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A series of 2,4-diaminopyridine derivatives was synthesized and evaluated as potential candidates for
neuropeptide Y (NPY) Y1 receptor positron emission tomography (PET) tracers. Derivatives bearing sub-
stitutions allowing reliable access to radiolabeling were designed, focusing on Y1 binding affinity and
lipophilicity. The advanced derivatives 2n and 2o were identified as promising PET tracer candidates.

� 2009 Elsevier Ltd. All rights reserved.
Neuropeptide Y (NPY) is a 36-amino acid peptide abundantly
distributed in the central nervous systems.1–3 NPY is implicated
in the regulation of a variety of physiological functions including
feeding behavior, energy homeostasis,4,5 cardiovascular function,6

hormone secretion,7 and pain.8 The biological effects of NPY are
mediated by a family of G-protein-coupled receptors consisting
of five distinct receptor subtypes of which Y1, Y2, Y4, Y5, and Y6
have been characterized.9 NPY is one of the most potent orexigenic
substances when directly administrated into the brain, and a num-
ber of studies have suggested that Y1 and Y5 receptors play a role
in NPY-induced food intake and development of obesity.9,10

Over the past decade, many pharmaceutical companies have de-
voted significant efforts towards discovering potent and selective
NPY Y1 antagonists to probe the physiological roles of the Y1 recep-
tor.11 To better understand NPY Y1 biology in vivo, a suitable NPY Y1
positron emission tomography (PET) tracer would be a powerful tool
allowing non-invasive Y1 receptor imaging and determination of
receptor occupancy. In addition, PET tracers would be valuable tools
for designing and testing promising drug candidates. In theory, a
successful PET tracer targeting a receptor in the central nervous sys-
tem needs to have high affinity for the target receptor, ideally with a
Bmax/Kd > 10. Reasonable lipophilicity with log P or log D = 1�3.5 is
also necessary for appropriate brain penetrability and achievement
of an optimal specific/non-specific binding ratio.12,13 Another criti-
All rights reserved.
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eda).
cal criterion for the selection of a brain-targeting tracer candidate
is lack of susceptibility to P-glycoprotein (P-gp), which is an efflux
transporter expressed at the blood–brain barrier.14 To our knowl-
edge, there are no reports of PET tracers available for in vivo studies
of the NPY Y1 receptor.15 Here we report the synthesis and optimiza-
tion of 2,4-diaminopyridine derivatives as potential candidates for
NPY Y1 PET tracers.

Previously, we reported the discovery of the potent and selec-
tive 2,4-diaminopyridine-based NPY Y1 antagonist 1 (Fig. 1).16a

Compound 1 showed excellent selectivity over other NPY receptor
subtypes (Y2, Y4, Y5 > 10 lM) and demonstrated food intake inhi-
bition in rodents. During the course of structure–activity relation-
ship (SAR) studies of the 2,4-diaminopyridine class, we identified
the 2-fluoropyridine derivative 2a as a potential lead for PET tracer
development. Compound 2a has appropriate lipophilicity and is
amenable to radiolabeling with 18F,17 although its Y1 binding affin-
ity is moderate. Accordingly, we directed our efforts towards mod-
ifying compound 2a by specifically focusing on improving the Y1
binding affinity and lipophilicity of 2a.

Preparation of 2,4-diaminopyridine derivatives 2a–l, 3a, 3b, 4a,
and 4b is illustrated in Scheme 1. Esterification of chelidamic acid
(5) followed by protection of the 4-hydroxy group as its benzyl
ether produced 6. The two symmetrical ester groups were differen-
tiated by half-reduction using sodium borohydride in the presence
of calcium chloride to give 7. The hydroxyl group of 7 was pro-
tected as its tetrahydropyranyl (THP) ether. The ester of 8 was
hydrolyzed to the corresponding carboxylic acid, which was trea-
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Figure 1. Structures of NPY Y1 antagonists 1 and 2a.
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Scheme 1. Synthesis of 2,4-diaminopyridine derivatives 2a–l, 3a, 3b, 4a, and 4b. Reagents and conditions. (a) (i) p-TsOH, EtOH, reflux, 98%, (ii) BnBr, K2CO3, DMF, rt, 75%; (b)
NaBH4, CaCl2, EtOH, 0 to 10 �C, 70%; (c) DHP, PPTS, CHCl3, rt, 99%; (d) (i) 1 N aqueous NaOH, MeOH, 40 �C, (ii) DPPA, Et3N, 1,4-dioxane, rt, (iii) t-BuOH, 1,4-dioxane, reflux, 78%;
(e) (i) cyclohexene, Pd/C, reflux, (ii) Tf2O, Et3N, CHCl3, 0 �C, 84%; (f) morpholine or thiomorpholine, DMSO, 50 �C, 58–71%; (g) KMnO4, 20% AcOH–acetone, rt, 96%; (h) p-TsOH,
EtOH, 40 �C, 99%; (i) (i) MsCl, Et3N, AcOEt, 0 �C, (ii) ArSH, K2CO3, DMF, rt, 73–96%; (j) (i) R3X, NaH, DMF, rt, (ii) TFA, CHCl3, rt, 40–93%.
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ted with diphenylphosphoryl azide followed by thermal rearrange-
ment in the presence of tert-butylalcohol to yield tert-butoxycar-
bonyl (Boc)-protected aminopyridine 9. After removal of the
benzyl protecting group under transfer hydrogenation conditions
using cyclohexene and palladium on carbon, the resulting hydroxyl
group was converted to triflate 10. Substitution reaction of the tri-
11
a

17 : R1 = CO2Et, R2 = Me
18 : R1 = Me, R2 = CO2Et
19 : R1 = Et, R2 = CO2Et
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Scheme 2. Synthesis of 2,4-diaminopyridine derivatives 2m–o. Reagents and conditions
TsOH, EtOH, 40 �C, 99%; (iii) MsCl, Et3N, AcOEt, 0 �C, (iv) 23, 24 or 25, K2CO3, DMF, rt, 90–
flate 10 with morpholine or thiomorpholine produced the corre-
sponding 2,4-diaminopyridine intermediates 11 and 12. The
thiomorpholinedioxide intermediate 13 was prepared by oxidizing
12 with potassium permanganate. After removal of the THP group
of 11–13, the resulting hydroxyl group was mesylated and dis-
placed by appropriate heterocyclic thiol in the presence of potas-
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. (a) (i) 2-(Chloromethyl)-6-methylpyridine hydrochloride, NaH, DMF, rt, 94%, (ii) p-
96%; (b) (i) LAH, THF, 0 �C, 91–95%, (ii) DAST, THF, 0 �C, (iii) TFA, CHCl3, rt, 56–70%.



Table 1
SAR of compounds 2a–i, 3a, 3b, 4a, and 4ba
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sium carbonate to give thioethers 14–16.18 Alkylation of 14–16 fol-
lowed by deprotection of the Boc group provided the target com-
pounds 2a–l, 3a, 3b, 4a, and 4b. Synthesis of 2m–o is described
in Scheme 2. Alkylation of the right-hand Boc-protected amine
group of 11 with 2-(chloromethyl)-6-methylpyridine followed by
introduction of the desired thiazoles 23–25 yielded 17–19. After
reduction of the ethoxycarbonyl group of 17–19, the resulting
hydroxyl group was fluorinated by diethylaminosulfur trifluoride,
followed by removal of the Boc group to produce 2m–o. The
substituted thiazoles 23–25 were synthesized by the treatment
of a-haloketones 20 or 22 with ammonium carbamodithioate, as
illustrated in Scheme 3.

A series of 2,4-diaminopyridine compounds was tested in a
[125I]PYY binding assay using CHO (NFAT-bla) cell membranes
expressing human recombinant Y1 receptors.19 The log D7.4 values
of the derivatives were measured using the protocol previously re-
ported by our laboratory.20

Variation of the right-hand 2-amino group was initially exam-
ined (Table 1). Among the various 2-fluoropyridine derivatives
(2a–d), the 2-fluoro-6-methylenepyridine derivative 2d exhibited
the most potent Y1 affinity. Based on this result, the 2-fluorine
group of compound 2d was substituted with functional groups that
are amenable to radiolabeling. Introduction of alkyloxymethyl, flu-
oromethyl, or fluoroethoxy groups provided no improvement in Y1
activity as in 2e–h. However, replacement of the fluorine with a
methyl group as in 2i resulted in a twofold increase in Y1 binding
and a slight reduction of lipophilicity, as compared to 2d.21 Next,
we modified the 4-amino group. Remarkable enhancement of Y1
affinity was observed when the 4-morpholine was replaced with
thiomorpholine as in 3a and 3b, resulting in IC50 values for 3a
and 3b of 0.27 and 0.16 nM, respectively. The thiomorpholinediox-
ide derivatives 4a and 4b exhibited substantially reduced lipophil-
icity, although their Y1 binding affinities were substantially
decreased. The thiomorpholine derivatives 3a and 3b displayed po-
tent Y1 activity; however, their log D7.4 values were relatively high
for further optimization aimed at PET ligand identification. There-
fore, further SAR studies were pursued using the less lipophilic
derivative 2i as a template.

Optimization of the left-hand heterocycle portion of 2i is sum-
marized in Table 2. The 5-ethyl-4-methyloxazole or tetrahydro-
benzoxazole derivatives 2j and 2k displayed increased Y1
binding affinity. Replacement of the 4,5-dimethyloxazole ring of
2i with a 4,5-dimethylthiazole ring as in 2l led to a further
enhancement of Y1 activity while the log D7.4 value is below 3.
Attachment of a fluorine atom to the 5-methyl group of the thia-
zole ring of 2l showed decreased Y1 binding as in 2m. However,
moving the fluorine from the 5-methyl to the 4-methyl group of
the thiazole ring produced 2n, which displayed improved Y1 activ-
ity and reduced lipophilicity relative to 2l. Importantly, this fluo-
rine substitution provides an additional labeling option for
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Scheme 3. Synthesis of substituted thiazoles 23–25. Reagents and conditions. (a)
Ammonium carbamodithioate, EtOH, rt, 20–61%; (b) (i) concd H2SO4, EtOH, reflux,
(ii) CuBr2, AcOEt, CHCl3, reflux, 29–58%.

4a SO2

N F
8.0 2.3

4b SO2

N
1.7 2.2

a Values represent the mean for n P 2 experiments.
b [125I]PYY binding assay using CHO (NFAT-bla) cell membranes expressing

human recombinant Y1 receptors.
c Octanol–water distribution coefficient at pH 7.4; see Ref. 20.
incorporation of 18F. Furthermore, the 4-fluoromethyl-5-ethyl-
thiazole derivative 2o exhibited a further improvement in Y1 bind-



Table 2
SAR of compound 2i–oa
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c Octanol–water distribution coefficient at pH 7.4; see Ref. 20.
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ing with an IC50 of 0.13 nM and applicable lipophilicity with a
log D7.4 value of 3.2. Overall, compounds 2n and 2o appeared to
be the best candidates in this series for PET tracers. Compounds
2n and 2o showed good selectivity over other NPY receptor sub-
types (Y2, Y4, Y5; IC50 > 10 lM).22 In addition, 2n and 2o have
low or negligible human P-gp susceptibility (the transcellular
transport ratios (B-to-A/A-to-B) for 2n and 2o are 1.8 and 1.4 for
human P-gp, respectively).23

In summary, a series of 2,4-diaminopyridines was synthesized and
evaluated for the development of novel NPY Y1 PET tracers. Our SAR
studies were focused on increasing the Y1 affinity of lead compound
2a while maintaining reasonable lipophilicity, and resulted in the
identification of the potent and selective compounds 2n and 2o as
promising candidates for Y1 PET tracers. Further evaluation and
in vivo studies with radiolabeled compounds are ongoing.
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