New Indocyanine Derivatives for the Synthesis of Fluorescently Labeled Oligonucleotides

Edward N. Timofeev*, Victoria E. Kuznetsova, Alexander S. Zasedatelev and Alexander V. Chudinov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991 Russia Received May 28, 2008: Revised August 13, 2008: Accepted September 08, 2008

Abstract: New sulfonated Cy3 and Cy5 phosphoramidites and solid supports were synthesized. These building blocks were used in the synthesis of terminally or internally labeled oligodeoxynucleotides. Mild deprotection schemes were applied to the sulfocyanine-labeled oligonucleotides.

Keywords: Oligonucleotides, fluorescent label, phosphoramidites, controlled pore glass, indocyanines, deprotection.

INTRODUCTION

Many applications in biology, such as oligonucleotide microarray analyses, detection of PCR products and structural studies, require fluorescently labeled oligonucleotides [1-3]. In recent years, researchers have taken advantage of the excellent fluorescent properties of carbocyanines to label biological molecules [4-5]. Cyanine dyes have many desirable properties, including safe handling, absorbtion at longer wavelengths, high extinction coefficients, relatively high quantum efficiency, small molecular size, ease of chemical manipulation, and reasonable stability to reagents, pH and temperature. Because of a low background fluorescence of biological materials and a high absorbtion of cyanine dyes in the long-wave range of the spectrum, cyanine dyes provide excellent signal-to-noise ratios. The versatility of the functional groups that can be incorporated into cyanine dyes allows control over the solubility of the dye and labeled product, and helps reduce non-specific binding of the labeled materials to irrelevant components in an assay mixture [6-7].

At present, the labeling of oligonucleotides with cyanine dyes is performed either post-synthetically by aminoalkyl modification using activated derivatives of dyes [8] or using phosphoramidites during an automated oligonucleotide synthesis [9]. Currently available phosphoramidites of cyanine dyes allow the incorporation of a fluorescent label into the oligonucleotides at the 5' end, or anywhere in the sequence except for the 3'-terminus. Some of these carbocyanine and dicarbocyanine amidites have a MMTr protected hydroxypropyl chain attached directly to indolenine and lack any sulfonate groups, which might increase their solubility in water and reduce their self-association [10]. Other products include di- and tricarbocyanine phosphoramidites, which are 5'-end terminators with a sulfobutyl substituent at the tertiary nitrogen [11].

RESULTS AND DISCUSSION

To extend the range of useful cyanine dye derivatives, make 3'-labeling possible, implement convenient DMT chemistry, and provide better solubility in aqueous media, we report here the synthesis of new sulfonated Cy3 (SCy3) and Cy5 (SCy5) phosphoramidites (5a, 5b) and solid supports (6a, 6b). These derivatives were synthesized by the coupling of activated dye acids 2a and 2b with the functional aminolink 3, and subsequent conversion to phosphoramidites or alternative binding to a solid support. Linker 3 was derived from 1,2,6-hexanetriol using a transient 1,2isopropylidene protecting group, followed by the conversion of the primary hydroxyl group to an amine through an azide, Scheme (1). The protected aminodiol **3** was synthesized with an overall yield of 27%. Asymmetric indocyanine dye acids 1a,b were prepared following published procedures with modifications [12-14]. Sulfonated indocyanines 1a and 1b have absorbence (emission) maxima at 550 (565) and 643 (657) nm, respectively. Before reacting with aminolink 3, dye acids were converted to activated Nfree hydroxysuccinimide esters 2a and 2b, Fig. (1). Coupling of these activated dyes with the protected aminodiol gave amide dye conjugates 4a and 4b.

The separate synthesis of a functional linker, such as 3, and carboxyalkyl substituted fluorescent synthons seems to have advantages over the functionalization of dyes. First, activated carboxyalkyl indocyanines are commonly used reagents for labeling biomolecules, including aminomodified oligonucleotides, nucleoside triphosphates, and proteins. Coupling of the same universal linker with different dyes would then provide a wide range of building blocks for the preparation of phosphoramidites or derivatized controlled pore glass (CPG) supports. Finally, a DMTr protected linker adds solubility to conjugates of sulfonated indocyanines in aprotic organic solvents, such as acetonitrile and dichloromethane. Indeed, conjugates 4a and 4b were found to have excellent solubility in dichloromethane. At the same time, it was possible to precipitate these compounds with ethyl acetate or diethyl ether.

The reaction of conjugates **4a** and **4b** with 2-cyanoethyl-N,N,N',N'-tetraisopropyl-phosphoramidite in the presence of pyridinium tetrazolide provided phosphoramidites **5a** and **5b**. We used 0.1 M phosphoramidite solutions in MeCN-DCM (1:1) for the preparation of oligonucleotides I–III, Table (**1**). The incorporation of SCy3 and SCy5 residues during

^{*}Address correspondence to this author at the Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991 Russia; E-mial: edward@eimb.ru

Scheme 1. Synthesis of sulfonated Cy3 and Cy5 phosphoramidites and solid supports. Reagents and conditions: (i) acetone, TsOH in CHCl₃, reflux with azeotropic removal of H₂O; (ii) MsCl in Py, 25°C, 12h; (iii) LiN₃ in DMF, 12h, 70°C; (iv) 80% AcOH, 15min, 60°C; (v) DMTrCl in Py, 25°C, 12h; (vi) Ph₃P in Py; (vii) (**2a,b**) in DMF, 25°C, 2h; (viii) 2-Cyanoethyl-*N*,*N*,*N*',*N*'-tetraisopropyl-phosphoramidite, tetrazole, Py in MeCN, 25°C, 30min; (ix) succinic anhydride in Py, 25°C, 4h; (x) long chain alkylamine controlled pore glass (LCAA CPG), diisopropyl-carbodiimide, Et₃N in DCM, 35°C, 4h.

Fig. (1). Indocyanine dyes and their N-hydroxysuccinimide esters.

automated oligonucleotide synthesis was performed with a modification of the standard protocol: the coupling time was 3 min and 0.02 M solution of I_2 was used at the oxidation step. The efficiency of coupling for **5a** and **5b** was found to be at least 95%, as estimated by the DMTr cation absorbance at 495 nm.

The attachment of conjugates **4a** and **4b** to a 500Å longchain alkylamine controlled pore glass *via* a succinate linker produced derivatized cyanine solid supports with loadings of 34 and 40 μ mol/g for SCy3 and SCy5 respectively. These CPG supports were used to synthesize 3'-labeled oligonucleotides IV-VI, Table (1).

The deprotection conditions were found to differ considerably for SCy3- and SCy5-labeled oligonucleotides. The treatment of oligonucleotides with concentrated aqueous ammonia at room temperature for 4-48 hours was found to be non-destructive for the SCy3 unit. This deprotection procedure was successively used with both standard phosphoramidites $(dA^{bz}, dG^{ibu}, dC^{bz})$ and amidites with labile protecting groups $(dA^{PAC}, dG^{iPr-PAC}, dC^{Ac})$. By contrast, the SCy5 label underwent noticeable degradation in aqueous ammonia at room temperature. A solution of ammonia in anhydrous methanol (2 M) induced rapid destruction of the sulfonated indodicarbocyanine dye. We believe that the increased sensitivity of the SCy5 label to nucleophilic reagents originates from the aromatic sulfonate group substitution. The only deprotection scheme that did not induce the decomposition of the SCv5 label was treatment with 0.05 M K₂CO₃ in anhydrous methanol for 4–48 hours at room temperature. Shorter dye exposure to alkaline reagents is preferable and requires the use of mild deprotection phosphoramidites during oligonucleotide synthesis.

The incorporation of the SCy3 and SCy5 residues into oligonucleotides was confirmed by MALDI mass-spectrometry, Table (1).

We synthesized labeled oligonucleotides in both DMTr-ON and DMTr-OFF modes. The presence of the DMTr protecting group was useful for purification of the 3'-end or internally labeled oligonucleotides on reverse phase. Although the difference in hydrophobic properties for the 5'-DMTr-

No.	Oligonucleotide*	MALDI-TOF MS calcd/found	$\lambda_{\text{abs}} / \lambda_{\text{em}}, nm^{**}$
Ι	5'-SCy3-GCG-AGC-ATA-ATG-CCT-GCG-TCA-TCC-G-C7NH ₂	8582/8587.8	552/566
II	5'-SCy3-CGG-ATG-ACG-CAG-GCA-TTA-TGC-TCG-C	8412/8419.9	551/566
III	5'-DMTr-CTG-ACT-CCA-SCy5-G-C7NH ₂	4255/4256.5	645/662
IV	5'-ATG-ACG-CAG-GCA-TTA-SCy3	5330/5328.0	551/566
V	5'-ATA-ACC-G-SCy5	2843/2845.8	644/662
VI	5'-CTG-ACT-CCA-G-SCy5	3742/3742.1	645/661

Table 1. Sequences, MALDI-TOF Data and Spectroscopic Properties of Sulfocyanine Labeled Oligonucleotides

* C7NH₂ - C7 aminolink; ** Measured in 0.1M NaCl, 0.05M sodium phosphate (pH 7.0).

capped and the completely deprotected labeled oligonucleotides may be insufficient for cartridge purification, the standard gradient in reverse-phase HPLC allowed clean separation of the DMTr-ON oligonucleotide. Due to the chiral nature of aminodiol **3**, we often observed two peaks in the separation profile.

In conclusion, we have developed new sulfonated indocyanine derivatives for the synthesis of fluorescently labeled oligonucleotides. Derivatization with dye solid supports allows the incorporation of sulfocyanines at the 3'-end while cyanine phosphoramidites can be introduced at the 5'-end or inside the oligonucleotide sequence. Depending on the nature of the dye, either aqueous ammonia or K_2CO_3 in anhydrous methanol should be used for the deprotection of labeled oligonucleotides at room temperature.

EXPERIMENTAL SECTION

General

TLC was performed using Merck 60F₂₅₄ plates with the eluents CHCl₃/MeOH 9 : 1 (A); CHCl₃/MeOH/Hexane 9 : 1 : 10 (B); CHCl₃/MeOH 8 : 2 (C). Compounds were visualized by UV light (254 nm) or by spraying with 5% sulphuric acid in ethanol and heating. Reverse-phase TLC was performed using Merck RP-18 F₂₅₄ plates in MeCN/H₂O 1 : 1 (D). Column chromatography was performed using Merck silica gel grade 60, 70-230 mesh. NMR spectra were recorded using a Bruker AMX-400 spectrometer at 300 K. Chemical shifts (δ) are given in ppm and referenced to the residual solvent peaks (¹H and ¹³C) or relative to external standard (H₃PO₄, capil.) (³¹P). Coupling constants (J) are given in Hz. MALDI mass spectra were acquired using a Bruker Reflex IV mass spectrometer with hydroxypicolinic acid or 2-amino-5-nitropyridine as a matrix. IUPAC names of new compounds were obtained using the ACD/ILab Web service at http://www.acdlabs.com/ilab. UV absorbane spectra were recorded using a Shimadzu UV-160A spectrophotometer. Fluorescence emission spectra were recorded using a Shimadzu RF-5301PC spectrofluorophotometer.

Synthesis of Compound 3

4-(2,2-Dimethyl-1,3-dioxolan-4-yl)butan-1-ol. A mixture of 1,2,6-hexanetriol (11.4 g, 85 mmol), chloroform (200 ml), acetone (30 ml) and *p*-toluenesulfonic acid (0.1 g) was refluxed with azeotropic removal of water until complete con-

sumption of triol. Reaction progress was monitored by TLC (A). Cooled solution was diluted with chloroform (200 ml), washed with saturated aqueous sodium bicarbonate (200 ml) and with water (200 ml). After drying over sodium sulfate, the solution was concentrated under reduced pressure. The residue was distilled *in vacuo*, yielding 11.5 g (77.7%) of protected diol, b.p. 122–124 °C (15 mm Hg), R_f (A) = 0.64. ¹H NMR (CDCl₃, 400 MHz) δ 3.97–4.10 (2H, m, <u>CH₂</u>-CH), 3.60 (2H, t, *J* 6.52, <u>CH₂-</u>OH), 3.47 (1H, t, *J* 7.16, CH), 1.40–1.68 (6H, m, (CH₂)₃), 1.31 and 1.37 (6H, s, 2×CH₃). MS (EI): m/z = 159 (M – CH₃)⁺, calcd. for C₉H₁₈O₃ 174.23.

4-(2,2-Dimethyl-1,3-dioxolan-4-yl)butyl methanesulfonate. Methane sulfonyl chloride (2.2 ml, 28 mmol) was added at 0 °C to a solution of 1,2-protected triol (4.75 g, 27 mmol) in pyridine (20 ml). The mixture was stirred for 16 h at room temperature then concentrated under reduced pressure. The residue was dissolved in chloroform (200 ml). Solution was washed with saturated aqueous sodium bicarbonate (200 ml) and with water (200 ml). Solvent was removed in vacuo to provide 4.49 g (65.3%) of yellow gum. R_f (B) 0.80. ¹H NMR (CDCl₃, 400 MHz) δ 4.21 (2H, t, *J* 6.52, Ms-O<u>CH₂</u>), 3.97–4.11 (2H, m, CH-CH₂), 3.49 (1H, t, *J* 7.16, CH), 2.99 (3H, s, SO₃-CH₃), 1.45–1.85 (6H, m, (CH₂)₃), 1.32 and 1.38 (6H, s, 2×CH₃). MS (EI): m/z = 237 (M – CH₃)⁺, calcd. for C₁₀H₂₀O₅S 252.33.

4-(2,2-Dimethyl-1,3-dioxolan-4-yl)butyl azide. Lithium azide (4 g, 82 mmol) was added to a solution of 4-(2,2-dimethyl-1,3-dioxolan-4-yl)butyl methanesulfonate (4.1 g, 16 mmol) in DMF (50 ml). The mixture was heated at 70 °C for 12 h. Cooled reaction mixture was poured into water (100 ml) and the product was extracted with ethyl ether (2 x 30 ml). Ether solution was dried over sodium sulfate and the solvent was removed *in vacuo*, yielding 2.95 g (91.2%) of azide. R_f (B) 0.85. ¹H NMR (CDCl₃, 400 MHz) δ 3.98-4.10 (2H, m, CH-<u>CH₂</u>), 3.49 (1H, t, *J* 6.84, CH), 3.26 (2H, t, *J* 6.56, CH₂N₃), 1.44–1.72 (6H, m, (CH₂)₃), 1.33 and 1.38 (6H, s, 2×CH₃). MS (EI): m/z = 184 (M - CH₃)⁺, calcd. for C₉H₁₇N₃O₂ 199.25.

6-Azidohexane-1,2-diol. 4-(2,2-Dimethyl-1,3-dioxolan-4yl)butyl azide (2.4 g, 7 mmol) was treated with 80% acetic acid (50 ml) at 60 °C for 15 min. The solution was concentrated under reduced pressure and residue was coevaporated with water (3 x 30 ml). Crude deprotected azide was purified by column chromatography. Yield 1.86 g (97%), R_f (A) 0.50. ¹H NMR (DMSO-d₆, 400 MHz) δ 3.13–3.45 (5H, m, <u>CH</u>, <u>CH₂OH, CH₂N₃), 1.14–1.65 (6H, m, (CH₂)₃). MS (EI): m/z = 159 M⁺, calcd. for C₆H₁₃N₃O₂ 159.18.</u>

6-Azido-1-[bis(4-methoxyphenyl)(phenyl)methoxy]hexane-2-ol. 6-Azidohexane-1,2-diol (2.1 g, 13.2 mmol) was treated with DMTrCl (4.7 g, 13.8 mmol) in pyridine (50 ml) at room temperature for 12 h. The mixture was then concentrated under reduced pressure and dissolved in ethyl acetate (100 ml). The solution was washed with saturated aqueous sodium bicarbonate (100 ml), dried over Na₂SO₄ and concentrated *in vacuo*. The product was purified by column chromatography on silica gel. Yield 5.23 g (86%). R_f = 0.85 (B). ¹H NMR (DMSO-d₆, 400 MHz) δ 6.78–8.72 (13H, m, DMTr), 3.72 (6H, s, OCH₃), 2.74–3.64 (5H, m, <u>CH,</u> <u>CH₂ODMTr</u>, <u>CH₂N₃), 1.14–1.64 (6H, m, (CH₂)₃). MS (MALDI): m/z = 1038.7 (M – N₂ + 2×DMTr)⁺, 737.5 (M – N₂ + DMTr)⁺; MS (EI): m/z = 461 (M)⁺, 303 (DMTr)⁺, calcd. for C₂₇H₃₁N₃O₄ 461.55.</u>

6-Amino-1-[bis(4-methoxyphenyl)(phenyl)methoxy]hexane-2-ol (3). The solution of azide (5.1 g, 11.1 mmol) from previous step in pyridine (100 ml) was treated with PPh₃ (3.06 g, 12.2 mmol) for 12 h at room temperature. The reaction mixture was treated with concentrated aqueous NH₃ (20 ml) and left for a further 12 h. Then, it was concentrated under reduced pressure. The residue was dissolved in methanol (30 ml), washed with hexane (150 ml) and diluted with ethyl acetate (200 ml). The resulting solution was dried over Na₂SO₄ and concentrated in vacuo. The product was purified by column chromatography on silica gel. Yield 3.29 g (68.5%). $R_f = 0.05$ (A). ¹H NMR (DMSO-d₆, 400 MHz) δ6.87-7.42 (13H, m, DMTr), 3.73 (6H, s, OCH₃), 3.53-3.64 (1H, m, CH), 2.75–2.99 (2H, m, CH2ODMTr), 2.55 (2H, t, J 6.52 <u>CH₂NH₂), 1.15–1.55</u> (6H, m, (CH₂)₃). ¹³C NMR (DMSO-d₆, 100MHz) δ 157.9, 145.1, 136.0, 135.9, 129.6, 127.7, 127.6, 126.4, 113.0, 85.0, 69.0, 67.6, 55.0, 40.7, 33.6, 31.5, 22.2. MS (EI): $m/z = 435 (M)^+$, 303 (DMTr)⁺, calcd. for C₂₇H₃₃NO₄ 435.55. Anal. Calcd. for C₂₇H₃₃NO₄: C, 74.45; H, 7.64; N, 3.22. Found: C, 74.33; H, 7.71; N, 3.15.

Synthesis of Conjugates 4a and 4b

2-((1E,3Z)-3-{1-[6-({6-[Bis(4-methoxyphenyl)(phenyl) methoxy]-5-hydroxyhexyl}amino)-6-oxohexyl]-3,3-dimethyl-1,3-dihydro-2H-indol-2-ylidene prop-1-en-1-yl)-1-ethyl-3,3dimethyl-3H-indolium-5-sulfonate (4a). Dicyclohexylcarbodiimide (50 mg, 0.24 mmol) was added to a solution of carboxycyanine 1a (100 mg, 0.18 mmol) and Nhydroxysuccinimide (30 mg, 0.27 mmol) in anhydrous DMF (2 ml). Additional portions of dicyclohexylcarbodiimide (20 mg, 0.097 mmol) were added every 12 h until complete conversion of 1a to 2a. Reaction progress was monitored by reverse-phase TLC (D). Then mixture was filtered and a solution of 3 (150 mg, 0.345 mmol) and *i*Pr₂EtN (50 µl, 0.287 mmol) in DMF (300 µl) was added. After 20 min stirring the reaction mixture was diluted with ethyl acetate (30 ml). Precipitate of dye conjugate 4a was separated by centrifugation and dried. Yield 130 mg (73.9%). $R_f = 0.45$ (C). ¹H NMR (DMSO-d₆, 400 MHz) δ8.35 (1H, t, J 13.5, β-CH), 6.86– 7.95 (20H, m, DMTr and dye aromatics), 6.51 (2H, d, J 13.5, α, α' -CH), 4.00–4.20 (6H, m., CH₃CH₂N⁺, CH₂CH₂N⁺, <u>CH</u>₂NHCO), 3.73 (6H, s, OCH₃), 3.50–3.51 (1H, m, <u>CHOH</u>), 2.70–3.05 (2H, m, <u>CH</u>₂ODMTr), 2.04 (2H, t, J

7.16, <u>CH</u>₂CONH), 1.69 and 1.70 (12H, s, 4×CH₃), 1.15–1.61 (15H, m, <u>(CH₂)</u>₃CH₂NH, <u>(CH₂)</u>₃CH₂CONH, <u>CH</u>₃CH₂). ¹³C NMR (DMSO-d₆, 100 MHz) δ 173.9, 173.6, 171.5, 157.9, 149.9, 145.9, 145.1, 141.8, 141.3, 140.6, 140.0, 135.9, 135.8, 129.6, 128.6, 127.7, 127.6, 126.4, 126.2, 125.2, 122.4, 119.9, 113.0, 111.5, 110.3, 102.7, 102.4, 84.9, 68.9, 67.6, 54.9, 48.9, 48.8, 47.4, 45.6, 43.7, 35.1, 33.5, 33.3, 29.2, 27.4, 27.3, 26.7, 25.7, 25.3, 25.2, 24.8, 24.4, 22.4, 12.2. MS (MALDI): m/z = 968.4 (M⁺), calcd. for C₅₈H₆₉N₃O₈S 968.24. Anal. Calcd. for C₅₈H₆₉N₃O₈S: C, 71.95; H, 7.18; N, 4.34. Found: C, 71.89; H, 7.19; N, 4.25.

2-((1E,3E,5Z)-5-{1-[6-({6-[Bis(4-methoxyphenyl)(phenyl) methoxy]-5-hydroxyhexyl]amino)-6-oxohexyl]-3,3-dimethyl-1,3-dihydro-2H-indol-2-ylidene}penta-1,3-dien-1-yl)-1-ethyl-3,3-dimethyl-3H-indolium-5-sulfonate (4b) was synthesized from 1b (100 mg, 0.173 mmol) as described for compound 4a. Precipitation of dye conjugate 4b was performed with a mixture of ethyl acetate and ether (1:1). Yield 130 mg (76.3%). $R_f = 0.75$ (C). ¹H NMR (DMSO-d₆, 400 MHz) δ 8.34 (2H, t, J 13.4, β , β '-CH), 6.86–7.95 (20H, m, DMTr and dye aromatics), 6.54–6.61 (1H, m, γ -CH), 6.25–6.31 (2H, m, α, α' -CH), 4.00–4.20 (6H, m., CH₃CH₂N⁺, CH₂CH₂N⁺, <u>CH</u>₂NHCO), 3.72 (6H, s, OCH₃), 3.50–3.51 (1H, m, CHOH), 2.90-3.00 (2H, m, CH2ODMTr), 2.03 (2H, t, J 7.16, CH₂CONH), 1.68 and 1.69 (12H, s, 4×CH₃), 1.15-1.57 (15H, m, $(CH_2)_3CH_2NH$, $(CH_2)_3CH_2CONH$, CH_3CH_2). ¹³C NMR (DMSO-d₆, 100 MHz) δ 170.2, 170.1, 162.2, 157.9, 154.2, 149.5, 145.4, 141.9, 141.4, 141.1, 140.4, 136.0 135.9, 135.8, 129.6, 128.3, 126.4, 126.0, 124.6, 123.8, 122.3, 119.9, 113.0, 111.0, 109.7, 103.2, 102.7, 85.0, 68.9, 67.6, 59.6, 54.9, 48.8, 48.7, 43.3, 35.7, 35.0, 33.5, 33.2, 29.2, 27.0, 26.9, 26.6, 25.7, 25.3, 25.1, 24.8, 23.8, 22.3, 20.6, 14.0, 11.9. MS (MALDI): m/z = 994.3 (M⁺), calcd. for C₆₀H₇₁N₃O₈S 994.29. Anal. Calcd. for C₆₀H₇₁N₃O₈S: C, 72.48; H, 7.20; N, 4.23. Found: C, 72.38; H, 7.25; N, 4.19.

Synthesis of Phosphoramidites 5a and 5b

2-((1E,3Z)-3-{1-[12-{[Bis(4-methoxyphenyl])(phenyl)methoxy [methyl]-17-cyano-14-(diisopropylamino)-6-oxo-13,15dioxa-7-aza-14-phosphaheptadec-1-yl]-3,3-dimethyl-1,3-dihydro-2H-indol-2-ylidene}prop-1-en-1-yl)-1-ethyl-3,3-dimethyl-3H-indolium-5-sulfonate (5a). Compound 4a (60 mg, 62 μ mol) was dissolved in anhydrous MeCN (300 μ l). Tetrazole (22 mg, 310 μ mol), dry pyridine, (30 μ l), and molecular sieves (4 Å; approximately 5% by volume) were added. Af-30 min, 2-cyanoethyl N,N,N',N'-tetraisopropylter phosphoramidite (92 µl, 310 µmol) was added to the mixture under intensive stirring. The reaction was completed in 15 min as evidenced by TLC (C). The reaction was quenched with cold saturated NaHCO₃ (30 ml), and the mixture was extracted with DCM (30 ml). The organic layer was dried over Na₂SO₄ , and the solution was concentrated in vacuo. The residue was diluted with ethyl aceteate (30 ml). Precipitate of 5a was separated by centrifugation and dried. Yield 60 mg (86%). $R_f = 0.5$ (C). ¹H NMR (DMSO-d₆, 400 MHz), selected signals δ 8.36 (1H, t, J 13.4, β -CH), 6.85– 7.82 (20H, m, DMTr and dye aromatics), 6.52 (2H, d, J 13.4, α, α' -CH), 4.10–4.20 (4H, m., CH₃CH₂N⁺, CH₂CH₂N⁺), 3.73 (6H, s, OCH₃), 2.04 (2H, m, CH₂CONH), 1.69 and 1.70 (12H, s, 4×CH₃), 0.96-1.62 (15H, m, (CH₂)₃CH₂NH,

(<u>CH₂)₃CH₂CONH, <u>CH₃CH₂</u>). ¹³C NMR (DMSO-d₆, 100 MHz) δ 173.9, 173.7, 171.5, 158.0, 149.9, 146.0, 144.9, 141.8, 141.2, 140.6, 140.1, 135.7, 135.6, 129.6, 128.6, 127.7, 126.5, 126.2, 125.2, 122.4, 119.9, 113.0, 111.5, 110.3, 102.7, 102.4, 85.2, 65.6, 58.0, 57.8, 55.0, 54.8, 48.8, 45.7, 43.7, 42.5, 42.4, 35.1, 33.0, 32.7, 29.1, 27.4, 27.3, 26.7, 25.7, 25.5, 24.9, 24.3, 24.3, 24.2, 24.1, 22.6, 21.9, 21.7, 19.7, 19.0, 12.1. ³¹P NMR (DMSO-d₆, 162 MHz) δ 150.2. MS (MALDI): m/z = 1168.4 (M⁺), calcd. for C₆₇H₈₆N₅O₉PS 1168.47. Anal. Calcd. for C₆₇H₈₆N₅O₉PS: C, 68.87; H, 7.42; N, 5.99. Found: C, 68.81; H, 7.53; N, 5.92.</u>

2-((1E,3E,5Z)-5-{1-[12-{[Bis(4-methoxyphenyl)(phenyl) methoxy]methyl}-17-cyano-14-(diisopropylamino)-6-oxo-13, 15-dioxa-7-aza-14-phosphaheptadec-1-yl]-3,3-dimethyl-1,3dihydro-2H-indol-2-ylidene}penta-1,3-dien-1-yl)-1-ethyl-

3,3-dimethyl-3H-indolium-5-sulfonate (5b) was synthesized from 4b (68 mg, 68 µmol) as described for compound 5a. Yield 65 mg (80%). $R_f = 0.6$ (C). ¹H NMR (DMSO-d₆, 400 MHz) selected signals δ 8.34 (2H, t, J 13.4, β , β '-CH), 6.85– 7.82 (20H, m, DMTr and dye aromatics), 6.54-6.61 (1H, m, γ -CH), 6.25–6.31 (2H, m, α, α' -CH), 4.00–4.20 (4H, m., CH₃CH₂N⁺, CH₂CH₂N⁺), 3.71 and 3.72 (6H, s, OCH₃), 2.01 (2H, m, <u>CH</u>₂CONH), 1.69 (12H, s, 4×CH₃), 0.96–1.62 (27H, m, (CH₂)₃CH₂NH, (CH₂)₃CH₂CONH, CH₃CH₂, CH(CH₃)₂). ¹³C NMR (DMSO-d₆, 100 MHz) δ 172.8, 172.3, 171.5, 158.0, 154.2, 154.0, 145.3, 144.9, 141.9, 141.4, 141.1, 140.5, 135.7, 129.6, 128.3, 127.7, 126.5, 126.0, 125.6, 124.7, 122.4, 119.9, 113.1, 111.1, 109.7, 103.3, 102.8, 85.2, 59.7, 58.0, 57.8, 55.0, 48.9, 48.8, 46.1, 45.7, 43.3, 42.5, 42.4, 35.1, 27.0, 27.0, 26.6, 25.7, 24.8, 24.4, 24.3, 24.2, 18.9, 12.0, 10.1. ³¹P NMR (DMSO-d₆, 162 MHz) δ 150.2. MS (MALDI): m/z = 1195.1, calcd. for C₆₉H₈₈N₅O₉PS 1194.50. Anal. Calcd. for C₆₉H₈₈N₅O₉PS: C, 69.38; H, 7.43; N, 5.86. Found: C, 69.35; H, 7.54; N, 5.78.

Synthesis of Solid Supports 6a,b

 $2-((1E,3Z)-3-\{1-[6-(\{6-[Bis(4-methoxyphenyl)(phenyl)\})$ methoxy]-5-[(3-carboxypropanoyl)oxy]hexyl]amino)-6-oxohexyl]-3,3-dimethyl-1,3-dihydro-2H-indol-2-ylidene}prop-1en-1-yl)-1-ethyl-3,3-dimethyl-3H-indolium-5-sulfonate. Succinic anhydride (20 mg, 200 µmol) and N,N-dimethylaminopyridine (25 mg, 200 µmol) were added to a solution of conjugate 4a (40 mg, 41 µmol) in dry pyridine (1 ml). The reaction was complete in 12 h. The mixture was concentrated in vacuo, diluted with DCM (30 ml) and washed with brine. The organic layer was dried over Na₂SO₄ and concentrated. The residue was diluted with ethyl acetate (30 ml). Precipitate of succinate was separated by centrifugation and dried. Yield 40 mg (90%). $R_f = 0.35$ (C). ¹H NMR (DMSO-d₆, 400 MHz) δ 8.36 (1H, t, J 13.5, β -CH), 6.87–7.81 (20H, m, DMTr and dye aromatics), 6.51 (2H, d, J 13.5, α , α '-CH), 4.00–4.20 (6H, m., $CH_3CH_2N^+$, $CH_2CH_2N^+$, CH_2NHCO), 3.73 (6H, s, OCH₃), 2.90-3.04 (2H, m, CH₂ODMTr), 2.54-2.57 (4H, m, COCH2CH2CO), 2.04 (2H, t, J 7.2, <u>CH</u>₂CONH), 1.69 and 1.70 (12H, s, 4×CH₃), 1.15–1.59 (12H, m, (CH₂)₃CH₂NH, (CH₂)₃CH₂CONH), 0.98 (3H, t, J 6.8, CH₃CH₂). ¹³C NMR (DMSO-d₆, 100 MHz) δ 173.9, 173.6, 173.4, 171.9, 158.0, 149.9, 145.9, 144.7, 141.8, 141.3, 140.6, 140.1, 135.5, 129.5, 128.6, 127.8, 127.5, 126.6, 126.2, 125.2, 122.4, 119.9, 113.1, 111.5, 110.3, 102.7, 102.4, 85.1,

72.3, 64.2, 63.0, 57.7, 55.0, 48.9, 45.6, 43.7, 35.1, 30.0, 29.2, 28.7, 27.4, 27.3, 26.7, 25.7, 24.9, 21.9, 12.1, 11.2. MS (MALDI): m/z = 1068.3 (M⁺), calcd. for $C_{62}H_{73}N_3O_{11}S$ 1068.32.

SCy3 derivatized controlled pore glass (6a). LCAA CPG (100 mg, 500Å, 120–200 mesh), pyridine (20 μ l) and triethylamine(10 μ l) were added to a solution of SCy3-succinate (30 mg, 28 μ mol) in DCM (1 ml). The suspension was concentrated under reduced pressure. Diisopropyl carbodiimide (50 μ l) was added to the reaction mixture. The suspension of CPG was agitated for 1 h at 37 °C, then filtered, treated with acetic anhydride in pyridine (1:2 mixture, 5 ml), washed with DCM (30 ml) and ethyl ether (30 ml) and dried. Loading 34 μ mol/g (DMTr⁺ at 495 nm).

2-((1E,3E,5Z)-5-{1-[6-({6-[Bis(4-methoxyphenyl)(phenyl) methoxy]-5-[(3-carboxypropanoyl)oxy]hexyl}amino)-6-oxohexyl]-3,3-dimethyl-1,3-dihydro-2H-indol-2-ylidene}penta-1,3-dien-1-yl)-1-ethyl-3,3-dimethyl-3H-indolium-5-sulfonate was synthesized from 4b (40 mg, 40 µmol) as described for SCy3-succinate. Yield 37 mg (84%). $R_f = 0.45$ (C). ¹H NMR (DMSO-d₆, 400 MHz) δ 8.31–8.38 (2H, m, β , β '-CH), 6.86– 7.81 (20H, m, DMTr and dye aromatics), 6.54-6.61 (1H, m, γ-CH), 6.28 (2H, t, J 13.6, α,α'-CH), 4.00-4.20 (6H, m., CH₃<u>CH₂</u>N⁺, CH₂<u>CH₂</u>N⁺, <u>CH₂</u>NHCO), 3.72 (6H, s, OCH₃), 3.15-3.31 (1H, m, CHOCO), 3.00-3.05 (2H, m, CH2ODMTr), 2.54-2.57 (4H, m, COCH2CH2CO), 2.02 (2H, t, J 7.2, CH₂CONH), 1.68 and 1.69 (12H, s, 4×CH₃), 1.15-1.61 (15H, m, (CH₂)₃CH₂NH, (CH₂)₃CH₂CONH) 0.99 (3H, t, J 7.2, <u>CH₃CH₂). ¹³C</u> NMR (DMSO-d₆, 100 MHz) δ 173.3, 172.8, 172.3, 171.7, 171.6, 158.0, 145.3, 144.7, 141.9, 141.4, 141.1, 140.5, 135.5, 131.7, 131.5, 129.5, 128.6, 127.8, 127.5, 126.6, 126.0, 125.6, 124.7, 122.4, 119.9, 113.1, 111.1, 109.7, 103.3, 102.8, 85.1, 72.4, 67.4, 64.2, 57.7, 55.0, 48.9, 48.8, 43.3, 35.0, 33.2, 30.0, 29.7, 29.0, 28.9, 28.8, 28.3, 27.0, 27.0, 26.6, 25.7, 24.8, 23.2, 22.5, 21.0, 14.0, 12.0. MS (MALDI): m/z = 1094.3, calcd. for $C_{64}H_{75}N_3O_{11}S$ 1094.36.

SCy5 derivatized controlled pore glass (**6b**) was prepared as described for solid support **6a**. Loading 40 μ mol/g (DMTr⁺ at 495 nm).

Oligonucleotide Synthesis

Oligodeoxynucleotides were synthesized using an ASM-102U DNA synthesizer (Biosset Ltd., Russia) or an ABI 3400 (Applied Biosystems, Forster City, CA, USA) using phosphoramidite chemistry at the 0.2- μ mol scale. Phosphoramidites with standard protecting groups (dA^{bz}, dG^{ibu}, dC^{bz} and T) or fast deprotection phosphoramidites (dA^{PAC}, dC^{Ac}, and dG^{iPr-PAC}) from Glen Research (Sterling, VA, USA) were used.

Fluorescently labeled (SCy3) oligodeoxynucleotides were deprotected in concentrated aqueous NH₃ for 4-48 h at 25 °C. For deprotection of SCy5-labeled oligonucleotides, treatment with 50 mM K_2CO_3 in MeOH for 4–48 h at 25 °C was used.

Purification of oligodeoxynucleotides performed using a Hypersil ODS column (5 μ m; 4.6× 250 mm), 0.05 M TEAA (pH 7.0) and a linear gradient of MeCN (10–50%, 30 min for DMTr-protected oligodeoxynucleotides and 0–25%, 30 min

for fully deblocked oligodeoxynucleotides). The flow rate was 1 ml/min. Removal of the 5'-O-DMTr group was achieved by treatment with 2% aqueous trifluoroacetic acid for 1 min, followed by Et_3N neutralization and precipitation with 2% LiClO₄ in acetone.

REFERENCES

- [1] Ranasinghe, R. T.; Brown, T. Chem. Commun., 2005, 44, 5487.
- Ballard, J. L.; Peeva, V. K.; DeSilva, C. J.; Lynch, J. L.; Swanson, N. R. Mol. Biotechnol., 2007, 36, 175.
- [3] Okamura, Y.; Watanabe, Y. Methods Mol. Biol., 2006, 335, 43.
- [4] Mujumdar, S. R.; Mujumdar, R. B.; Grant, C. M.; Waggoner, A. S. Bioconjug. Chem., 1996, 7, 356.
- [5] Berlier, J. E.; Rothe, A.; Buller, G.; Bradford, J.; Gray, D. R.; Filanoski, B. J.; Telford, W. G.; Yue, S.; Liu, J.; Cheung, C. Y.; Chang, W.; Hirsch, J. D.; Beechem J. M.; Haugland, R. P.; Haugland, R. P. J. Histochem. Cytochem., 2003, 51, 1699.
- [6] Reddington, M. V. Bioconjug. Chem., 2007, 18, 2178.
- [7] Toutchkine, A.; Nalbant, P.; Hahn, K. M. Bioconjug. Chem., 2002, 13, 387.

- [8] Metelev, V.; Weissleder, R.; Bogdanov, A. Bioconjug. Chem., 2004, 15, 1481.
- [9] Tsourkas, A.; Behlke, M. A.; Rose, S. D.; Bao, G. Nucleic Acids Res., 2003, 31, 1319.
- [10] Anderson, E. Synthesis of a Carbocyanine Phosphoramidite and its use in Oligonucleotide Labeling; International Conference on Nucleic Acid Medical Applications, Jan. 25-29, Cancun, Mexico, 1993.
- [11] Narayanan, N.; Little, G.; Lugade, A.; Gibson, J.; Prescott, C.; Raghavachari, R.; Reimen, K.; Roemer, S.; Sutter, S.; Draney D. New NIR Dyes: Synthesis, Spectral Properties and Applications in DNA Analyses. In Near-infrared Dyes for High Technology Applications; Daehne, S.; Resch-Genger, U., Wolfbeis, O. S. Eds.; Kluwer Academic Publishers, **1998**, pp. 141-158.
- [12] Ernst, L. A.; Gupta, R. K.; Mujumdar, R. B.; Waggoner, A. S. *Cytometry*, **1989**, 10, 3.
- [13] Southwick, P. L.; Ernst, L. A.; Tauriello, E. W.; Parker, S. R.; Mujumdar, R. B.; Mujumdar, S. R.; Clver, H. A.; Waggoner, A. S. *Cytometry*, **1990**, *11*, 418.
- [14] Mujumdar, R. B.; Ernst, L. A.; Mujumdar, S. R.; Lewis, C. J.; Waggoner, A. S. *Bioconjug. Chem.*, **1993**, *4*, 105.