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Chemoselective Epoxidation of Electron Deficient Enones with Iodosylbenzene
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Abstract: The epoxidation of electron deficient olefins is demon-
strated with PhIO and an assortment of enones.
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Iodosylbenzene (PhIO) is widely used as an oxygen
source.1 It is made by treatment of PhI(OAc)2 with sodium
hydroxide.2 Iodosylbenzene is a polymeric substance with
the characteristic [T] shape common for I(III) compounds
(Figure 1).3 While resembling most hypervalent com-
pounds in regard to thermal instability,4 the polymeric and
insoluble nature of iodosylbenzene decreases its reactivity
as an oxidant.

Figure 1

During a recent synthesis of epoxysorbicillinol,5 we found
that the most electron deficient enone contained within 15
undergoes chemoselective and diastereoselective epoxi-
dation with PhIO (0.1 M in CH3NO2) to afford 16 in a
92% yield (Table 1, entry 10). Presumably, the oxygen
atom of PhIO serves as a nucleophile in this transforma-
tion. This reactivity, commonly observed with ROO– sys-
tems, has rarely been observed with I(III) reagents.6

Although predicted by theoretical calculations,7 careful
scrutiny of the literature reveals only one example, where
unmodified iodosylbenzene has been reported to effect an
epoxidation of an electron deficient olefin (Scheme 1).8

In the same report, the conversion of ketenes to polyesters
is proposed to proceed through a similar process by epoxi-
dation of a ketene intermediate (Scheme 2).9 This sug-
gests that PhIO might epoxidize other electron deficient
alkenes.

To determine the scope of this reaction, a series of enones
were examined in combination with iodosylbenzene
(Table 1, entries 1–10). CDCl3 was used as the solvent,
which thereby enabled the reactions to be followed by
1H NMR. The bromo-enone 19 and PhIO prove unreactive
under these conditions (entry 1). Similarly, the diesters
2–4 are recovered unchanged along with PhIO (entry
2–4). It is interesting to note, however, that the cyclo-
hexenone 5,10 which is presumed to form a similarly sta-
bilized anion, undergoes reaction with iodosylbenzene to
furnish the epoxide 611 in 90% yield (entry 5). The cyclo-
hexenone 7, which proves difficult to handle and store be-
cause of its propensity towards enolization,12 affords the
corresponding epoxide 8 in a 45% yield along with the
trione 17 (entry 6).13 The a-sulfonated cyclohexenone 914

affords the epoxide 1015 in a 91% yield (entry 7). To our
surprise, the nitrile cyclohexenone derivative 11,16 ap-
pears to lead to the decomposition of iodosylbenzene.
However, addition of 4.1 equivalents of PhIO produces
the epoxide 1217 in a respectable 75% yield (entry 8). The
Meldrums acid derivative 1318 undergoes epoxidation
very rapidly (<2 h) to afford the epoxide 1419 in >95%
yield (entry 9).

On the basis of this series of compounds, we speculate
that a correlation exists between reactivity of substrates
with PhIO and the stability of the anticipated anionic
intermediate. Highly electron deficient enones, where the
resulting anion should be fairly stable with the PKa of
conjugate acid <14.2, appear to smoothly undergo this
epoxidation procedure. The only substrate that does not fit
this reasoning is compound 4. However, we presume
compound 4 is less reactive than compound 5 because of
extended conjugation with the phenyl ring system.
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Table 1 Epoxidation of Electron Deficient Enonesa

Entry Enone Cond. Approx. PKa of conj. acid Product Yield (%)

1

1

1.1 equiv 18 None 0

2

2

1.1 equiv 16.4 None 0

3

3

1.1 equiv 16.4 None 0

4

4

1.1 equiv 14.2 None 0

5

5

1.1 equiv 14.2

6

90

6b

7

1.1 equiv 13.3

8

45

7

9

1.1 equiv 12.5

10

91

8c

11

4.1 equiv 10.2

12

75

9

13

1.1 equiv 7.3

14

>95

10

15

1.1 equiv 13.3

16

92

a Conditions: 0.1 M in CDCl3, 1.1 equiv of PhIO added in one portion at r.t. In most cases, complete reaction required from 2–18 h. b In addition 
to the epoxides 6, the known b-diketone 17 is also formed in small amounts.14 c More than 1.1 equiv is required for complete epoxidation.
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General Procedure: Compounds 2, 3 were purchased from Aldrich
and used without purification. All other starting compounds 1, 4, 5,
7, 9, 11, 13, and 15 were prepared according to known literature
procedures. Epoxides 6, 10 and 16 are known compounds. Key
spectroscopic data for 8, 12 and 14 are provided. The starting mate-
rial (0.1 mmol) was dissolved in CDCl3 (1 mL) and placed in a seal-
able NMR tube. PhIO was added and the reaction vessel was
intermittently vortex stirred. After 12 h, 1 equiv of DMF was added
as a standard and a 1H NMR spectrum was obtained. The yields of
epoxides were based on comparison with the standard. However,
compounds 6, 8, 10, 12, and 14 were also isolated by chromato-
graphy in comparable yields in larger scale reactions conducted in
chloroform. Volatility makes isolation of the epoxides 6 and 8
problematic and their isolated yields are lower.
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