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Antagonists of the 5-HT2A receptor are being used to treat many psychiatric disorders. The
present work focuses on a group of 27 antagonists possessing varying affinities toward the
receptor. These are 26 title compounds and clozapine as a reference antagonist. The active
conformers of the conformationally flexible ligands were proposed by using the active rigid
analogue approach and performing similarity calculations. The calculations involved genetic
neural network (GNN) computations deriving QSARs from similarity matrices (SM) with cross-
validated correlation coefficients exceeding 0.92. The performance of neural networks with
variety of architectures was studied. As the computations were performed for cations and
neutral molecules separately, the relevance of the ligand charging is discussed.

Introduction

The serotonin (5-HT) receptors belong to the super-
family of G-protein coupled transmembrane receptors.
Homology studies indicate that the receptors consist of
7 helical segments that span the lipid bilayer of cell
membrane.1 The detailed structures of these proteins
remain unknown, which is mostly due to crystallization
problems. As these receptors are important from the
therapeutic point of view, medicinal chemists try to

build pharmacophore or receptor models based on the
structure of the 5-HT ligands. For example, Höltje and
Jendretzki have constructed a 5-HT2A receptor model
on the basis of molecular field computations for receptor
ligands and homology studies of G-protein coupled
receptors.2 Their model comprises both agonists and
antagonists of the 5-HT2A receptor and defines possible
residues participating in the ligand-receptor inter-
action. A topographic pharmacophore model of 5-HT2A

antagonists developed by Mokrosz et al. utilizes three
intramolecular distances as crucial features of the
structure of 4,6-di(heteroaryl)-2-(N-methylpiperazino)-
pyrimidines.3 A similar topographic model of 5-HT2A

receptor antagonists has been proposed by Andersen et
al.4 On the basis of a conformational analysis of several
indan derivatives as well as cyproheptadine, ritanserin,
and danitracen they have proposed a three-point model
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with two points describing the positions of two benzene
rings in relation to a third point that simulates a
receptor site interacting with the basic nitrogen atom.

A new approach combining genetic neural networks
(GNN) with similarity matrices (SM) has been proposed
by So and Karplus for quantitative structure-activity
relationship (QSAR) analyses.5 Along with the formula-
tion the authors have shown the robustness and high
efficiency of their method to obtain 3D QSARs for a
variety of chemical classes of compounds.6

In the present paper we describe an application of
the SM/GNN methodology to the series of 27 5-HT2A
antagonists. The congeneric set (Chart 1) consists of
18 substituted 2/4-(4-methylpiperazino)pyrimidines re-

ported previously3,7 and 8 derivatives synthesized as
part of this work. Since these compounds possess a con-
siderable conformational freedom,3,7 an active analogue
approach with clozapine (27, Chart 1) as a template for
molecular superimposition is used. More specifically,
this approach is similar to that proposed by Montanari
et al.8 in the sense that the quality of the derived
QSAR is used to choose among different possible super-
imposition modes.

From mutagenesis and comparative studies on the
G-protein coupled receptors, the importance of Asp155

for high affinity of 5-HT2A antagonists as well as
agonists has been established.9 Thus, it is reasonable
to assume that 5-HT2A ligands bind in a cationic form

Chart 1. 5-HT2A Data Set
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to the receptor. On the other hand, the interaction of
the ligand with an anionic side chain of Asp neutralizes
the positive charge on the molecule bound to the
receptor. To investigate the influence of the charge on
the ligands on the quality of the derived QSARs we
performed computations for both cations and neutral
molecules.

The results reported in the present paper strongly
support the applicability of the SM/GNN methodology
as a tool to derive reliable 3D QSARs. In addition, we
show how this technique may be used to deal with
conformational diversity of flexible ligands. The statisti-
cal significance of the models derived here was validated
with a standard randomization test. Moreover, these 3D
QSARs can be applied to new 5-HT2A antagonists from
the same class of ligands studied here, and very high
cross-validated correlation coefficients justify their use
to predict 5-HT2A affinity of the prospective ligands.

Method

In the SM/GNN methodology the basic concept is that
similar compounds exert similar effect on the receptors.
By using one of the many available formulas one can
quantify the similarity between any two compounds
once they are properly superimposed. The similarity
index is calculated from three-dimensional fields of the
molecules as expressed by their electrostatic potentials
(ESPs) and steric factors. Thus, in turn, the similarity
between two compounds is a function of their conforma-
tions. For a set of N compounds, an N × N matrix can
be constructed, the columns of which consist of similar-
ity indices between the i-th compound and all com-
pounds from the analyzed set. Similarity matrix ele-
ments can be interpreted as values of independent
variables that can be correlated with biological activi-
ties. The role of genetic algorithm (GA) is to select these
distinct columns (variables) which generate good quan-
titative structure-activity relationships (2-7 variables
in this work). The choice is made out of many possibili-
ties, and for this task GA serves the best.10 A neural
network is used to establish a relationship between a
chosen set of independent variables and biological
activity of studied compounds. Neural networks have
the advantage in that they can easily incorporate higher
order terms in QSAR, the feature that turned up to be
important in our study.

As the SM/GNN methodology used here is essentially
the adaptation of the So and Karplus proposal; inter-
ested readers are referred to the literature for a detailed
discussion of the use of genetic neural networks,11,12

similarity matrices,13,14 and neural networks15,16 in the
QSAR analysis. In this section only a brief description
of the modeling procedure is given.

Generation of Similarity Indices. AM1 Mulliken
charges were used to generate electrostatic potential
(ESP) around studied molecules using the Coulomb
equation and vacuum dielectric constant (ε ) 1.0). ESP
was calculated at equally spaced points forming a
rectilinear grid. The spacing of 1 Å and grid with 6 Å
extension beyond all atomic coordinates were used. The
ESP similarity index between two molecules was com-
puted using the Hodgkin17 formula (eq 1)

where PA is the ESP produced by molecule A at a given
point of the grid. The sums run over all grid points. The
calculations were performed either without any cutoff
or the potential with an absolute value exceeding 5 or
100 kcal/mol was truncated to the cutoff value ((5 or
(100 kcal/mol). Following the work by So and Karplus,6
the higher cutoff value was used for cations in order to
make similarity indices more discriminating.

The shape similarity was computed using Meyer
formula18 (eq 2),

where U is the number of points enclosed by a common
volume of the molecules A and B and TA (TB) is the
number of points inside the van der Waals envelope of
the molecule A (B). A regular grid extending 2 Å beyond
the molecular boundary and 0.5 Å spacing were used.

Data Sets. Table 1 presents the binding character-
istics of the studied ligands toward the 5-HT2A receptor.
The binding data of the literature compounds3,7 1-3,
5, 6, 10, 15-26, and new ligands 4, 7-9, 11-14 were
obtained in the same laboratory and by using the same
protocol. Models of the molecules were built from
standard fragments within InsightII19 environment.
Both neutral molecules and their cationic forms con-
taining protonated N-methyl function of the piperazine
were energy minimized using the MOPAC 6.0 semi-
empirical package.20 The AM1 Hamiltonian was used
to obtain minimum energy structures and Mulliken
atomic charges. The centroids were added to the aro-
matic rings of the models, and a superimposition of the
ligands on the clozapine molecule (in minimal energy
conformation: piperazine ring in chair conformation,
two substituents in equatorial positions) was performed.
The QUATFIT21 program was used to perform the least-
squares fitting. The fitted centers are marked for
representative compounds 1, 15, 20, 27 with asterisks
in Chart 1. All common atoms and aromatic centroids
were utilized in the superimposition for similarity
indices to be maximal for similar compounds. As the
tricyclic moiety of the clozapine molecule is not planar,
small adjustments were done to the dihedral angles
(τ1 and τ2 in Chart 1 for 1 and 15) of the ligands prior
to the superimposition. This ensures that the fitted
aromatic rings of the ligand and those of clozapine are
coplanar after the superimposition. These small changes
in dihedral angles are justified by the results of the
previous study,3,7 which have shown a substantial con-
formational freedom with energy barriers upon rotation
not exceeding a few kcal/mol.

Clozapine was chosen as a template because it is a
potent 5-HT2A antagonist. The molecule is considerably
rigid and shows high similarity to the studied com-
pounds. Features in common are an N-methylpiperazine
group, an sp2 nitrogen atom, and aromatic rings, which
(marked with asterisks in Chart 1) were chosen as the
points defining the molecular alignment.

Several ways of superimposition of a given molecule
onto the clozapine template were realized. For example,

HAB )
2∑PAPB

∑PA
2 + ∑PB

2
(1)

SAB )
UAB

xTATB

(2)
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compound 1 has four different possible alignments: two
with the 2-thienyl ring superimposed onto the Cl-
substituted clozapine ring with the sulfur atom syn and
anti relative to the sp2 nitrogen of 1 and two with the
2-thienyl ring fitted onto the second aromatic ring of
clozapine. For each possible alignment the ESP and
steric similarity indices between the clozapine molecule
and a given ligand molecule were evaluated. The
similarity indices fall into the range of 0.27-0.64, 0.12-
0.76, and 0.62-0.76 for ESP(no cutoff), ESP(cutoff ) 5
kcal/mol), and steric calculations, respectively. These
numbers were tabulated and used to construct five
distinct sets of conformers most resembling the template
clozapine. These five sets proposed for cations and
neutral molecules separately are aided by 30 RANDOM
sets for a comparative purpose. Each of them consists
of randomly chosen conformers - one for each com-
pound. Each of these conformers was aligned onto the
template clozapine. The difference between the QSAR
performance of a given set and the average QSAR
performance of the RANDOM sets gives a clue about
the importance of the conformation (resulting from
rotations by the dihedrals τ1 and τ2) for the 5-HT2A
binding affinity. The criteria used to construct the sets
are gathered in Table 2. Sets 4 and 5 comprise only
these fits of 1-14 where the aromatic ring marked with
an asterisk is fitted on the Cl-substituted ring of
clozapine. This particular choice of the template ring
can be rationalized by the fact that such procedure gives
good steric similarity to clozapine for these ligands.

The basis for the above fitting and selection procedure
is the assumption that clozapine, being a potent 5-HT2A
antagonist, produces steric and ESP molecular fields
that are complementary to those produced by the
receptor. Compounds similar to clozapine when binding
to the receptor should adopt a conformation in which
they resemble the potent analogue the most. Different
criteria of similarity give rise to different proposed sets.

Genetic Neural Network. All computations were
performed using an evolutionary programming algo-
rithm11,12 with 300 individuals and 50 reproductions.

The neural network with one hidden layer of the general
structure n1-n2-1 and scaled conjugate gradient algo-
rithm22 was used. In most cases the 5-2-1 neural
network was assumed, as this configuration and number
of input units seemed to be appropriate for the set
containing 27 compounds. The Pearson correlation
coefficient was used as the fitness function during the
50 reproductions. At the end, the cross-validation (leave-
one-out) procedure was performed, and all models were
sorted with respect to the cross-validated correlation
coefficient q2 (eq 3).

The top rank model was taken as a result of a given
GNN run. The final selection of the models was based
on the value of σ (eq 4), as originally proposed by So
and Karplus,6

where N is a number of compounds in the set, n is a
number of input units, and yi,predicted is a cross-validated
predicted activity. Using σ as a selection criterion one
can discriminate between models that give almost the
same correlation coefficients but are different in the
number of variables (n). Thus, a compromise between
the quality of the model and the risk of overfitting the
data can be reached. More specifically, when the neural
network has too many adjustable weights compared to
the number of training data, the network can “memo-
rize” the training set.

Unless otherwise stated, all computations were per-
formed 30 times with different initial seeds (iseed)
because both the starting population for the evolution-
ary programming algorithm and initial weights in the
neural network are obtained using a random number
generator. Results reported here are the averages and
standard deviations for a single probe.

The validity of the final model was checked with the
randomization test. In this procedure the data forming
the response vector (binding affinity data) are scrambled
by 100 random exchanges in their positions. In this way
the data to construct dummy QSARs with the un-
changed variance are obtained.

Programs used to construct similarity matrices and
to perform GNN calculations were written in FOR-
TRAN77 language in our laboratory in Kraków. They
were compiled and run under the IRIX 6.4 operating
system on a 250 MHz R10000 Silicon Graphics ORIGIN
2000 supercomputer. The software23 has been thor-
oughly tested against the published data.5

Results and Discussion
Chemistry. The synthesis of new pyrimidine deriva-

tives 4, 7-9, and 11-14 is given in Scheme 1. In the

Table 1. 5-HT2A Binding Affinity Data

no. pKi no. pKi no. pKi

1a 6.68 10a 6.72 19a 7.89
2a 6.13 11 5.00 20a 7.43
3a 8.00 12 5.57 21a 7.26
4 6.42 13 5.22 22a 6.96
5a 7.30 14 5.37 23a 6.87
6a 5.68 15a 8.10 24a 8.10
7 7.39 16a 7.77 25a 8.00
8 6.46 17a 7.68 26a 8.05
9 6.24 18a 7.43 27b 8.80

a Taken from refs 3 and 7.b Taken from ref 29.

Table 2. Criteria Used To Construct Data Sets: Indices of
Similarity to Clozapine

set no. neutral compounds cations

1 steric steric
2 ESP (no cutoff) ESP (no cutoff)
3 ESP (cutoff ) 5 kcal/mol) ESP (cutoff ) 100 kcal/mol)
4a ESP (cutoff ) 5 kcal/mol) ESP (cutoff ) 100 kcal/mol)
5a ESP (no cutoff) ESP (no cutoff)
a Sets 4 and 5 differ from 3 and 2 in superimposition mode of

compounds 1-14. Only the Cl-substituted ring of clozapine was
used as a reference in the superimposition (with sp2 nitrogen and
piperazine ring).

q2 ) 1 -

∑
i=1

N

(yi,observed - yi,predicted)
2

∑
i)1

N

(yi,observed - yi,predicted)
2

(3)

σ ) x∑
i)1

N

(yi,observed - yi,predicted)
2

N - n - 1
(4)
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preparation of 4 and 11, 2,4-dichloropyrimidine was
allowed to react with imidazole followed by separation
of the resultant mixture of 28 and 29, and then
treatment of the individual compounds 28 and 29 with
N-methylpiperazine. In a similar way, compounds 32-
34, obtained from 2,4-dichloropyrimidene by adaptation
of a published procedure,24 served as precursors to
substituted pyrimidines 7-9 and 12-14. The structures
of isomeric products 28/29, 4/11, 7/12, 8/13, and 9/14
were assigned unambiguously by proton NOE experi-
ments.

Pharmacology. The affinity (Table 3) of 4, 7-9, and
11-14 for 5-HT2A receptors of the rat brain cortex was
assessed on the basis of their ability to displace [3H]-
ketanserin, according to the published procedures.25

Comparison of Different Sets. Tables 4 and 5
contain results obtained for neutral molecules and
cations, respectively. In all computations the neural
network with a 5-2-1 architecture was used. Comparing
the results in these tables one can easily notice that the
QSARs obtained for neutral ligands are more discrimi-
nating than those for cations. This can be rationalized
by the fact that most of the sets are based on the ESP
similarity index as a selection criterion. The differences

in ESP distribution for different conformers of a given
cationic ligand are almost lost due to the large positive
electrostatic potential resulting from the protonation.
Selections are thus more erratic in comparison to the
sets comprising neutral molecules. Moreover, the cation
ESP similarity matrices are more flat due to the large
contribution of this positive potential to the molecular
field. The protonation of the piperazine ring is a
prerequisite for binding of a ligand to the 5-HT2A
receptor. The ionic interaction between the aspartate
residue in the third transmembrane segment (TM3) and
the cationic head of the ligand is the driving force for
this process. On the other hand, one can expect that the
charge distribution around the bound ligand will re-
semble that for a neutral molecule as the positive charge
is neutralized by the negative counterion.26 Thus the
ESP similarity calculations for neutral compounds are
more accurate than those for cations and more ap-
propriate for a group of compounds containing the same
protonation center.

Another aspect worth noticing is the observation that
there is no simple relation between the selection crite-
rion and the quality of the QSAR derived from the SM.
For example, one might expect that the set 1 for neutral
compounds, which consists of conformers sterically most
resembling clozapine, would perform superior in steric
SM/GNN QSARs. Actually it follows from the first
column in Table 4 that sets 4 and 5 perform better. On
the other hand, these two sets 4 and 5 give very good
results for both steric and ESP based QSARs. These two
sets give almost the same results as they differ only by
two conformers. The high value of q2 for all QSARs
derived for set 5 provides a strong support to the
conformation selection procedure yielding this set. It is
very likely that these conformers are present in the
5-HT2A receptor-ligand complexes. These results also
suggest that the long-distance electrostatic interaction
plays an important role in the receptor-ligand recogni-
tion process. The steric requirements are still important,
as can be inferred from the high value of the cross-
validated correlation coefficient q2 for steric SM/GNN
QSARs.

A comparison of the results for sets 5 and RANDOM
for neutral molecules seems to support the thesis that
some conformations of studied ligands are preferred
when bound to the 5-HT2A receptor. High correlations
obtained for set 5 provide evidence that this particular
set may contain conformers present in the drug-
receptor interaction.

All further computations were performed for the set
5 of neutral molecules. The conformations of the ligands
(proposed for the ligand-receptor systems) in this set
are presented in Chart 1.

Scheme 1. Synthesis of Compounds 4, 7-9, and 11-14

Table 3. 5-HT2A Binding Data for Compounds 4, 7-9, and
11-14

compd Ki ( SEM [nM] compd Ki ( SEM [nM]

4 384 ( 16 11 >10000
7 41 ( 1 12 2720 ( 500
8 353 ( 63 13 5960 ( 140
9 582 ( 3 14 4220 ( 60

Table 4. Cross-Validated Correlation Coefficients q2 for
QSARs Derived for Different Setsa of Neutral Compounds

set no. steric
ESP

(no cutoff)
ESP

(cutoff ) 5 kcal/mol)

1 0.87 (0.01) 0.79 (0.03) 0.80 (0.02)
2 0.80 (0.03) 0.85 (0.02) 0.86 (0.02)
3 0.70 (0.04) 0.90 (0.01) 0.87 (0.02)
4 0.93 (0.01) 0.88 (0.02) 0.89 (0.01)
5 0.94 (0.01) 0.90 (0.01) 0.91 (0.01)

RANDOM 0.81 (0.04) 0.77 (0.07) 0.69 (0.09)
a The entries are means of 30 results obtained with different

iseeds. Standard deviations are given in parentheses.

Table 5. Cross-Validated Correlation Coefficients q2 of QSARs
Derived for Different Setsa of Cations

set no. STERIC
ESP

(no cutoff)
ESP

(cutoff ) 100 kcal/mol)

1 0.87 (0.02) 0.70 (0.04) 0.73 (0.03)
2 0.88 (0.01) 0.84 (0.03) 0.84 (0.02)
3 0.88 (0.01) 0.80 (0.03) 0.81 (0.02)
4 0.87 (0.01) 0.80 (0.02) 0.81 (0.02)
5 0.87 (0.01) 0.84 (0.03) 0.85 (0.02)

RANDOM 0.77 (0.07) 0.73 (0.07) 0.72 (0.08)
a The entries are means of 30 results obtained with different

iseeds. Standard deviations are given in parentheses.
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Neural Network Architecture. It has been shown
previously5,6 that the number of input units in the
neural network is an important parameter in SM/GNN
calculations. On the other hand, it is well known that
the number of hidden units is closely related to the
generalization abilities of the neural network. These
units are also responsible for the possible couplings
between input variables. An important aspect of neural
network computations is that the optimal architecture
depends strongly on the characteristic of the problem
to be solved. In other words, for some ligand sets two
hidden nodes can be the optimal solution; for others,
however, different architecture would be necessary to
obtain the best predictivity. To study the influence of
the neural network architecture on its predictive ability,
computations with 1, 2, and 3 hidden units were
performed. The number of input neurons varied from 2
to 7. The results of these computations for steric, ESP
(cutoff ) 5 kcal/mol), and combined SMs are shown in
the respective Figures 1-3. Comparing them one can
easily notice qualitative differences. In the case of steric
SM, the number of hidden units seems to be of a
marginal importance for the generalization ability of the
neural network. The points for the three sets (1, 2, and
3 hidden units) coincide within an error of the method.
A different situation is observed for the ESP SM. Here
the change from 1 to 2 hidden units brings a meaningful
shift in the q2 coefficient. This effect is most pronounced
for a small number of input units. By contrast, changing
the number of hidden units from 2 to 3 does not cause

any dramatic change in the fitting performance of the
neural network. The importance of hidden units for ESP
SM QSARs indirectly implies the presence and impor-
tance of higher order terms in the QSAR equation
modeled by the neural network. This should be kept in
mind when interpreting the functional dependence plots
that are discussed in more detail in the next section.
For the combined similarity matrix, the conclusions are
essentially the same as for the steric one. The reason is
that for the combined similarity matrix the GNN
procedure gives almost exclusively the steric models.
The general conclusion that emerges from these com-
putations is that for the studied group of compounds
two hidden units make a good compromise between the
generalization abilities of the neural network and the
number of adjustable weights. It allows for the higher
terms to be included in the QSAR and does not cause
the network to “memorize” the training data.

Models Derived from Set 5. For all QSARs derived
from steric, ESP, and combined similarity matrices, the
σ parameter was calculated, and the models with the
lowest σ values were selected for further analysis. The
specification of these models is given in Table 6. For
the combined similarity matrix the GNN procedure
converges into a steric subspace of solutions. The best
model for this case is essentially the same as for steric
SM considered alone because the information contained
in steric SM seems to screen the ESP derived informa-
tion. For this reason only the solutions obtained for
steric and ESP SMs are discussed. Figures 4 and 5 show
the cross-validated versus observed activities for the
best models. There are no outliers, and the overall good
conformity between the predicted and observed 5-HT2A
affinities can be noticed. As stated above, the higher
order terms may play an important role in correlating
the biological data with similarity indices for the ESP
SM. Nevertheless, the functional plots are useful tools
when analyzing the results obtained with SM/GNN
procedure. When carefully interpreted they can give a
valuable insight into QSAR realized by the neural
network. Figures 6 and 7 show functional dependences
of predicted activity on the similarity indices for our
models. The utilized procedure to construct such plots
is essentially the same as that proposed by the authors
of the method.5 One similarity index was scanned from
0.0 to 1.0 while all remaining variables were fixed to

Figure 1. Plot of q2 as a function of the number of input and
hidden nodes for steric SM.

Figure 2. Plot of q2 as a function of the number of input and
hidden nodes for ESP SM with a cutoff of 5 kcal/mol.

Figure 3. Plot of q2 as a function of the number of input and
hidden nodes by using a combined similarity matrix (steric/
ESP).
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the value of 0.5. The response of the neural network is
the dependent variable on the plot. First, let us consider
the plot for steric model (Figure 6). The steric similari-
ties to 3 and 27 are the variables that most positively
correlate with the 5-HT2A binding affinity. Indeed, the
selected ligands are both very active toward the 5-HT2A

receptor. Similarities to 2, 6, and 11 show opposite
tendencies, and these compounds show low or moderate
5-HT2A affinities. In the ESP case (Figure 7) potent
antagonists of 5-HT2A receptor, 24 and 26, were found
among the best reference molecules. They both produce
ESP distributions most suitable for effective binding to
the 5-HT2A receptor. Ligands 12, 22, and, to a lesser
extent, 4 are reference molecules the ESP distributions
of which are far from being perfect regarding their
interaction with the 5-HT2A receptor. Of course, such
discussion of one-dimensional sections through many
dimensional surfaces is only qualitative, and in order

to predict affinity of a new 5-HT2A ligand one should
use a neural network trained with the appropriate data.

Conclusions
This is the first report on 3D QSAR for 5-HT2A

antagonists from the group of 2/4-(4-methylpiperazino)-
pyrimidines by using SM/GNN calculations. The pro-
posed, straightforward procedure that can be extended
on analysis of new ligands includes (i) optimization of
geometry and calculation of Mulliken charges for a given
compound, (ii) superimposition onto the clozapine tem-
plate with various modes of alignment, (iii) selection of
the conformation giving the highest ESP similarity to
the template molecule, followed by (iv) SM/GNN calcu-
lations.

Both steric and ESP properties were found to be
important for 5-HT2A antagonist activity. Similarity
indices calculated for the ligand-template clozapine
pair are good criteria for selecting an “active conforma-
tion”.

The influence of the charge on molecules on quality
of derived QSARs was examined. Inclusion of positive
charge on ligands in SM/GNN computations causes a
high level of noise in the similarity matrices. To avoid
this, while constructing SMs for cationic ligands one
should consider their deprotonated counterparts when-
ever possible to improve the SM/GNN QSAR.

As shown by performing computations with diverse
architecture of the neural network, the n-2-1 GNN
variant is a good choice for the case studied. Qualitative
differences between steric and ESP SM/GNN QSARs

Figure 4. Plot of the cross-validated 5-HT2A affinity against
the measured values for the steric model. (For labeling, see
Chart 1.)

Figure 5. Plot of the cross-validated 5-HT2A affinity against
the measured values for ESP model. (For labeling, see Chart
1.)

Table 6. Best Models Obtained for Set 5 of Neutral Molecules

SM
neural

network model q2 σ
q2 for

dummy QSARs

STERIC 5-2-1 2, 3, 6, 11, 27 0.963 0.046 0.282 (0.161)
ESP 5-2-1 4, 12, 22, 24, 26 0.928 0.064 0.292 (0.138)
combined 6-1-1 2, 3, 6, 11, 16, 27a 0.955 0.051 0.484 (0.134)

a The model comprises solely steric solution.

Figure 6. Functional dependence plot for the steric model.

Figure 7. Functional dependence plot for the ESP model.
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were found. The latter incorporate higher order terms
in QSAR. This finding is especially important when
interpreting functional dependence plots, as one should
take care drawing conclusions from these one-dimen-
sional scans when higher order terms may play an
essential role.

The high quality 3D QSARs may be used in further
studies on prospective 5-HT2A antagonists before a
subsequent experimental validation. Moreover, set 5,
performing superior in our study, along with other
potent 5-HT2A ligands, can be used for constructing a
pseudo-receptor or other 3D QSAR models. In such a
way a deeper insight into specific drug-receptor inter-
actions can be gained, a significant extension of the
knowledge derived solely from SM/GNN QSARs.

Experimental Section

General. 1H NMR (300 MHz) and 13C NMR (75 MHz)
spectra of free bases were obtained at 28 °C in CDCl3 with
Me4Si as an internal reference. Coupling constants smaller
than 0.5 Hz are not reported. The NOE spectra were recorded
by using the parameters and conditions reported previously.27

Melting points (Pyrex capillary) are not corrected.
Chloropyrimidines 28 and 29. A solution of 2,4-dichloro-

pyrimidine (0.75 g, 5 mmol) and imidazole (0.70 g, 10 mmol)
in THF (25 mL) under a nitrogen atmosphere was allowed to
stand at 23 °C for 12 h. Concentration on a rotary evaporator
at 23 °C followed by silica gel chromatography gave 29
(hexanes/AcOEt, 7:3) and then 28 (hexanes/AcOEt, 1:9).
Compounds 28 and 29 were crystallized from hexanes/toluene
(3:1).

2-Chloro-4-(1-imidazolyl)pyrimidine (28): yield 37%; mp
124-125 °C. 1H NMR δ 8.68 (d, J ) 5.3 Hz, 1H), 8.44 (s, 1H),
7.67 (d, J ) 1.5 Hz, 1H), 7.25 (d, J ) 5.3 Hz, 1H), 7.25 (d, J )
1.5 Hz, 1H). Anal. (C7H5ClN4) C, H, N.

4-Chloro-2-(1-imidazolyl)pyrimidine (29): yield 17%;
mp 139-140 °C. 1H NMR δ 8.59 (s, 1H), 8.57 (d, J ) 5.4 Hz,
1H), 7.86 (s, 1H), 7.24 (d, J ) 5.4 Hz, 1H), 7.17 (s, 1H). Anal.
(C7H5ClN4) C, H, N.

Dichloropyrimidines 32-34. These compounds were pre-
pared from 2,4-dichloropyrimidine by using a general proce-
dure24 and crystallized from hexanes/toluene (4:1).

2,4-Dichloro-6-(3-furanyl)pyrimidine (32): yield 66%;
mp 68-70 °C. 1H NMR δ 8.24 (dd, J ) 1.5, 0.9 Hz, 1H), 7.55
(dd, J ) 2.1, 1.5 Hz, 1H), 7.34 (s, 1H), 6.87 (dd, J ) 2.1, 0.9
Hz, 1H). Anal. (C8H4Cl2N2O) C, H, N.

2,4-Dichloro-6-(2-thienyl)pyrimidine (33): yield 21%; mp
108-109 °C. 1H NMR δ 7.84 (dd, J ) 3.8, 1.2 Hz, 1H), 7.63
(dd, J ) 5.1, 1.2 Hz, 1H), 7.49 (s, 1H), 7.19 (dd, J ) 5.1, 3.8
Hz, 1H). Anal. (C8H4Cl2N2S) C, H, N.

2,4-Dichloro-6-(p-tolyl)pyrimidine (34): yield 64%;
mp 109-110 °C. 1H NMR δ 7.97 (d, J ) 8.4 Hz, 2H), 7.64 (s,
1H), 7.32 (d, J ) 8.4 Hz, 2H), 2.44 (s, 3H). Anal. (C11H8Cl2N2)
C, H, N.

Piperazinopyrimidines 4, 7-9, and 11-14. A solution
of a chloropyrimidine 28, 29 or 32-34 (2 mmol) and N-
methylpiperazine (0.45 mL, 4 mmol) in EtOH (10 mL) under
a nitrogen atmosphere was allowed to stand at 23 °C for 6 h
and then concentrated at 23 °C on a rotary evaporator. The
resultant pair of isomeric products 4/11, 7/12, 8/13, or 9/14
was separated by silica gel chromatography (hexanes/Et3N/
EtOH, 3:2:1), and then the individual products were trans-
formed into hydrobromide salts by using a general procedure.28

The salts were crystallized from 95% EtOH.
4-(1-Imidazolyl)-2-(4-methypiperazino)pyrimidine (4,

from 28): yield 87%; an oil. 1H NMR δ 8.36 (s, 1H), 8.36 (d,
J ) 5.4 Hz, 1H), 7.60 (s, 1H), 7.17 (s, 1H), 6.50 (d, J ) 5.4 Hz,
1H), 3.90 (t, J ) 5.1 Hz, 4H), 2.49 (t, J ) 5.1 Hz, 4H), 2.35 (s,
3H). 13C NMR δ 161.4, 160.1, 155.3, 135.0, 130.8, 115.6, 96.5,
54.8, 46.1, 43.7. 4‚2HBr‚H2O: yield 86%; mp 229-231 °C.
Anal. (C12H16N6‚2HBr‚H2O) C, H, N.

2-(1-Imidazolyl)-4-(4-methylpiperazino)pyrimidine (11,
from 29): yield 81%; an oil. 1H NMR δ 8.53 (s, 1H), 8.15 (d,
J ) 6.0 Hz, 1H), 7.82 (s, 1H), 7.12 (s, 1H), 6.38 (d, J ) 6.0 Hz,
1H), 3.73 (t, J ) 5.2 Hz, 4H), 2.52 (t, J ) 5.2 Hz, 4H), 2.37 (s,
3H). 13C NMR δ 162.2, 156.8, 154.3, 136.1, 129.9, 116.5, 100.6,
54.5, 46.0, 43.9. 11‚2HBr‚H2O: yield 77%; mp >300 °C. Anal.
(C12H16N6‚2HBr‚H2O) C, H, N.

4-Chloro-6-(3-furanyl)-2-(4-methylpiperazino)pyrimi-
dine (7, from 32): yield 16%; an oil. 1H NMR δ 8.06 (dd, J )
1.4, 0.8 Hz, 1H), 7.48 (dd, J ) 1.8, 1.4 Hz, 1H), 6.82 (dd, J )
1.8, 0.8 Hz, 1H), 6.64 (s, 1H), 3.89 (t, J ) 5.1 Hz, 4H), 2.47 (t,
J ) 5.1 Hz, 4H), 2.34 (s, 3H). 13C NMR δ 161.4, 161.3, 160.4,
143.9, 143.4. 125.3, 108.4, 104.6, 54.8, 46.1, 43.7. 7‚HBr: yield
76%; mp 290 °C (decomp.). Anal. (C13H15ClN4O‚HBr) C, H, N.

4-Chloro-2-(4-methylpiperazino)-6-(2-thienyl)pyrimi-
dine (8, from 33): yield 26%; an oil. 1H NMR δ 7.66 (dd, J )
3.8, 1.2 Hz, 1H), 7.47 (dd, J ) 5.1, 1.2 Hz, 1H), 7.12 (dd, J )
5.1, 3.8 Hz, 1H), 6.81 (s, 1H), 3.9 (t, J ) 5.2 Hz, 4H), 2.48 (t,
J ) 5.2 Hz, 4H), 2.35 (s, 3H); 13C NMR δ 161.3, 160.9, 160.4,
142.3, 129.6, 128.0, 127.1, 102.9, 54.7, 46.1, 43.6. 8‚HBr: yield
73%; mp 264-266 °C (decomp.). Anal. (C13H15ClN4S‚HBr)
C, H, N.

4-Chloro-2-(4-methylpiperazino)-6-(p-tolyl)pyrimi-
dine (9, from 34): yield 13%; an oil. 1H NMR δ 7.90 (d,
J ) 8.4 Hz, 2H), 7.26 (d, J ) 8.4 Hz, 2H), 6.91 (s, 1H), 3.94 (t,
J ) 5.1 Hz, 4H), 2.48 (t, J ) 5.1 Hz, 4H), 2.41 (s, 3H), 2.35 (s,
3H). 13C NMR δ 165.8, 161.6, 161.4, 141.2, 133.8, 104.5, 54.8,
46.1, 43.8, 21.4. 9‚HBr: yield 97%; mp 285-286 °C. Anal.
(C16H19ClN4‚HBr) C, H, N.

2-Chloro-6-(3-furanyl)-4-(4-methylpiperazino)pyrimi-
dine (12, from 32): yield 77%, mp 122-124 °C. 1H NMR δ
8.11 (dd, J ) 1.7, 0.9 Hz, 1H), 7.48 (dd, J ) 1.8, 1.7 Hz, 1H),
6.78 (dd, J ) 1.8, 0.9 Hz, 1H), 6.46 (s, 1H), 3.71 (t, J ) 5.0 Hz,
4H), 2.49 (t, J ) 5.0 Hz, 4H), 2.35 (s, 3H). 13C NMR δ 163.2,
160.8, 159.6, 143.9, 143.4, 124.9, 108.0, 95.8, 54.4, 46.0, 44.0.
12‚HBr: yield 93%; mp >300 °C. Anal. (C13H15ClN4O‚HBr)
C, H, N.

2-Chloro-4-(4-methylpiperazino)-6-(2-thienyl)pyrimi-
dine (13, from 33): yield 63%; mp 131.5-133.5 °C. 1H NMR
δ 7.70 (dd, J ) 3.8, 1.2 Hz, 1H), 7.46 (dd, J ) 5.1, 1.2 Hz, 1H),
7.11 (dd, J ) 5.1, 3.8 Hz, 1H), 6.64 (s, 1H) 3.72 (t, J ) 5.1 Hz,
4H), 2.50 (t, J ) 5.1 Hz, 4H), 2.35 (s, 3H). 13C NMR δ 163.1,
160.6, 159.8, 141.6, 129.1, 128.0. 126.8, 94.5, 54.4, 45.9, 44.0.
13‚HBr: yield 91%; mp >300 °C. Anal. (C13H15ClN4S‚HBr)
C, H, N.

2-Chloro-4-(4-methylpiperazino)-6-(p-tolyl)pyrimi-
dine (14, from 34): yield 63%, an oil. 1H NMR δ 7.86 (d, J )
8.1 Hz, 2H), 7.25 (d, ) 8.1 Hz, 2H), 6.74 (s, 1H), 3.74 (t, J )
5.1 Hz, 4H), 2.50 (t, J ) 5.1 Hz, 4H), 2.40 (s, 3H), 2.35 (s, 3H);
13C NMR δ 165.4, 163.5, 160.8, 140.8, 133.8, 129.3, 126.8, 96.1,
54.4, 45.9, 44.0. 14‚HBr: yield 96%; mp 267-269 °C (decomp.).
Anal. (C16H19ClN4‚HBr) C, H, N.
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