c) K. E. Feldman, M. J. Kade, T. F. A. de Greef, E. W. Meijer, E. J. Kramer, C. J. Hawker, Macromolecules 2008, 41, 4694–4700.
- [5] a) D. J. M. van Beek, M. A. J. Gillissen, B. A. C. van As, A. R. A. Palmans, R. P. Sijbesma, *Macromolecules* 2007, 40, 6340-6348;
 b) J. H. K. K. Hirschberg, F. H. Beijer, H. A. van Aert, P. C. M. M. Magusin, R. P. Sijbesma, E. W. Meijer, *Macromolecules* 1999, 32, 2696-2705;
 c) W. H. Binder, M. J. Kunz, C. Kluger, G. Hayn, R. Saf, *Macromolecules* 2004, 37, 1749-1759;
 d) N. E. Botterhuis, D. J. M. van Beek, G. M. L. van Gemert, A. W. Bosman, R. P. Sijbesma, J. Polym. Sci. Part A 2008, 46, 3877-3885.
- [6] B. G. G. Lohmeijer, U. S. Schubert, Angew. Chem. 2002, 114, 3980– 3984; Angew. Chem. Int. Ed. 2002, 41, 3825–3829.
- [7] H. Hofmeier, R. Hoogenboom, M. E. L. Wouters, U. S. Schubert, J. Am. Chem. Soc. 2005, 127, 2913–2921.
- [8] a) T. Park, S. C. Zimmerman, J. Am. Chem. Soc. 2006, 128, 13986–13987;
 b) O. A. Scherman, G. B. W. L. Ligthart, H. Ohkawa, R. P. Sijbesma, E. W. Meijer, Proc. Natl. Acad. Sci. USA 2006, 103, 11850–11855.
- [9] a) M. A. Hillmyer, R. H. Grubbs, *Macromolecules* 1993, 26, 872–874; b) C. W. Bielawski, T. Morita, R. H. Grubbs, *Macromolecules* 2000, 33, 678–680; c) T. Morita, B. R. Maughon, C. W. Bielawski, R. H. Grubbs, *Macromolecules* 2000, 33, 6621–6623.
- [10] M. N. Higley, J. M. Pollino, E. Hollembeak, M. Weck, *Chem. Eur. J.* 2005, 11, 2946–2953.

- [11] C. W. Bielawski, R. H. Grubbs, Prog. Polym. Sci. 2007, 32, 1-29.
- [12] a) M. Albrecht, G. van Koten, Angew. Chem. 2001, 113, 3866–3898; Angew. Chem. Int. Ed. 2001, 40, 3750–3781; b) J. M. Pollino, M. Weck, Synthesis 2002, 1277–1285; c) J. M. Pollino, L. P. Stubbs, M. Weck, J. Am. Chem. Soc. 2004, 126, 563–567; d) K. P. Nair, J. M. Pollino, M. Weck, Macromolecules 2006, 39, 931–940; e) C. R. South, C. Burd, M. Weck, Acc. Chem. Res. 2007, 40, 63–74; f) C. R. South, K. C.-F. Leung, D. Lanari, J. F. Stoddart, M. Weck, Macromolecules 2006, 39, 3738–3744; g) W. C. Yount, D. M. Loveless, S. L. Craig, J. Am. Chem. Soc. 2005, 127, 14488–14496; h) W. C. Yount, D. M. Loveless, S. L. Craig, Angew. Chem. 2005, 117, 2806–2808; Angew. Chem. Int. Ed. 2005, 44, 2746–2748; i) S. L. Jeon, D. M. Loveless, W. C. Yount, S. L. Craig, Inorg. Chem. 2006, 45, 11060– 11068; j) M. J. Serpe, S. L. Craig, Langmuir 2007, 23, 1626–1634.
- [13] a) E. J. Gordon, J. E. Gestwicki, L. E. Strong, L. L. Kiessling, *Chem. Biol.* **2000**, 7, 9–16; b) B. Chen, K. Metera, H. F. Sleiman, *Macromolecules* **2005**, *38*, 1084–1090.
- [14] A. V. Ambade, S. K. Yang, M. Weck, Angew. Chem. 2009, 121, 2938–2942; Angew. Chem. Int. Ed. 2009, 48, 2894–2898.
- [15] K. Yu, W. Sommer, M. Weck, C. W. Jones, J. Catal. 2004, 226, 101– 110.
- [16] R. M. Kriegel, J. W. S. Rees, M. Weck, *Macromolecules* 2004, 37, 6644–6649.

Received: March 3, 2009 Published online: June 4, 2009