A Concise Approach for the Synthesis of Core Fragment C7–C15 of (+)-Migrastatin Using Desymmetrization Strategy

J. S. Yadav,* P. Naga Lakshmi

Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad 500607, India Fax +91(40)27160387; E-mail: yadavpub@iict.res.in *Received 21 October 2009*

Abstract: The core fragment C7–C15 the (+)-migrastatin was constructed in a stereoconvergent manner utilizing desymmetrization approach. The strategy involved the generation of *Z*-configuration of trisubstituted double bond at C11–C12, epimerization at C10, ring opening of the pyran lactol with C2 Wittig ylide, and regioselective Sharpless dihydroxylation.

Key words: (+)-migrastatin, desymmetrization, epimerization, Sharpless asymmetric dihydroxylation

Migrastatin (1, Figure 1) is a novel macrolide natural product, isolated from a cultured broth of Streptomyces sp. MK929-43F1 by Imoto and co-workers in 2000.^{1,2} It was shown by Kosan Bioscience researchers that cultures of Streptomyces platensis (strain NRRL 18993) also produce migrastatin.³ Migrastatin displays a remarkable inhibitory effect on the migration of human tumor cells and also selectively inhibits the anchorage-independent growth of human small cell lung carcinoma Ms-1 cells.⁴ More recently, it has been shown to inhibit P-glycoprotein and consequently sensitizes drug-resistant P-glycoprotein-overexpressing cells to anticancer drugs like taxol, vinblastine, and vincristine.⁵ The structure of migrastatin was established unambiguously by X-ray analysis of a derivative.⁶ This compound consists of a 14-membered lactone linked to an alkylglutarimide side chain and contains five stereogenic centers, two E-disubstituted double bonds, and one Z-trisubstituted double bond.

Figure 1

SYNLETT 2010, No. 7, pp 1033–1036 Advanced online publication: 23.03.2010 DOI: 10.1055/s-0029-1219785; Art ID: D29909ST © Georg Thieme Verlag Stuttgart · New York The first total synthesis of migrastatin (1) was achieved by Danishefsky and co-workers⁷ and recently an alternative route has been described by Reymond and Cossy.⁸ A semi-synthetic approach has been described from isomigrastatin by Shen and co- workers.⁹

Our ongoing research on the synthesis of biologically active molecules by desymmetrization strategy, and the notable biological activity of (+)-migrastatin encouraged us to select this molecule as a target for total synthesis. We herein report the synthesis of core fragment C7–C15 fragment of (+)-migrastatin (1).

The challenge in the construction of **2** was the proper positioning of the chiral centers (C8, C9, C10, C13, C14), the *Z*-configuration of C11–C12 double bond and to provide functionalities for the proper attachment leading to the C6–C7 double bond in **1**.

We embarked on the synthesis of the (+)-migrastatin (1)fragment by a retrosynthetic analysis starting with 2^{31} which can be obtained by subjecting the compound 3 to regioselective sharpless asymmetric dihydroxylation, regioselective monomethylation of diol, and TBDMS protection. The compound 3 is resulted from 4 by epimerization at C10 and ring opening of pyran lactol with ethoxycarbonyl methylene triphenylphosphorane. The compound 4 in turn could be easily prepared from 5 by selective protection of primary alcohol and generation of Zconfigured double bond. The compound 5 could be easily prepared from 6 through acetal ester, its reduction and debenzylation. Compound 6^{20} is obtained by regioselective methylation of the known precursor 7 (Scheme 1).

Our synthesis started with the precursor 7, which was prepared earlier in our group and utilized to make several natural products.¹⁰ The lactone 7 was subjected to regioslective methylation using LDA and methyl iodide to afford the methylated lactone 6^{11} in 92% yield. The hydrolysis of the bicyclic lactone 6 with catalytic amount of sulfuric acid in methanol afforded acetal ester 8^{21} along with a minor amount of the α -isomer (at C1 center) in 86% yield.¹² Reduction of 8 with LiAlH₄ followed by debenzylation with Li-napthanelide¹³ afforded diol 5^{22} in 80% yield. The primary alcohol in compound 5 was selectively protected with TBDPSCl and imidazole in CH₂Cl₂ to the corresponding TBDPS ether, and the secondary alcohol was mesylated with methane sulfonyl chloride and Et₃N in CH_2Cl_2 to give the compound 9^{23} in 90% yield (Scheme 2).

Scheme 1 Retrosynthetic strategy

Scheme 2 Reagents and conditions: (a) LDA, MeI, THF, -78 °C, 92%; (b) MeOH, cat. H₂SO₄, 86%; (c) LiAlH₄, THF, 0 °C to r.t.; (d) Li naphthanelide, -23 °C, 3-4 h, (80%, overall yield for two steps); (e) TBDPSCl, imidazole, CH₂Cl₂, 0 °C, 0.5–1 h, 98%; (f) MsCl, Et₃N, CH₂Cl₂, 0 °C to r.t., 16–20 h, 90%

Compound **9** was treated with DBU (neat) at the 70 °C for 8–12 h to afford 4^{24} in 40% yield.¹⁴ Hydrolysis using AcOH–H₂O–THF (6:3:1) at 50–55 °C afforded the lactol¹⁵ which was further oxidized with bis(acetoxy)iodobenzene (BAIB) and 2,2,6,6-tetramethylpiperidine-*N*-oxide (TEMPO)¹⁶ to afford the lactone **10** in 60% (overall yield for two steps). The lactone **10**²⁵ was treated with DBU in dry THF at –10 °C to afford the required epimer

11 in 45% yield.¹² The epimerized lactone 11^{26} when reduced with DIBAL-H in anhydrous THF at -78 °C resulted in lactol 12. Exposure of crude lactol 12 to ethoxycarbonylmethylene triphenylphosphorane in toluene at reflux conditions resulted in ring opening of pyran to aliphatic chain with secondary alcohol and α , β -unsaturated ester $3^{17,27}$ in 92% overall yield for the two steps (Scheme 3).

Scheme 3 *Reagents and conditions*: (a) DBU (neat), -70 °C, 8-12 h, 40%; (b) AcOH–H₂O–THF (6:3:1), 50-55 °C, 12 h; (c) BAIB, TEMPO, CH₂Cl₂, 0 °C to r.t., 2–3 h, (60%, overall yield for two steps); d) DBU, THF, -10 °C, 0.5 h, 45%; (e) DIBAL-H, THF, -78 °C, 2 h; (f) Ph₃P=CHCO₂Et, toluene, reflux, 2–4 h, (92%, overall yield for two steps).

Synlett 2010, No. 7, 1033-1036 © Thieme Stuttgart · New York

Silylation of secondary alcohol in compound **3** using TESCl, imidazole as the corresponding TES ether 13^{28} followed by regioselective Sharpless asymmetric dihydroxylation¹⁸ using AD mix- α , MeSO₂NH₂ in *t*-BuOH–H₂O (1:1) gave diol 14^{29} (72% yield).

Scheme 4 Reagents and conditions: (a) TESCl, imidazole, CH_2Cl_2 , 0 °C to r.t., 24 h, 94%; (b) AD mix- α , *t*-BuOH–H₂O (1:1), MeSO₂NH₂, 0 °C, 24–36 h, 72% (based on recovery of starting material); (c) Ag₂O, MeI, MS 4 Å, MeCN, r.t., 1–2 d, 80%; (d) TBSOTf, 2,6-lutidine, CH₂Cl₂, –23 °C to 0 °C, 2–3 h, 88%.

The α -OH in diol **14** was selectively protected as methyl ether by using modified Gurjar's protocol.¹⁹ Treatment of diol with silver oxide, methyl iodide, and MS 4 Å in acetonitrile at room temperature resulted in monoprotected methyl ether **15**³⁰ selectively in 80% yield, and the free secondary hydroxyl group was protected as *tert*-butyl dimethylsilylether using 2,6-lutidine and *tert*-butyldimethylsilyl trifluoromethane sulfonate in dichloromethane in 90% yield (Scheme 4). Thus the core fragment C7–C15 of (+)-migrastatin has been synthesized.

In conclusion, the synthesis of core fragment C7–C15 of migrastatin has been accomplished wherein the required stereogenic centers and the Z-configuration of trisubstituted double bond at C11–C12 have been achieved by using desymmetrization approach. Further efforts for the total synthesis of migrastatin are currenly under way in our laboratory.

Acknowledgment

P.N.L. thanks CSIR, New Delhi for the award of a fellowship.

References and Notes

- Nakae, K.; Yoshimoto, Y.; Sawa, T.; Homma, Y.; Hamada, M.; Takeuchi, T.; Imoto, M. J. Antibiot. 2000, 53, 1130.
- (2) Nakae, K.; Yoshimoto, Y.; Ueda, M.; Sawa, T.; Takahashi, Y.; Naganawa, H.; Takeuchi, T.; Imoto, M. *J. Antibiot.* **2000**, *53*, 1228.
- (3) Woo, E. J.; Starks, C. M.; Carney, J. R.; Arslanian, R.; Cadapan, L.; Zavala, S.; Licari, P. J. Antibiot. 2002, 55, 141.

- (4) Takemoto, Y.; Nakae, K.; Kawatani, M.; Takahashi, Y.; Naganawa, H.; Imoto, M. J. Antibiot. 2001, 54, 1104.
- (5) Takemoto, Y.; Tashiro, E.; Imoto, M. J. Antibiot. 2006, 59, 435.
- (6) Nakamura, H.; Takahashi, Y.; Naganawa, H.; Nakae, K.; Imoto, M.; Shiro, M.; Matsumura, K.; Watanabe, H.; Kitahara, T. J. Antibiot. 2002, 55, 442.
- (7) Gaul, C.; Njardarson, J. T.; Danishefsky, S. J. J. Am. Chem. Soc. 2003, 125, 6042.
- (8) (a) Reymond, S.; Cossy, J. *Eur. J. Org. Chem.* 2006, 4800.
 (b) Reymond, S.; Cossy, J. *Tetrahedron* 2007, *63*, 5918.
- (9) Ju, J.; Lim, S.-K.; Jiang, H.; Seo, J.-W.; Her, Y.; Shen, B. Org. Lett. 2006, 8, 5865.
- (10) (a) Yadav, J. S.; Rao, C. S.; Chandrasekhar, S.; Ramarao, A. V. *Tetrahedron Lett.* **1995**, *36*, 7717. (b) Yadav, J. S.; Abraham, S.; Reddy, M. M.; Sabitha, G.; Sankar, A. R.; Kunwar, A. C. *Tetrahedron Lett.* **2001**, *42*, 4713.
 (c) Yadav, J. S.; Abraham, S.; Reddy, M. M.; Sabitha, G.; Sankar, A. R.; Kunwar, A. C. *Tetrahedron Lett.* **2002**, *43*, 3453. (d) Yadav, J. S.; Ahmed, M. Md. *Tetrahedron Lett.* **2002**, *43*, 7147. (e) Yadav, J. S.; Reddy, K. B.; Sabitha, G. *Tetrahedron Lett.* **2004**, *45*, 6475. (f) Yadav, J. S.; Srinivas, R.; Sathiah, K. *Tetrahedron Lett.* **2006**, *47*, 1603.
 (g) Yadav, J. S.; Venkatram Reddy, P.; Chandraiah, L. *Tetrahedron Lett.* **2007**, *48*, 145. (h) Yadav, J. S.; Pratap, T. V.; Rajender, V. J. Org. Chem. **2007**, *72*, 5882.
 (i) Yadav, J. S.; Venugopal, C. Synlett **2007**, 2262.
- (11) Hoffmann, H. M. R.; Clemens, K. E.; Smithers, R. H. J. Am. Chem. Soc. 1972, 94, 3940.
- (12) Yadav, J. S.; Satyanaryana, M.; Srinivasulu, G.; Kunwar, A. C. Synlett 2007, 1577.
- (13) Liu, H. J.; Yip, J.; Shia, K. S. Tetrahedron Lett. 1997, 38, 2253.
- (14) (a) Majetich, G.; Song, J.; Leigh, A. J.; Condon, S. M. J. Org. Chem. 1993, 58, 1030. (b) The progress of reaction and its completion was also invariably checked in different solvents and at different temperatures.
- (15) Snider, B. B.; Song, F. Org. Lett. 2001, 3, 1817.
- (16) Mico, A. D.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. J. Org. Chem. **1997**, 62, 6974.
- (17) Valverde, S.; Martin-Lomas, M.; Herradon, B.; Garcia-Ochoa, S. *Tetrahedron* **1987**, *43*, 1895.
- (18) Kolb, H. C.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
- (19) Gurjar, M. K.; Mainkar, A. S.; Srinivas, P. *Tetrahedron Lett.* 1995, 36, 5967.
- (20) Analytical Data for Compound 6 $[\alpha]_D^{25} -54.7 (c \ 3.0, CHCl_3). IR: v_{max} = 2928, 1742, 1455, 1073 cm^{-1}. ¹H NMR (200 MHz, CDCl_3): <math>\delta = 7.35-7.20$ (m, 5 H), 5.38 (d, J = 2.7 Hz, 1 H), 4.70–4.40 (ABq, 2 H), 3.65 (d, J = 4.0 Hz, 1 H), 3.60–3.52 (m, 1 H), 2.75 (q, J = 7.0 Hz, 2 H), 2.30–2.10 (m, 1 H), 2.10–1.96 (m, 1 H), 1.42 (d, J = 6.5 Hz, 3 H), 1.15 (d, J = 6.8 Hz, 3 H), 0.96 (d, J = 6.8 Hz, 3 H). MS: m/z = 290 [M⁺]. Anal. Calcd (%) for C₁₇H₂₂O₄: C, 70.32; H, 7.64. Found: C, 70.01; H, 7.32.

(21) Analytical Data for Compound 8

- [*a*]_D²⁵+77.6 (*c* 1.5, CHCl₃). IR (neat): ν_{max} = 2827, 1739, 1456, 1082 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.36–7.22 (m, 5 H), 4.54 (s, 2 H), 4.52 (s, 1 H), 4.00–3.95 (m, 1 H), 3.86 (t, *J* = 3.5 Hz, 1 H), 3.72 (s, 3 H), 3.28 (s, 3 H), 2.75–2.64 (m, 1 H), 2.25–2.10 (m, 2 H), 1.14–1.05 (m, 6 H), 1.02 (d, *J* = 6.6 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 176.0, 138.8, 128.2, 127.2, 127.1, 104.2, 74.9, 71.7, 69.4, 54.7, 51.5, 41.7, 36.4, 32.5, 13.1, 13.0, 7.5. MS: *m*/*z* = 307 [M⁺ + 1 30]. Anal. Calcd (%) for C₁₉H₂₈O₅: C, 67.83; H, 8.39. Found: C, 67.13; H, 8.26.
- (22) Analytical Data for Compound 5 $[\alpha]_{D}^{25}$ +35.4 (*c* 2.0, CHCl₃). IR (KBr): ν_{max} = 3489, 2924,

Synlett 2010, No. 7, 1033-1036 © Thieme Stuttgart · New York

2855, 1724, 1460, 1377, 1130, 1073, 1029 cm^{-1. 1}H NMR (200 MHz, CDCl₃): δ = 4.50 (s, 1 H), 4.05 (t, *J* = 5.3 Hz, 1 H), 3.69–3.55 (m, 3 H), 3.35 (s, 3 H), 3.15–2.98 (br, 1 H), 2.07–1.90 (m, 3 H), 1.67–1.55 (br, 1 H), 1.04 (d, *J* = 6.8 Hz, 3 H), 0.97 (d, *J* = 6.8 Hz, 3 H), 0.81 (d, *J* = 6.8 Hz, 3 H), 1.67–1.55 (br, 1 H), 1.04 (d, *J* = 6.8 Hz, 3 H), 0.97 (d, *J* = 6.8 Hz, 3 H), 0.81 (d, *J* = 6.8 Hz, 3 H), 1.67–1.55 (br, 1 H), 1.04 (d, *J* = 6.8 Hz, 3 H), 0.97 (d, *J* = 6.8 Hz, 3 H), 0.81 (d, *J* = 6.8 Hz, 3 H), 1.67–1.55 (br, 1 H), 1.04 (d, *J* = 6.8 Hz, 3 H), 1.67–1.55 (br, 1 H), 1.04 (d, *J* = 6.8 Hz, 3 H), 2.07–1.90 (m, 3 H), 1.67–1.55 (br, 1 H), 1.04 (d, *J* = 6.8 Hz, 3 H), 2.07–1.90 (m, 3 H), 1.67–1.55 (br, 1 H), 1.04 (d, *J* = 6.8 Hz, 3 H), 2.07–1.90 (m, 3 H), 1.67–1.55 (br, 1 H), 1.04 (d, *J* = 6.8 Hz, 3 H), 2.07–1.90 (m, 3 H), 1.67–1.55 (br, 1 H), 1.04 (d, *J* = 6.8 Hz, 3 H), 2.07–1.90 (m, 3 H), 1.67–1.55 (br, 1 H), 1.04 (d, *J* = 6.8 Hz, 3 H), 2.07–1.90 (m, 3 H), 1.67–1.55 (br, 1 H), 1.04 (d, *J* = 6.8 Hz, 3 H), 2.07–1.90 (m, 3 H), 1.67–1.55 (br, 1 H), 1.04 (d, *J* = 6.8 Hz, 3 H), 2.07–1.90 (m, 3 H), 1.67–1.55 (br, 1 H), 1.04 (d, *J* = 6.8 Hz, 3 H), 2.07–1.90 (m, 3 H), 1.67–1.55 (br, 1 H), 1.04 (d, *J* = 6.8 Hz, 3 H), 1.40 (b, 3 Hz, 3 H), 1.67–1.55 (br, 1 H), 2.04 (b, 4 H, Na]^+: 241.1410; found: 241.1415.

(23) Analytical Data for Compound 9

[α]_D²⁵ +3.0 (*c* 1, CHCl₃). IR (KBr): $v_{max} = 2926$, 2856, 1464, 1360, 1177, 1079, 1019, 954 cm⁻¹.¹H NMR (300 MHz, CDCl₃): δ = 7.61 (d, *J* = 7.7 Hz, 4 H), 7.43–7.28 (m, 6 H), 5.1 (t, *J* = 5.6 Hz, 1 H), 4.40 (s, 1 H), 3.83–3.60 (m, 3 H), 3.09 (s, 3 H), 2.98 (s, 3 H), 2.24–2.12 (m, 2 H), 1.89–1.73 (m, 1 H), 1.15–1.02 (m, 12 H), 0.97 (d, *J* = 6.8 Hz, 3 H), 0.91 (d, *J* = 7.5 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ = 136.0, 135.8, 134.1, 133.9, 129.7, 129.7, 127.7, 103.7, 80.4, 69.8, 65.5, 60.5, 54.9, 38.8, 37.9, 36.9, 35.0, 27.2, 19.5, 14.4, 13.4, 13.0, 8.15. ESI-MS: *m/z* = 557.2 [M + Na]⁺. HRMS: *m/z* calcd for C₂₈H₄₂O₆NaSi [M + Na]⁺: 557.2366; found: 557.2369.

(24) Analytical Data for Compound 4

[α]_D²⁵ +100.9 (*c* 0.8, CHCl₃). IR (KBr): $v_{max} = 2960, 2926, 2856, 2827, 1465, 1384, 1108, 1086, 1030, 954 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.66 (d,$ *J*= 7.5 Hz, 4 H), 7.43–7.31 (m, 6 H), 5.31 (d,*J*= 5.2 Hz, 1 H), 4.38 (s, 1 H), 3.93 (s, 1 H), 3.66–3.48 (qd,*J*= 4.5, 9.8 Hz, 2 H), 3.37 (s, 3 H), 2.21–1.92 (m, 2 H), 1.46 (s, 3 H), 1.21 (d,*J*= 6.7 Hz, 3 H).1.08 (s, 12 H), 0.85 (d,*J*= 7.5 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ = 135.5, 129.4, 129.4, 127.5, 123.7, 101.8, 73.1, 64.6, 54.9, 36.9, 34.0, 26.8, 19.1, 18.6, 14.9. ESI-MS:*m*/*z*= 461.2 [M + Na]⁺. HRMS:*m*/*z*calcd for C₂₇H₃₈O₃NaSi [M + Na]⁺: 461.2494; found: 461.2487.

(25) Analytical Data for Compound 10

$$\begin{split} & [a]_{D}^{25}-14.3 \ (c\ 0.5,\ CHCl_3).\ IR\ (KBr): v_{max}=2927,\ 2856, \\ & 1739,\ 1465,\ 1427,\ 1364,\ 1109\ cm^{-1}.\ ^{1}H\ NMR\ (300\ MHz, \\ & CDCl_3):\ \delta=7.69-7.58\ (m,\ 4\ H),\ 7.44-7.31\ (m,\ 6\ H),\ 5.33\ (d, \\ & J=5.2\ Hz,\ 1\ H),\ 4.76\ (s,\ 1\ H),\ 3.66-3.55\ (m,\ 1\ H),\ 3.54-3.41\ (m,\ 1\ H),\ 3.05-2.85\ (m,\ 1\ H),\ 2.21-2.01\ (m,\ 1\ H),\ 3.54-3.41\ (m,\ 1\ H),\ 3.05-2.85\ (m,\ 1\ H),\ 2.21-2.01\ (m,\ 1\ H),\ 1.62\ (s,\ 3\ H),\ 1.17\ (d,\ J=7.3\ Hz,\ 6\ H),\ 1.04\ (s,\ 9\ H).\ ^{13}C\ NMR\ (75\ MHz,\ CDCl_3):\ \delta=176.0,\ 135.5,\ 134.7,\ 129.4,\ 129.4,\ 127.7,\ 127.5,\ 123.1,\ 94.9,\ 77.4,\ 76.5,\ 73.6,\ 64.8,\ 37.0,\ 34.8,\ 26.9,\ 26.5,\ 19.2,\ 18.4,\ 15.1.\ ESI-MS:\ m/z\ =445.2\ [M+\ Na]^+.\ HRMS:\ m/z\ calcd\ for\ C_{26}H_{34}O_3NaSi\ [M+\ Na]^+:\ 445.2174;\ found:\ 445.2173. \end{split}$$

(26) Analytical Data for Compound 11

[α]_D²⁵-10.6 (*c* 1.0, CHCl₃). IR (KBr): v_{max} = 3000, 2851, 1750, 1432, 1380, 1210 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.69–7.57 (m, 4 H), 7.44–7.31 (m, 6 H), 5.33 (d, *J* = 5.2 Hz, 1 H), 4.60 (s, 1 H), 3.61–3.45 (m, 2 H), 2.86–2.76 (m, 1 H), 2.19–1.91 (m, 1 H), 1.62 (s, 3 H), 1.10–0.90 (m, 15 H). ¹³C NMR (75 MHz, CDCl₃): δ = 176.0, 135.5, 134.7, 129.4, 129.4, 127.7, 127.5, 123.1, 94.9, 77.4, 76.5, 73.6, 64.8, 37.0, 34.8, 26.9, 26.5, 19.2, 18.4, 15.1. ESI-MS: *m/z* = 445.2 [M + Na]⁺. HRMS: *m/z* calcd for C₂₆H₃₄O₃NaSi [M + Na]⁺: 445.2174; found: 445.2173.

(27) Analytical Data for Compound 3

[α]_D²⁵ +44.3 (*c* 0.6, CHCl₃). IR (KBr): $v_{max} = 3420, 2960, 2929, 2858, 1716, 1464, 1428, 1385, 1109, 1035, 703 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.61 (d,$ *J*= 6.0 Hz, 4 H), 7.38–7.27 (m, 6 H), 6.87–6.77 (dd,*J*= 6.0, 15.1 Hz, 1 H), 5.72 (d,*J*= 15.1 Hz, 1 H), 5.03 (d,*J*= 9.8 Hz, 1 H), 4.36 (d,*J*= 9.0 Hz, 1 H), 4.14–4.04 (q,*J*= 6.7 Hz, 2 H), 3.80–3.60 (dq,*J*= 3.7, 7.5, 10.5 Hz, 2 H), 3.40–3.28 (m, 2 H), 1.92–1.76 (m, 1 H), 1.65 (s, 3 H), 1.19 (t,*J*= 6.7 Hz, 3 H), 1.02–0.99 (m, 12 H), 0.60 (d,*J*= 6.8 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ = 167.0, 152.6, 136.6, 135.8, 135.8, 135.7, 135.7,

Synlett 2010, No. 7, 1033–1036 © Thieme Stuttgart · New York

135.6, 133.0, 133.0, 130.1, 130.0, 128.0, 127.9, 127.9, 127.8, 119.7, 74.0, 68.9, 60.3, 37.9, 34.3, 27.0, 27.0, 26.9, 20.0, 19.3, 17.9, 14.4, 13.3. ESI-MS: $m/z = 517 \ [M + Na]^+$. HRMS: $m/z \ calcd \ for \ C_{30}H_{42}O_4NaSi \ [M + Na]^+$: 517.2750; found: 517.2757.

(28) Analytical Data for Compound 13

(29) Analytical Data for Compound 14

$$\begin{split} & [\alpha]_{\rm D}{}^{25} -6.0 \ (c \ 0.3, {\rm CHCl}_3). {\rm IR} \ ({\rm KBr}): {\rm v}_{\rm max} = 3440, 2959, \\ & 2877, 1722, 1650, 1463, 1426, 1385, 1262, 1108, 1065, \\ & 1014, 703 \ {\rm cm}{}^{-1}. {\rm 'H} \ {\rm NMR} \ (300 \ {\rm MHz}, {\rm CDCl}_3): \delta = 7.73 - 7.56 \\ & ({\rm m}, 4 \ {\rm H}), 7.48 - 7.28 \ ({\rm m}, 6 \ {\rm H}), 5.08 \ ({\rm d}, J = 10.2 \ {\rm Hz}, 1 \ {\rm H}), 4.32 \\ & ({\rm d}, J = 9.3 \ {\rm Hz}, 1 \ {\rm H}), 4.23 - 4.20 \ ({\rm m}, 2 \ {\rm H}), 3.88 - 3.75 \ ({\rm m}, 1 \ {\rm H}), \\ & 3.69 - 3.47 \ ({\rm m}, 2 \ {\rm H}), 3.01 - 2.84 \ ({\rm m}, 2 \ {\rm H}), 1.89 - 1.71 \ ({\rm m}, 2 \ {\rm H}), \\ & 1.70 - 1.59 \ ({\rm m}, 3 \ {\rm H}), 1.43 - 1.21 \ ({\rm m}, 3 \ {\rm H}), 1.08 \ ({\rm s}, 9 \ {\rm H}), 0.99 \\ & ({\rm d}, J = 6.6 \ {\rm Hz}, 3 \ {\rm H}), 0.93 - 0.74 \ ({\rm m}, 12 \ {\rm H}), 0.57 - 0.37 \ ({\rm q}, \\ & J = 6.6 \ {\rm Hz}, 6 \ {\rm H}). {}^{13}{\rm C} \ {\rm NMR} \ (75 \ {\rm MHz}, {\rm CDCl}_3): \delta = 173.9, \\ & 140.6, 135.9, 134.2, 129.6, 128.9, 127.7, 80.0, 71.7, 71.3, \\ & 70.5, 66.3, 62.1, 61.3, 59.0, 40.8, 34.9, 32.1, 31.1, 31.1, 29.9, \\ & 29.5, 27.2, 22.9, 29.5, 27.2, 22.9, 19.5, 18.5, 17.8, 17.4, \\ & 14.4, 14.3, 7.1, 5.5, 5.1, 0.20. \ {\rm ESI-MS:} \ m/z = 665.0 \ [{\rm M} + \ {\rm Na}]^+. \ {\rm HRMS:} \ m/z \ {\rm calcd} \ {\rm for} \ {\rm C}_{36}{\rm H}_{58}{\rm O}_6{\rm NaSi}_2 \ [{\rm M} + \ {\rm Na}]^+: \\ & 665.3669; \ {\rm found:} 665.3672. \end{split}$$

(30) Analytical Data for Compound 15

 $[\alpha]_{D}^{25}$ –3.0 (*c* 0.4, CHCl₃). IR (KBr): v_{max} = 3513, 2960, 2874, 1721, 1650, 1462, 1426, 1386, 1260, 1109, 1064, 1014 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.70–7.62 (m, 4 H), 7.44–7.32 (m, 6 H), 5.14 (d, J = 10.0 Hz, 1 H), 4.39 (d, J = 9.2 Hz, 1 H), 4.32–4.22 (m, 2 H), 3.87–3.81 (dd, J = 3.3, 9.4 Hz, 1 H), 3.68–3.61 (dd, J = 6.4, 9.4 Hz, 3 H), 3.39–3.32 (m, 1 H), 3.35 (s, 3 H), 3.12–2.97 (m, 1 H), 2.86 (d, J = 9.2 Hz, 1 H), 1.87–1.73 (m, 1 H), 1.65 (s, 3 H), 1.31 (t, J = 7.1 Hz, 3 H), 1.08 (s, 9 H), 1.00 (d, J = 6.9 Hz, 3 H), 0.89–0.79 (m, 12 H), 0.59–0.45 (q, J = 6.6 Hz, 6 H). ¹³C NMR (75 MHz, CDCl₃): δ = 173.8, 137.3, 135.6, 134.1, 127.4, 134.1, 129.4, 127.4, 85.4, 77.4, 77.1, 77.1, 76.9, 76.5, 71.2, 70.6, 66.0, 61.4, 59.2, 40.5, 33.2, 29.6, 26.9, 19.3, 18.2, 16.7, 14.2, 14.0, 6.9, 4.7. ESI-MS: $m/z = 679.0 [M + Na]^+$. HRMS: m/zcalcd for C₃₇H₆₀O₆NaSi₂ [M + Na]⁺: 679.3826; found: 679.3837.

(31) Analytical Data for Compound 2

[*a*]_D²⁵–3.0 (*c* 0.4, CHCl₃). IR (KBr) $v_{max} = 2959, 2877, 1722, 1650, 1463, 1426, 1385, 1262, 1108, 1065, 1014, 703 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.70–7.63 (m, 4 H), 7.45–7.31 (m, 6 H), 5.13 (d,$ *J*= 10.1 Hz, 1 H), 4.33 (d,*J*= 3.2 Hz, 1 H), 4.28–4.15 (m, 3 H), 3.95–3.89 (dd,*J*= 3.3, 9.4 Hz, 1 H), 3.53–3.40 (m, 2 H), 3.31 (s, 3 H), 2.95–2.82 (m, 1 H), 1.89–1.78 (m, 1 H), 1.65 (s, 3 H), 1.32–1.24 (m, 3 H), 1.09 (s, 9 H), 0.97–0.78 (m, 24 H), 0.56–0.45 (m, 6 H), 0.12 (s, 3 H), 0.06 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ = 136.9, 135.6, 134.1, 127.4, 127.4, 129.3, 86.6, 73.0, 71.9, 66.4, 60.7, 59.5, 40.9, 33.2, 31.9, 31.4, 29.6, 26.9, 25.8, 22.6, 19.3, 18.3, 17.2, 14.2, 6.9, 4.6, -4.4, -5.0. ESI-MS:*m/z*= 793.6 [M + Na]⁺. HRMS:*m/z*calcd for C₄₃H₇₄O₆NaSi₃ [M + Na]⁺: 793.6826; found: 793.6837.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.