
This article was downloaded by: [Colorado College] On: 09 December 2014, At: 12:53 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

An Efficient, Basic Resin-Mediated, One-Pot Synthesis of Dithiocarbazates Through Alcoholic Tosylates

Devdutt Chaturvedi^a, Nisha Mishra^b, Amit K. Chaturvdi^b & Virendra Mishra^b

^a Bio-Organic Chemistry Division , Indian Institute of Integrative Medicine , Jammu-Tawi, J. & K, India

^b Synthetic Research Laboratory, Department of Chemistry , B. S. A. College , Mathura, U. P., India Published online: 19 Feb 2009.

To cite this article: Devdutt Chaturvedi , Nisha Mishra , Amit K. Chaturvdi & Virendra Mishra (2009) An Efficient, Basic Resin-Mediated, One-Pot Synthesis of Dithiocarbazates Through Alcoholic Tosylates, Phosphorus, Sulfur, and Silicon and the Related Elements, 184:3, 550-558, DOI: <u>10.1080/10426500802203137</u>

To link to this article: http://dx.doi.org/10.1080/10426500802203137

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with

primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u>

An Efficient, Basic Resin-Mediated, One-Pot Synthesis of Dithiocarbazates Through Alcoholic Tosylates

Devdutt Chaturvedi,
^1 Nisha Mishra,² Amit K. Chaturvdi,² and Virendra Mishra
² $\!$

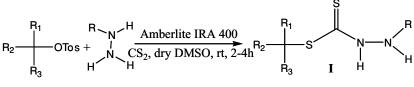
¹Bio-Organic Chemistry Division, Indian Institute of Integrative Medicine, Jammu-Tawi, J. & K., India ²Synthetic Research Laboratory, Department of Chemistry, B. S. A. College, Mathura, U. P., India

A quick and efficient, one-pot synthesis of dithiocarbazates was accomplished in high yields by the reaction of various alcoholic tosylates of primary, secondary, and tertiary alcohols, with substituted hydrazines using an Amberlite IRA 400 (basic resin)/CS₂ system. The reaction conditions are mild with simpler work-up procedures than previously reported methods.

Keywords Alcoholic tosylates; Amberlite IRA 400; carbon disulfide; dithiocarbazates; substituted hydrazines

INTRODUCTION

Organic dithiocarbazates have attracted much attention due to their numerous remarkable medicinal, industrial, and synthetic applications.^{1,2} They have been extensively used as pharmaceuticals,³⁻⁶ agrochemicals,⁷⁻¹⁰ intermediates in organic synthesis,¹¹⁻¹³ for the protection of amino groups in peptide synthesis,¹⁴⁻¹⁷ as linkers in solid phase organic synthesis,^{18,19} and as donor ligands in complexation reactions with transition metals.²⁰⁻²² To satisfy demand, their synthesis has been changed from the use of costly and toxic chemicals such as thiophosgene²³ and its derivatives,^{24,25} directly or indirectly, to the more abundantly available, cheap, and safe reagents such as CS₂. However, their formation using CS₂ employed harsh reaction conditions such


Received 16 April 2008; accepted 14 May 2008.

The authors wish to thank SIAF division of CDRI for providing spectroscopic and analytical data.

Address correspondence to Devdutt Chaturvedi, Natural Products Chemistry Division, North-East Institute of Science and Technology (NEIST), Jorhat-785006, Assam, India. E-mail: ddchaturvedi002@yahoo.co.in as the use of strong bases, higher reaction temperatures, and longer reaction times.^{26,27} Thus, we were prompted to embark on developing improved procedures. Our group^{28–40} has been engaged in the past several years in the development of new methodologies for the preparation of carbamates, dithiocarbamates, and related compounds using cheap, abundantly available, and safe reagents such as CO_2 and CS_2 . More recently^{41–47}we found that Amberlite IRA 400 (basic resin) is the best reagent for the synthesis of carbamates, dithiocarbamates, and dithiocarbonates (xanthates). Furthermore, use of basic resin has also been reported⁴⁸ for the tetrahydropyranylation of alcohols and phenols. In the present communication, we report here an efficient, one-pot synthesis of dithiocarbazates from variety of primary, secondary, and tertiary alcoholic tosylates and substituted hydrazines using basic resin/CS₂ system.

RESULTS AND DISCUSSION

In connection with our ongoing interest pertaining to the use of Amberlite IRA 400 (basic resin) for the synthesis of carbamates, dithiocarbamates, and dithiocarbonates (xanthates),⁴¹⁻⁴⁷ we now wish to report a simple and effective one-pot procedure for the preparation of dithiocarbazates from a variety of primary, secondary, and tertiary alcoholic tosylates and substituted hydrazines using a basic resin/CS₂ system. Thus, a mixture of substituted hydrazine and CS_2 were taken in dry DMSO, and Amberlite IRA 400 (basic resin) was added. The reaction was stirred for 30 min at room temperature and then the corresponding alcoholic tosylate was added. The reaction was further continued until the completion as determined by TLC (see Table I). It is proposed that the S^- of the dithiocarbazate ion produced will attach to the electrophilic carbon of the respective alcoholic tosylates to afford dithiocarbazates in high yields (80-98%) at room temperature in 2-4 h, as mentioned in Table I. The reaction proved to be successful, and the desired products were isolated and their identities confirmed by various spectroscopic and analytical techniques. Since the products were simply obtained by concentration of the organic layer after filtration of the basic resin from the reaction mixture, this indicates the novelty of the method among the reported procedures. Reactions have also been attempted without using Amberlite resin, but no products could be observed, which indicates the necessity of basic resin in carrying out the reaction. Alcoholic tosylates of primary, secondary, and tertiary alcohols were prepared following the standard procedure.⁴⁹ The whole reaction conditions are shown in Scheme 1.

SCHEME 1

We tried several solvents such as *n*-heptane, *n*-hexane, acetonitrile, benzene, toluene, methanol, dichloromethane, chloroform, DMSO, dimethylformamide, and hexamethylphosphoric triamide, of which dry DMSO at room temperature proved to be the most suitable.

In conclusion, we have developed a convenient and efficient protocol for one-pot, three-component coupling of various amines with a variety of alcoholic tosylates of primary, secondary, and tertiary alcohols via a CS_2 bridge using basic resin (Amberlite IRA 400). This method generates the corresponding dithiocarbazates in good to excellent yields. Furthermore, this method exhibits substrate versatility, mild reaction conditions, and experimental convenience. This synthetic protocol developed in our laboratory is believed to offer a more general method for the formation of carbon–sulfur bonds essential to numerous organic syntheses.

Entry	R_1	R_2	R_3	R	Time (h)	Isolated Yield (%)
1	$n-C_3H_7$	н	н	4-MeOPh	2	93
2	$PhCH_2CH_2$	Н	Н	Ph	2	96
3	$PhCH_2$	Н	Н	Ph	2.5	86
4	Ph	Η	Η	Bn	3	91
5	C_2H_5	Me	Η	Bn	3	89
6	4-MeOPh	Н	Н	$3-NO_2Ph$	3	84
7	C_3H_7	Η	Η	$4-NO_2Ph$	3	85
8	C_3H_7	Н	Н	$2,4-NO_2Ph$	4	80
9	C_3H_7	Η	Η	Naphthyl	3	84
10	C_4H_9	C_4H_9	Н	Ph	3	91
11	C_4H_9	C_4H_9	C_4H_9	Ph	3	88
12	C_5H_{11}	Н	Н	Bn	2.5	95
13	C_7H_{15}	Н	Н	Ph	2.5	92
14.	C_9H_{19}	Н	Н	Bn	2	98
15.	C_3H_7	C_3H_7	Н	Ph.	3	86
16.	Ph	CH_3	н	Ph	3.5	83

TABLE I Conversion of Alcoholic Tosylates into Dithiocarbazates of General Formula I

Note: All the products were characterized by IR, NMR, and mass spectroscopic data.

EXPERIMENTAL

Chemicals were procured from Merck, Aldrich, and Fluka chemical companies. Amberlite IRA 400 (basic resin) was also purchased from Merck. Reactions were carried out under an atmosphere of nitrogen. IR spectra (4000–200 cm⁻¹) were recorded on Bomem MB-104–FTIR spectrophotometer, whereas NMRs were scanned on an AC-300F NMR (300 MHz) instrument using CDCl₃ and TMS as internal standard. Elemental analysis were made on a Carlo-Erba EA 1110-CNNO-S analyzer and agreed favorably with the calculated values.

Typical Experimental Procedure

To a stirred solution of substituted hydrazine (3 mmol) in anhyd. DMSO (5 mL), carbon disulfide (8 mmol) and basic resin (5 mmol) were slowly added at room temperature. Then the mixture was stirred for 0.5 h, at which point the required alcoholic tosylates (3 mmol) was added over a period of 5 min. The reaction mixture was further continued until the completion of reaction (cf Table I) under argon. The reaction mixture was filtered to remove the resin. The filtrate was poured into water (20 mL), and the organic layer was extracted with EtOAc (3×10 mL). The organic layer was washed with 0.1 N HCl (20 mL), a saturated solution of sodium bicarbonate (25 mL), and brine (30 mL), and was dried (Na₂SO₄) and concentrated to get the desired compound.

Data for Dithiocarbazates

N'-(4-Methoxyphenyl) Hydrazine Carbodithioc Acid Butyl Ester (1, C₁₂H₁₈N₂OS₂)

IR υ (cm⁻¹) = 675, 1210; ¹H NMR (CDCl₃) δ = 0.85(t, 3H, *J*= 7.3 Hz), 1.33(m, 2H), 1.85(m, 2H), 2.0 (s, NH), 2.95 (t, 2H, *J*= 6.3 Hz), 3.73 (s, 3H), 4.05(m, NH), 6.75–7.60(m, 4H); ¹³CNMR (CDCl₃) δ = 13.5, 21.8, 32.4, 33.9, 43.7, 55.6, 112.5, 114.9, 134.5, 152.4, 222.5 (C=S) ppm; MS (EI): m/z = 270; Analysis: C₁₂H₁₈N₂OS₂, Calcd: C, 53.30; H, 6.71; N, 10.36; S, 23.72; Found: C, 53.24; H, 6.65; N, 10.33; S, 23.58.

N'-Phenyl Hydrazine Carbodithioc Acid 3-Phenyl Propyl Ester (2, C₁₆H₁₈N₂S₂)

IR v (cm⁻¹) = 676, 1205; H¹NMR (CDCl₃) δ = 2.05 (s, H, NH), 2.30 (m, 2H, Ph.CH₂. *CH*₂.CH₂-S)), 2.56 (t, 2H, *J* = 7.2 Hz, Ph.*CH*₂), 2.87(t, 2H, Ph.CH₂.CH₂. *CH*₂.S), 4.03 (m, H, Ph.*NH*), 6.66–7.12 (m, 10H, Ar-H); ¹³C NMR (CDCl₃), δ = 32.2, 33.6, 34.4, 112.5, 119.2, 125.8, 128.6, 129.5, 138.6, 221.6 (C = S) ppm; MS: m/z = 302; Analysis: C₁₆H₁₈N₂S₂,

Calcd: C, 63.54; H, 6.00; N, 9.26; S, 21.20; Found: C, 63.35; H, 6.26; N, 9.17; S, 21.28.

N'-Phenyl-hydrazine Carbodithioc Acid Phenethyl Ester (3, $C_{15}H_{16}N_2S_2$)

IR υ (cm⁻¹) = 673, 1203; H¹NMR (CDCl₃) δ = 2.10 (s, H, NH), 3.20 (2H, t, J = 6.5, Hz, Ph.CH₂CH₂S), 3.24 (m, 2H, J = 7.2 Hz, PhCH₂), 4.52 (m, H, PhNH), 6.69–7.15 (m, 10H, Ar-H); ¹³CNMR (CDCl₃), δ = 34.5, 37.3, 47.2, 49.9, 118.6, 192.7, 223.3 (C=S) ppm; MS: m/z = 288; Analysis: C₁₅H₁₆N₂S₂, Calcd: C, 62.46; H, 5.59; N, 9.71; S, 22.23; Found: C, 62.70; H, 6.64; N, 9.59; S, 22.10.

N'-Butyl Hydrazine Carbodithioc Acid Benzyl Ester (4, C₁₂H₁₈N₂S₂)

IR υ (cm⁻¹) = 676, 1207; H¹NMR (CDCl₃) δ = 1.05 (t, 3H, CH₃), 1.33 (m,2H, *CH*₂CH₃), 1.56 (m, 2H, *CH*₂.CH₂CH₃), 2.05(br, NH), 2.65 (m, 2H, NH*CH*₂), 4.13 (s, 2H, Ph*CH*₂), 7.06–7.15 (m, 5H, Ar-H)); ¹³CNMR (CDCl₃), δ = 13.7, 20.2, 31.5, 38.5, 50.9, 126.8, 127.6, 128.5, 141.8, 223.5 ppm; MS: m/z = 254; Analysis: C₁₂H₁₈N₂S₂, Calcd: C, 56.65; H, 7.13; N, 11.01; S, 25.21; Found: C, 56.46; H, 7.35; N, 11.27; S, 25.12.

N'-Butyl-hydrazine Carbodithioc Acid Sec-butyl Ester $(5, C_9H_{20}N_2S_2)$

IR υ (cm⁻¹) = 682, 1214; H¹NMR (CDCl₃) δ = 0.99 (t, 3H, CH₃), 1.05 (t, 3H, CH₃), 1.35 (m, 2H, CH₂.*CH*₃), 1.41(d, 3H, CH*CH*₃), 1.55 (m, 2H, CH₃CH₂*CH*₂), 1.96 (m, 2H, CH*CH*₂), 2.0 (br, H, NH), 2.65 (m, 2H, NH*CH*₂), 2.70 (m, H, *CH*-S), ¹³C NMR (CDCl₃) δ = 10.2, 13.7, 20.2, 21.5, 31.2, 32.3, 40.1, 49.9, 223.4 ppm; MS: m/z = 220; Analysis: C₉H₂₀N₂S₂, Calcd: C,49.05; H, 9.15; N, 12.71; S, 29.10; Found: C, 49.33; H, 9.01; N, 12.75; S, 29.32.

N'-(3-Nitrophenyl)-hydrazine Carbodithioc Acid 4-Methoxy Benzyl Ester (6, $C_{15}H_{15}N_3O_3S_2$)

IR υ (cm⁻¹) = 678, 1211; H¹NMR (CDCl₃) δ = 2.05 (br, H, *NH*Ph.OMe), 3.73(s, 3H, OCH₃), 4.06 (br, H, *NH*Ph.NO₂), 6.65–7.66(m, 8H, Ar-H); ¹³C NMR (CDCl₃) δ = 38.3, 56.7, 107.5, 114.6, 118.4, 128.5, 129.9, 133.6, 143.6, 148.7, 160.6, 223.2 ppm; MS: m/z = 349; Analysis: C₁₅H₁₅N₃O₃S₂, Calcd: C, 51.56; H, 4.33; N, 12.03; S, 18.35; Found: C, 51.23; H, 4.50; N, 12.24; S, 18.03.

N'-(4-Nitrophenyl)-hydrazine Carbodithioc Acid Butyl Ester (7, $C_{11}H_{15}N_3O_2S_2$)

IR υ (cm⁻¹) = 666, 1203; H¹NMR (CDCl₃) δ = 0.96 (t, 3H, CH₃), 1.33 (m, 2H, *CH*₂CH₃), 1.96 (m, 2H, SCH₂.*CH*₂), 2.05 (br, H, *NH*), 2.87 (t, 2H, S*CH*₂), 4.04 (br, N, *NH*ArNO₂), 6.92-8.15 (m, 4H, Ar-H); ¹³C NMR (CDCl₃) δ = 13.7, 21.6, 32.2, 33.7, 113.5, 124.6, 138.8, 143.3, 223.5 ppm; MS: m/z = 285; Analysis: C₁₁H₁₅N₃O₂S₂.Calcd: C, 46.29; H, 5.30; N, 14.72; S, 22.47; Found: C, 46.45; H, 5.17; N, 14.47; S, 22.21.

N'-(2,4-Dinitro-phenyl)hydrazinecarbodithioc Acid Butyl Ester (8, $C_{11}H_{14}N_4O_4S_2$)

IR υ (cm $^{-1})=670,$ 1212; H¹NMR (CDCl₃) δ = 0.94 (t, 3H, CH₃), 1.32 (m, 2H, CH₂CH₃), 1.95(m, 2H, SCH₂. CH₂), 2.02 (br, H, NH), 2.83 (t, 2H, SCH₂), 4.04 (br, N, NHArNO₂), 7.19–9.50 (m, 3H, Ar-H); 13 CNMR (CDCl₃) δ = 13.8, 21.9, 32.3, 33.8, 113.6, 119.2, 130.2, 132.8, 139.7, 143.3, 222.5 ppm; MS: m/z = 330; Analysis: C₁₁H₁₄N₄O₄S₂, Calcd: C, 39.99; H, 4.27; N, 16.96; S, 19.41; Found: C, 40.22; H, 4.05; N, 16.76, S, 19.50.

N'-Naphthalen-2-yl Hydrazine Carbodithioc Acid Butyl Ester (9, C₁₅H₁₈N₂S₂)

IR υ (cm⁻¹) = 677, 1209; ¹H NMR (CDCl₃) δ = 0.95 (t, 3H, CH₃), 1.33 (m, 2H, *CH*₂CH₃), 1.97 (m, 2H, SCH₂.*CH*₂), 2.05 (br, H, N*H*), 2.84 (t, 2H, S*CH*₂), 4.05 (br, N, *NH*ArNO₂), 6.76–7.55 (m, 7H, Ar-H); ¹³CNMR (CDCl₃) δ = 13.9, 22.1, 32.5, 33.9, 107.4, 117.2, 121.3, 124.5, 126.6, 127.2, 133.5, 142.6, 224.1 ppm; MS: m/z = 290; Analysis: C₁₅H₁₈N₂S₂, Calcd: C, 62.03; H, 6.25; N, 9.64; S, 22.08; Found: C, 62.44; H, 6.33; N, 9.53; S, 22.25.

N'-Phenyl-hydrazine Carbodithioc Acid 1-Butyl Pentyl Ester (10, $C_{16}H_{26}N_2S_2$)

IR υ (cm⁻¹) = 677, 1212; ¹H NMR (CDCl₃) δ = 0.96 (t, 6H, CH₃), 1.29 (m, 4H, *CH*₂CH₂CH), 1.33 (m, 4H, *CH*₂CH₃), 1.92 (m, 4H, *CHCH*₂), 2.05 (br, H, *NH*), 2.52 (t, H, *SCH*), 4.05 (br, H, *NH*Ar), 6.66-7.18 (m, 5H, Ar-H); ¹³C NMR (CDCl₃) δ = 14.2, 23.1, 28.5, 36.2, 41.4, 112.2, 119.3, 129.0, 142.4, 223.3 ppm; MS: m/z = 310; Analysis: C₁₆H₂₆N₂S₂, Calcd: C, 61.89; H, 8.44; N, 9.02; S, 20.65; Found: C, 61.77; H, 8.54; N, 9.22; S, 20.46.

N'-Phenyl-hydrazine Carbodithioc Acid 1,1-Dibutyl Pentyl Ester (11, C₂₀H₃₄N₂S₂)

IR υ (cm⁻¹) = 669, 1210; ¹H NMR (CDCl₃) δ = 0.96 (t, 6H, CH₃), 1.29 (m, 4H, *CH*₂CH₂C), 1.33 (m, 4H, *CH*₂CH₃), 1.88 (m, 4H, CH*CH*₂), 2.04 (br, H, N*H*), 4.0 (br, H, *NH*-Ar), 6.67-7.19 (m, 5H, Ar-H); ¹³C NMR $(CDCl_3) \delta = 14.1, 23.4, 26.7, 39.6, 41.1, 112.5, 119.3, 129.6, 142.2, 223.5$ ppm; MS: m/z = 366; Analysis: C₂₀H₃₄N₂S₂, Calcd: C, 65.52; H, 9.35; N, 7.64; S, 17.49; Found: C, 65.27; H, 9.11; N, 7.44; S, 17.49.

N'-Butyl-hydrazine Carbodithioc Acid Hexyl Ester (12, $C_{11}H_{24}N_2S_2$)

IR υ (cm⁻¹) = 674, 1208; ¹H NMR (CDCl₃) δ = 0.96 (t, 6H, CH₃), 1.29 (m, 4H, $CH_2CH_2CH_2CH_3$), 1.33 (t, 2H, CH_2CH_3), 1.55 (m, 2H, NHCH₂ CH_2), 1.96 (m, 2H, SCH₂ CH_2), 2.0 (br, 2H, NH), 2.65 (t, 2H, NH CH_2), 2.87 (t, 2H, S CH_2), ¹³C NMR (CDCl₃) δ = 13.7, 14.1, 20.2, 23.1, 28.6, 31.5, 32.6, 49.9, 223.1 ppm; MS: m/z = 248; Analysis: C₁₁H₂₄N₂S₂, Calcd: C, 53.18; H, 9.74; N, 11.28; S, 25.81; Found: C, 53.33; H, 9.54; N, 11.39; S, 25.64.

N'-Phenyl-hydrazine Carbodithioc Acid N-octyl Ester (13, C₁₅H₂₄N₂S₂)

IR υ (cm⁻¹) = 679, 1211; ¹H NMR (CDCl₃) δ = 0.96 (t, 3H, CH₃), 1.29 (m, 8H, CH₂), 1.33 (m, 2H, CH₂CH₃), 1.96 (m, 2H, SCH₂CH₂), 2.0 (br, H, NH), 2.88 (t, 2H, SCH₂), 4.0 (br, H, Ph.*NH*), 6.65-7.20 (m, 5H, Ar-H), ¹³C NMR (CDCl₃) δ = 14.5, 23.10, 28.9, 30.5, 31.5, 32.5, 112.2, 129.6, 118.9, 142.2, 223.6 ppm; MS: m/z = 296; Analysis: C₁₅H₂₄N₂S₂, Calcd: C, 60.76; H, 8.16; N, 9.45; S, 21.63; Found: 60.55; H, 8.33 N, 9.30; S, 21.77.

N'-Butyl Hydrazine Carbodithioc Acid Decyl Ester (14, $C_{15}H_{32}N_2S_2$)

IR υ (cm⁻¹) = 673, 1220; ¹HNMR (CDCl₃), δ = 0.97 (s, 3H, CH₃), 0.99 (s, 3H, CH₃), 1.29 (m, 12H, CH₂), 1.34 (m, 4H, *CH*₂CH₃), 1.55 (m, 2H, *CH*₂CH₂CH₃), 1.96 (m, 2H, SCH₂*CH*₂), 2.0 (br, 2H, NH.NH), 2.65 (m, 2H, NH*CH*₂), 2.87 (t, 2H, S*CH*₂), ¹³CNMR (CDCl₃) δ = 13.7, 14.5, 20.3, 23.1, 28.9, 30.6, 30.9, 31.5, 32.5, 222.1 ppm; MS: m/z = 304; Analysis: C₁₅H₃₂N₂S₂, Calcd: C, 59.15; H, 10.59; N, 9.20; S, 21.06; Found: C, 59.30; H, 10.34; N, 9.21; S, 21.24.

N'-Phenyl Hydrazine Carbodithioc Acid 1-Propyl Butyl Ester (15, C₁₄H₂₂N₂S₂)

IR υ (cm⁻¹) = 675, 1210; ¹H NMR (CDCl₃) δ = 0.97 (s, 3H, CH₃), 1.33 (m, 4H, *CH*₂CH₃), 1.92 (m, 4H, *CHCH*₂), 2.0 (br, H, NH), 2.52 (m, H, *CH*-S), 4.1 (br, H, NH-Ar), 6.66–7.22 (m, 5H, Ar-H); ¹³C NMR (CDCl₃) δ = 14.5, 20.1, 38.4, 40.8, 112.5, 118.3, 129.6, 143.3, 222.1 ppm; MS: m/z = 282; Analysis: C₁₄H₂₂N₂S₂, Calcd: C, 59.53; H, 7.85; N, 9.92; S, 22.70; Found: C, 59.75; H, 7.66; N, 9.92; S, 22.44.

N'-Phenyl Hydrazine Carbodithioc Acid 1-Phenyl Ethyl Ester (16, C₁₅H₁₆N₂S₂)

IR υ (cm⁻¹) = 678, 1210; ¹H NMR (CDCl₃) δ = 1.69 (d, 3H, CH₃), 2.2(br, H, NH), 3.98 (m, H, CH-S), 4.2 (br, H, NH-Ar), 6.66–7.22 (m, 10H, Ar-H), ¹³CNMR (CDCl₃) δ = 23.4, 41.1, 112.5, 118.9, 126.5, 128.5, 129.7, 141.3, 142.5, 222.1 ppm; MS: m/z = 288; Analysis: C₁₅H₁₆N₂S₂, Calcd: C, 62.46; H, 5.59; N, 9.71; S, 22.23; Found: C, 62.33; H, 5.46; N, 9.99; S, 22.36.

REFERENCES

- [1] U. Ragnarsson, Chem. Soc. Rev., 30, 205 (2001).
- [2] E. W. Schmidt, Hydrazine and its derivatives preparation, properties, applications. 2nd ed.; Wiley-Interscience: New York, 2001.
- [3] M. S. C. Pedras and M. Jha, Bioorg. Med. Chem., 14, 4958 (2006).
- [4] Shailendra, N. Bharti, F. Naqvi, and A. Azam, Helv. Chim. Acta., 85, 2713 (2002).
- [5] N. Bharti, M. R. Maurya, F. Naqvi, and A. Azam, *Bioorg. Med. Chem. Lett.*, 10, 2243 (2000).
- [6] N. Bharti, M. R. Mannar, N. Fehmida, A. Bhattacharya, S. Bhattacharya, and A. Azam, Eur. J. Med. Chem., 35, 481 (2000).
- [7] S. K. Sengupta, O. P. Pandey, and G. P. Rao, Sugarcane Pathology, 1, 279 (1999).
- [8] H. S. Chen, Z. H. Li, Y. H. Han, and Z. W. Wang, Chin. Chem. Lett., 10, 365 (1999).
- [9] K. Chaturvedi, A. K. Jaiswal, K. N. Mishra, O. P. Pandey, and S. K. Sengupta, ACH-Models in Chemistry, 135, 93 (1998).
- [10] G. C. Briggs, C. L. Cornell, D. J. Mansfield, and R. M. Turner, *PCT Int. Appl.*, 1999, WO9923066, CAN: 130: 337920.
- [11] T. J. Connolly, A. J. Crittal, A. S. Ebrahim, and G. Ji, Org. Process. Res. Dev., 4, 526 (2000).
- [12] M. S. Gordan, J. G. Krause, M. A. Linneman-Mohr, and R. R. Parchue, Synthesis, 3, 244 (1980).
- [13] M. J. Hauser, J. Org. Chem., 31, 968 (1966).
- [14] S. Sakakibara, I. Honda, M. Naruse, and M. Kanaoka, Experimentia, 25, 576 (1969).
- [15] S. Sakakibara, I. Honda, K. Takada, M. Miyoshi, T. Ohnishi, and K. Okumura, Bull. Chem. Soc. Jpn., 42, 809 (1969).
- [16] M. Quibell, W. G. Turnell, and T. Johnson, J. Chem. Soc., Perkin Trans I, 22, 2843 (1993).
- [17] C. J. Gray, M. Quibell, N. Baggett, and T. Hammerle, Int. J. Pept. Protien Res., 40, 351 (1992).
- [18] J. Y. Huang, H. S. Choi, D.-H. Lee, S. E. Yoo, and Y. D. Gong, J. Comb. Chem., 7, 136 (2005).
- [19] J.-Y. Hwang, H.-S. Choi, D.-H. Lee, and Y.-D. Gong, J. Comb. Chem., 7, 816 (2005).
- [20] C. Bolzati, E. Benini, M. Cavazza-Ceccato, E. Cozzala, E. Malago, S. Agostini, F. Tisato, F. Rofosco, and G. Bandoli, *Bioconjugate Chemistry*, 17, 419 (2006).
- [21] M. A. Ali, A. H. Mirza, R. J. Butcher, and K. A. Krause, *Transition Metal Chemistry*, 31, 79 (2006).
- [22] R. Singh and N. K. Kaushik, Main Group Metal Chemistry, 27, 327 (2004).
- [23] H. Dyker, J. Scherkenbeck, D. Gondol, A. Goehrt, and A. Harder, J. Org. Chem., 66, 3760 (2001).

- [24] A. S. Dutta and J. S. Morley, J. Chem. Soc. Perkin Trans I, 1712 (1975).
- [25] S. Nara, T. Sakamoto, E. Miyazawa, and Y. Kikugawa, Synthetic Comm., 33, 87 (2003).
- [26] A. Saxena and J. P. Tandon, Polyhedron, 2, 443 (1983).
- [27] D. L. Fox, J. T. Ruxer, J. M. liver, K. L. Alford, and R. N. Salvatore, *Tetrahedron Lett.*, 45, 401 (2004).
- [28] D. Chaturvedi, A. Kumar, and S. Ray, Synthetic Comm., 32, 2651 (2002).
- [29] D. Chaturvedi, A. Kumar, and S. Ray, Tetrahedron Lett., 44, 7637 (2003).
- [30] D. Chaturvedi and S. Ray, Tetrahedron Lett., 47, 1307 (2006).
- [31] D. Chaturvedi and S. Ray, Monatsh. Chem., 137, 127 (2006).
- [32] D. Chaturvedi and S. Ray, Monatsh. Chem., 137, 201 (2006).
- [33] D. Chaturvedi and S. Ray, Monatsh. Chem., 137, 311 (2006).
- [34] D. Chaturvedi and S. Ray, Monatsh. Chem., 137, 459 (2006).
- [35] D. Chaturvedi and S. Ray, Monatsh. Chem., 137, 465 (2006).
- [36] D. Chaturvedi and S. Ray, Monatsh. Chem., 137, 1219 (2006).
- [37] D. Chaturvedi and S. Ray, Tetrahedron Lett., 48, 149 (2007).
- [38] D. Chaturvedi, N. Mishra, and V. Mishra, Monatsh. Chem., 138, 57 (2007).
- [39] D. Chaturvedi, N. Mishra, and V. Mishra, Tetrahedron Lett., 48, 5043 (2007).
- [40] D. Chaturvedi, N. Mishra, and V. Mishra, Monatsh. Chem., 139, 265 (2008).
- [41] D. Chaturvedi, N. Mishra, and V. Mishra, J. Sulfur Chem., 28, 607 (2007)
- [42] D. Chaturvedi and S. Ray, Lett. Org. Chem., 2, 742 (2005).
- [43] D. Chaturvedi and S. Ray, J. Sulfur Chem., 26, 365 (2005).
- [44] D. Chaturvedi and S. Ray, J. Sulfur Chem., 27, 265 (2006).
- [45] D. Chaturvedi, N. Mishra, and V. Mishra, J. Sulfur Chem., 28, 39 (2007).
- [46] D. Chaturvedi, N. Mishra, and V. Mishra, Chinese Chem. Lett., 17, 1309 (2006).
- [47] D. Chaturvedi, N. Mishra, and V. Mishra, J. Sulfur Chem., 28, 607 (2007)
- [48] D. Chaturvedi, A. Kumar, and S. Ray, Indian J. Chem., 43B, 437 (2004).
- [49] G. W. Kabalka, M. Varma, R. S. Varma, and F. F. Knapp, J. Org. Chem., 51, 2386 (1986).