

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Design, synthesis, and evaluation of novel 3-amino-4-hydrazine-cyclobut-3ene-1,2-diones as potent and selective CXCR2 chemokine receptor antagonists

Shilan Liu^a, Yinhui Liu^a, Hongmei Wang^a, YiLi Ding^a, Hao Wu^{a,*}, Jingchao Dong^a, Angela Wong^a, Shu-Hui Chen^{a,*}, Ge Li^a, Manuel Chan^{b,c}, Nicole Sawyer^{b,c}, Francois G. Gervais^{b,c}, Martin Henault^{b,c}, Stacia Kargman^{b,c}, Leanne L. Bedard^{b,c}, Yongxin Han^{b,c}, Rick Friesen^{b,c}, Robert B. Lobell^d, David M. Stout^e

^a WuXi PharmaTech Co. Ltd, 288 FuTe Zhong Road, No. 1 Building, WaiGaoQiao Free Trade Zone, Shanghai 200131, PR China

^b Department of Medicinal Chemistry, Merck Frosst Center for Therapeutic Research, Merck-Frosst Canada Ltd, PO Box 1005, Pointe Claire-Dorval, Quebec, Canada H9R 4P8 ^c Department of Biochemistry and Molecular Biology, Merck Frosst Center for Therapeutic Research, Merck-Frosst Canada Ltd, PO Box 1005, Pointe Claire-Dorval, Quebec, Canada H9R 4P8

^d Merck Research Laboratories, West Point, PA 19486, USA

^e Merck Research Laboratories, Rahway, NJ 07065, USA

ARTICLE INFO

Article history: Received 25 April 2009 Revised 31 July 2009 Accepted 1 August 2009 Available online 7 August 2009

Keywords: 3,4-Dioxocyclobut-1-enyl-hydrazine Antagonists CXCR2 Chemokine receptor

ABSTRACT

We describe herein a novel series of 3-amino-4-hydrazine-cyclobut-3-ene-1,2-diones as potent and selective inhibitors against the CXCR2 chemokine receptor and IL-8-mediated chemotaxis of a CXCR2-expressing cell line. Furthermore, these alkyl-hydrazine series inhibitors such as **5b** demonstrated acceptable metabolic stability when incubated in human and rat microsomes.

© 2009 Published by Elsevier Ltd.

Owing to the relevance of IL-8 (CXCL8) and related chemokines in a wide range of inflammatory diseases such as arthritis, asthma, and COPD, the search for small-molecule antagonists for CXCR2 has attracted a lot of attention within the past two decades.^{1,2} As a result of these efforts, many structurally diverse CXCR2 antagonists have been identified, which include the bis-aryl urea series such as 1,³⁻⁶ the 3,4-diamino-cyclobut-3-ene-1,2-dione series such as **2**a and **2b**,^{7–9} the thiazolopyrimidine series **3**,^{10–12} and the 3,4-diamino-substituted 1,2,5-thiadiazole series $\mathbf{4}^{13-15}$ as shown in Figure 1. A careful analysis on SAR trends reported for Series 2 antagonists⁷⁻⁹ suggested the possibility of replacing the alkyl amine moiety as installed for **2a** or **2b** with a hydrazine linkage as seen for Series 5 (see Fig. 1). The rationale for incorporation of hydrazine moiety in Series 5 antagonists was further supported by the observation that such linkage was incorporated into HIV protease inhibitors by Reddy et al.,¹⁶ Human Rhino Viruses (HRV) 3C protease inhibitors by Kati et al.,¹⁷ HCV protease inhibitors by Bailey et al.,¹⁸ as well as SARS 3CL protease inhibitors by Anand et al.¹⁹ Furthermore, a recently FDA approved HIV protease inhibitor Reyataz with hydrazine linkage incorporated as subunit further validates our design concept for **Series 5** antagonists²⁰ (see Fig. 2).

With the intention to validate our hypothesis, we designed a number of *N*-alkyl, both electron rich and deficient *N*-aryl, and *N*-acyl substituted hydrazines as the initial target compounds (**5a**-**j**) as shown in Figure 3. In this communication, we describe the design, synthesis, and SAR trend observed with the novel hydrazine linkage bearing cyclobutene diones **5** as CXCR2 antagonists. The most promising compound identified within this series thus far, **5b** showed good receptor binding potency, functional activity, and excellent selectivity against CXCR1, and acceptable metabolic stability, thus rendering itself as a new lead compound for further optimization.

Chemical synthesis: The syntheses of all target compounds were accomplished according to the chemistries depicted in Scheme 1 through **6**. It is worthwhile to mention that many attempts to prepare these seemingly related target analogs (**5a**–**j**) via a convergent route such as that shown in Scheme 1 were not successful (e.g., for **5d**–**f**). Consequently, multiple routes were exploited for the preparation of various hydrazine bearing cyclobutene diones derivatives **5**.

The syntheses of compounds **5a** and **5f** were completed according to Scheme 1. Towards this end, coupling of the known

^{*} Corresponding authors. Tel.: +86 21 50463721; fax: +86 21 50463718. *E-mail address*: chen_shuhui@wuxiapptec.com (S.-H. Chen).

Figure 1. Representative CXCR2 antagonists.

Figure 2. Selected examples of hydrazine bearing viral protease inhibitors.

Figure 3. Detailed target list for series 5 antagonists.

substituted aniline **6**⁸ with diethyl squarate **7** in EtOH afforded the expected adduct **8** (70%), which was converted to free hydrazine bearing derivative **9** (94%) upon treatment with hydrazine-hydrate. Compound **9** was further converted to the mono-*N*-ethyl analog **5a** via a reductive amination reaction in low yield. Subsequent N-alkylation of **5a** with para-fluorobenzyl bromide thus yielded **5h** in 30% yield.

As shown in Scheme 2, the synthesis of **5b** was accomplished in 65% yield via condensation of the intermediate **8** (see Scheme 1) with *N*,*N*-di-ethyl hydrazine **13**, which was in turn prepared from Boc-hydrazine via a two-step sequence consisting of N-alkylation and Boc-deprotection.

Scheme 3 shows the synthetic route utilized for the preparation of three *N*-aryl bearing analogs **5d**, **5e**, and **5f**. In this event, various

arylamines **15d–f** were firstly converted to their respective *N*-aryl-*N*-alkyl amines **16d–f** according to the protocol of Sajiki,²¹ which were then transformed into their corresponding *N*-nitroso derivatives **17d–f** via an N-nitrosation reaction.²² **17d–f** were further converted to the requisite *N*-aryl-*N*-ethyl hydrazines **18d–f** upon a Zn mediated reduction.²³ Treatment of the intermediate **8** with **18d–f** thus afforded the desired final products **5d–f** in moderate yields.

The synthesis of *N*-pyrido bearing analog **5g** was achieved as described in Scheme **4**. Reaction of 2-fluoropyridine **19** with *N*-ethyl hydrazine afforded the desired adduct **20**, which was condensed with the already described intermediate **8** to yield the desired *N*-pyrido derivative **5g** in moderate yield.

The preparation of two N-acylated analogs is depicted in Scheme 5. In this case, *N*-Boc hydrazine **21** was converted to its mono-alkylated product **23** via a reductive amination reaction through imine intermediate **22** in good yield. It is worthwhile to

point out that direct base mediated N-alkylation (e.g., NaH/EtI) would produce N-di-alkylated compound as the main product. Subsequent treatment of **23** with either of two acyl chlorides provided **24c** (98%) and **24i** (80%), which were further reacted with HCl in ether to afford the *N*-ethyl-*N*-acyl hydrazines **25c** and **25i** in excellent yields. Final condensation of **25c** and **25i** with **8** afforded the desired analogs **5c** and **5i**, albeit in low yield.

As highlighted in Scheme 6, the synthesis of the mono-*N*-ethyl derivative **5j** began with coupling of two known intermediates, namely *N*-ethyl-*N*'-Boc hydrazine **23** and **8**. The expected product **26** was obtained in 70% yield, which was then treated with TFA to provide the desired analog **5j** in 85% yield.

After the compounds synthesized, their biological activities were evaluated. The novel series of CXCR2 antagonists described herein (**5a–j**) were evaluated for their binding affinity against the CXCR2 receptor according to a literature protocol with minor modification.^{8,24} Promising compounds emerging from this evaluation

Scheme 1. Reagent and conditions: (i) EtOH, rt,12 h; (ii) EtOH, hydrzine hydrate, rt, 8 h; (iii) acetaldehyde, MeOH, rt 4 h; (iv)BH3·THF, MeOH, 0 °C to rt; (v) DMF, K₂CO₃, 4-fluorobenzyl bromide, rt, 3 h.

Scheme 2. Reagent and conditions: (i) NaBH₃CN, CH₃CHO, EtOH, rt, 5 h, (ii)HCl/Et₂O, rt, 2 h; (iii) compound 8, EtOH, rt, 12 h.

Scheme 3. Reagent and conditions: (i) MeCN, Pd/C, MeOH, rt 16 h; (ii) HCl, ice, NaNO₂ 0-5 °C; (iii) Zn, AcOH, 5-10 °C; (iv) compound 8, EtOH, rt, 16 h.

Scheme 4. Reagent and conditions: (i) EtNHNH₂, DIEA, 150 °C, microwave 30 min.; (ii) compound 8, EtOH, K₂CO₃, 40 °C, 12 h.

Scheme 5. Reagent and conditions: (i) CH₃CHO, toluene, 50 °C, 1 h; (ii) DIBAL-H, THF, -30 to 40 °C,4 h; (iii) AcCl or 4-fluorobenzoyl chloride, CH₂Cl₂, pyridine, 4 h; (iv)HCl/ Et₂O, rt 1 h; (v) compound **8**, EtOH, K₂CO₃, rt, 12 h.

Scheme 6. Reagent and conditions: (i) compound 8, EtOH, K₂CO₃, rt 12 h; (ii)TFA, CH₂CL₂, rt,4 h.

were further evaluated for selectivity against the CXCR1 receptor and for functional activity.⁸ Benchmark compound **2b** was included as a positive control. The literature reported data on **2a** (SCH527123) is also included for comparison.⁸ The testing results are highlighted in Table 1.

Benchmark compound performance: As shown in Table 1, the positive control **2b** showed CXCR2 inhibitory potency (IC_{50}) of 15 nM and 60-fold selectivity against CXCR1 according to Dwyer et al.⁸ The same compound exhibited CXCR2 binding affinity (K_i) of 16 nM and 90-fold selectivity versus CXCR1 in our assays [MK]. It is worthwhile to point out that the furyl bearing version of **2b**, analog **2a** (SCH527123) was reported to be fourfold more potent (IC_{50} = 3.8 nM) against CXCR2 and yet less selective (sevenfold) against CXCR1 in comparison to **2b**.⁸

SAR trend observed in CXCR2 binding assay: When evaluated for CXCR2 binding affinity, the newly designed diethyl-hydrazine antagonist **5b** (a close analog of **2b** having one additional nitrogen in place of a carbon) exhibited K_i value of 120 nM. Replacement of one ethyl from **5b** with an acetyl moiety led to **5c**, which was found to be threefold less potent than **5b** ($K_i = 320$ nM) in the binding assay. When three closely related hydrazine bearing analogs were tested in the CXCR2 binding inhibition assay, **5b** was found to be 2- or threefold more potent than **5c** or **5a** (with one ethyl group re-

Table 1

Effects of 5a-i on CXCR2 and CXCR-1 binding inhibition and CXCR2 in CHO cells

Compd	CXCR-2 <i>K</i> _i /[IC ₅₀]	CXCR-1 <i>K</i> _i /[IC ₅₀]	CXCR-2 [6] functional IC ₅₀
	(µM)	(µM)	(µM)
2a 2b	[0.0038] Ref. 8 [0.015] Ref. 8 0.016	[0.026] Ref. 8 [0.91] Ref. 8 1.5	 0.012 (n = 5)
5a 5b	[5.49] Ref. 24 0.12 (<i>n</i> = 4) [1.86] Ref. 24	// 9.7 (n = 3) //	// 0.046 (n = 5) //
5c	[3.29] Ref. 24	//	//
	0.32 (<i>n</i> = 4)	>12 (n = 3)	1.25 (<i>n</i> = 3)
5d	0.11 (<i>n</i> = 3)	4.1 (<i>n</i> = 3)	0.054 (<i>n</i> = 5)
5e	0.55 (<i>n</i> = 3)	>12 (<i>n</i> = 3)	0.84 (<i>n</i> = 4)
5f	0.18 (<i>n</i> = 3)	6.5 (<i>n</i> = 3)	0.10 (<i>n</i> = 5)
5g	0.13 (n = 3)	5.2 (n = 3)	0.075 (<i>n</i> = 5)
5h	7.2 (n = 3)	>12 (n = 3)	6.34 (<i>n</i> = 5)
5i	0.26 (n = 3)	>12 (n = 3)	0.84 (<i>n</i> = 4)

placed by a hydrogen), respectively.²⁴ It should be pointed out herein that **5j** shown in Scheme 6 (the *N*-ethyl isomer of **5a**) was found totally inactive in the binding assay. This SAR trend found within hydrazine series is in good agreement with the literature report on the Schering CXCR2 antagonist series **2a** and **2b**.^{7–9}

On the other hand, incorporation of a series of ethylaryl hydrazine moieties into **5b** resulted in compounds **5d–g**. It is noted that **5d** and **5g** retained the similar binding affinity ($K_i = 110-$ 130 nM) for CXCR2 as that found with **5b** ($K_i = 120$ nM). Furthermore, since the pyridyl moiety presented in **5g** should promote aqueous solubility relative to the phenyl bearing antagonist **5d**, thus the physical chemical properties (e.g., solubility, membrane permeability, and even tissue distribution, etc.) of **5d** and **5g** could be quite different, which brings in added advantage of this series compound.

Further inspection of the binding data obtained for **5e** and **5f** reveals that whilst installment of an electron donating group (OMe for **5f**) on the phenyl ring of **5d** had minimal effect on CXCR2 binding ($K_i = 180$ nM), addition of an electron withdrawing group (F for **5e**) on the same phenyl ring in **5d** resulted in fourfold reduction in CXCR2 binding affinity ($K_i = 540$ nM). Comparative evaluation of CXCR2 binding affinity of *p*-F-Ph bearing analog **5e** ($K_i = 540$ nM) and its *p*-F-Bn counterpart **5h** ($K_i = 7.2 \mu$ M) indicated a sharp 13-fold drop in binding potency for the latter. Surprisingly, replacement of the benzyl linker in **5h** with its corresponding benzoyl moiety led to **5i**, which displayed close to 30-fold enhanced binding potency ($K_i = 260$ nM) relative to **5h**. Taken together all of the SAR data obtained with the ethylaryl hydrazine series compounds, compounds **5d** and **5g** were the most promising CXCR2 antagonists synthesized thus far (Table 1).

SAR trend observed in CXCR-1 selectivity assay: Encouraged by their CXCR2 binding affinities, promising novel hydrazine bearing antagonists **5b** and **5d–g** were tested in a CXCR1 binding assay. To our satisfaction, the diethyl hydrazine analog **5b** demonstrated 80-fold selectivity against CXCR1. This level of selectivity is quite comparable to that exhibited by **2b** (60–90-fold) (Table 1).

As also shown in Table 1, when tested in the CXCR1 selectivity assay, a series of ethylaryl hydrazine analogs **5d**, **5f**, and **5g** showed about 40-fold selectivity. In addition, whilst *p*-F-Ph analog **5e** showed >20-fold selectivity, its related analog **5i** exhibited 2x improved selectivity (>46-fold).

SAR trend observed in functional assay: When tested in a human neutrophil chemotaxis assay, compound **5b** exhibited functional inhibitory activity with an IC₅₀ value of 46 nM. The *N*-ethyl-*N*-Ac incorporated analog of **5c** showed much weaker potency with an IC₅₀ value close to 1.25 μ M. The positive control **2b** demonstrated the good potency with IC₅₀ value of 15 nM.

To our satisfaction, three ethylaryl hydrazine bearing analogs **5d**, **5f**, and **5g** also exhibited impressive potencies (IC_{50}) ranging from 54 to 100 nM, which are almost equal potent to that demonstrated by **5b**. It is also worthwhile to mention that the functional activities detected with these *N*-ethylaryl hydrazine analogs tracks well with the receptor binding potencies obtained (Table 1).

In accordance with the reduced CXCR2 binding affinities, compounds **5e** and **5i** exhibited about 10-fold weaker functional activity than **5g** or **5f** with IC₅₀ value of 840 nM. The least potent analog 5 h displayed weakest functional activity (IC₅₀ = 6.34μ M).

In vitro microsomal stability evaluation—in light of the demonstrated promising binding affinity for the CXCR2 receptor and good potency in functional assay, three newly designed hydrazine containing antagonists **5b**, **5d**, and **5g** along with two positive controls **2a** and **2b** were tested for metabolic stability upon incubation with human liver microsome at 37 °C for 30 min (with 1 µM final concentration for each compound) according to the protocol reported by Merritt et al.⁷ All test compounds including **5b**, **5d**, and **5g** exhibited good stability with >50% of drug remaining after incubation at 37 °C for 120 min ($T_{1/2}$ >2 h). Furthermore, compound **5b** showed good stability against rat microsome with a $T_{1/2}$ value of 84 min.

In this communication, we have reported our preliminary data on the discovery of a novel series of 3-amino-4-hydrazine-cyclobut-3-ene-1,2-dione containing CXCR2 antagonists including the bis-N-ethyl bearing analog 5b. This compound was shown to possess potent CXCR2 binding affinity ($K_i = 120 \text{ nM}$), adequate CXCR1 selectivity (80-fold), functional activity (IC₅₀ = 46 nM) against IL-8mediated chemotaxis in a Chinese hamster ovary (CHO) cell line (CXCR2 expressing line) as well as acceptable rat and human microsomal stability. In addition, replacement of the bis-N-ethyl mojety in **5b** with **N**-ethyl-N-aryl hydrazines led to **5d** and **5g**, each of which displayed good CXCR2 binding affinity ($K_i = 110 \text{ or } 130 \text{ nM}$) and acceptable human microsomal stability ($T_{1/2}$ >120 min). It is conceivable that further modification of either bis-N-alkyl or N-alkyl-N-aryl hydrazine moieties could yield more potent and selective CXCR2 antagonists. The results of this research will be reported in due time.

Acknowledgment

We are indebted to Kai Gu and Dr. Ning Zhao for analytic support.

References and notes

- 1. Review: Busch-Petersen, J. Curr. Top. Med. Chem 2006, 6, 1345.
- 2. Review: Moser, B.; Wolf, M.; Walz, A.; Loetscher, P. Trends Immunol. 2004, 25, 75.

- Widdowson, K. L.; Elliott, J. D.; Veber, D. F.; Nie, H.; Rutledge, M. C.; McCleland, B. W.; Xiang, J.-N.; Jurewicz, A. J.; Hertzberg, R. P.; Foley, J. J.; Griswold, D. E.; Martin, L.; Lee, J. M.; White, J. R.; Sarau, H. M. J. Med. Chem. 2004, 47, 1319.
- Nie, H.; Widdowson, K. L.; Palovich, M. R.; Fu, W.; Elliott, J. D.; Bryan, D. L.; Burman, M.; Schmidt, D. B.; Foley, J. J.; Sarau, H. M.; Busch-Petersen, J. Bioorg. Med. Chem. Lett. 2006, 16, 5513.
- Wang, Y.; Busch-Petersen, J.; Wang, F.; Ma, L.; Fu, W.; Kerns, J. F.; Jin, J.; Palovich, M. R.; Shen, J.-K.; Burman, M.; Foley, J. J.; Schmidt, D. B.; Hunsberger, G. E.; Sarau, H. M.; Widdowson, K. L. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 3864.
- McCleland, B. W.; Davis, R. S.; Palovich, M. R.; Widdowson, K. L.; Werner, M. L.; Burman, M.; Foley, J. J.; Schmidt, D. B.; Sarau, H. M.; Rogers, M.; Salyers, K. L.; Gorychi, P. D.; Roethke, T. J.; Stelman, G. J.; Azzarano, L. M.; Ward, K. W.; Busch-Petersen, J. Bioorg. Med. Chem. Lett. 2007, 17, 1713.
- Merritt, J. R.; Rokosz, L. L.; Nelson, K. H., Jr.; Kaiser, B.; Wang, W.; Stauffer, T. M.; Ozgur, L. E.; Schilling, A.; Li, G.; Baldwin, J. J.; Taveras, A. G.; Dwyer, M. P.; Chao, J. Bioorg. Med. Chem. Lett. 2006, 16, 4107.
- Dwyer, M. P.; Yu, Y.; Chao, J.-P.; Aki, C.; Chao, J.-H.; Biju, P.; Girijavallabhan, V.; Rindgen, D.; Bond, R.; Mayer-Ezel, R.; Jakway, J.; Hipkin, R. W.; Fossetta, J.; Gonsiorek, W.; Bian, H.; Fan, X.; Terminnelli, C.; Fine, J.; Lundell, D.; Merritt, J. R.; Rokosz, L. L.; Kaiser, B.; Li, G.; Wang, W.; Stuffer, T.; Ozgur, L.; Baldwin, J. J.; Taveras, A. G. J. Med. Chem. 2006, 49, 7603.
- Chao, J.-H.; Taveras, A. G.; Chao, J.-P.; Aki, C.; Dwyer, M.; Yu, Y.; Purakkattle, B.; Rindgen, D.; Jakway, J.; Hipkin, W.; Fosetta, J.; Fan, X.; Lundell, D.; Fine, J.; Minnicozzi, M.; Phillips, J.; Merritt, J. R. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 3778.
- Baxter, A.; Cooper, A.; Kinchin, E.; Moakes, K.; Unitt, J.; Wallace, A. Bioorg. Med. Chem. Lett. 2006, 16, 960.
- 11. PCT Patent: WO2006064228 (AZ).
- 12. PCT Patent: WO2001058906 (AZ).
- 13. PCT Patent: WO2005066147A1 (Jul. 21, 2005) (Schering).
- 14. PCT Patent: 2005068460A1 (Jul. 28, 2005) (Schering).
- 15. Biju, P.; Yu, Y. Tetrahedron Lett. **2007**, 48, 5279.
- For hydrazine moiety incorporated HIV protease inhibitors, see: Reddy, G. S. K. K.; Ali, A.; Nalam, M. N. L.; Anjum, S. G.; Cao, H.; Nathans, R. S.; Schiffer, C. A.; Rana, T. M. J. Med. Chem. 2007, 50, 4316.
- For hydrazine moiety incorporated HRV 3C protease inhibitors, see: Kati, W. M.; Sham, H. L.; McCall, J. O.; Montgomery, D. A.; Wang, G. T.; Rosenbrook, W.; Miesbauer, L.; Buke, A.; Norbeck, D. W. Arch. Biochem. Biophys. **1999**, 362, 363.
- For hydrazine bearing HCV protease inhibitor, see: Bailey, M. D.; Halmos, T.; Goudreau, N.; Lescop, E.; Llinas-Brunet, M. J. Med. Chem. 2004, 47, 3788.
- For hydrazine bearing SARS 3CL protease inhibitor, see: Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J. R.; Hilgenfeld, R. Science 2003, 300, 1763.
- For hydrazine moiety bearing approved drug (Reyataz), see: Bold, G.; Faessler, A.; Capraro, H.-G.; Cozens, R.; Klimkait, T.; Lazdins, J.; Mestan, J.; Poncioni, B.; Rosel, J.; Stover, D.; Tintelnot-Blomley, M.; Acemoglu, F.; Beck, W.; Boss, E.; Eschbach, M.; Hurlimann, T.; Masso, E.; Roussel, S.; Ucci-Stoll, K.; Wyss, D.; Lang, M. J. Med. Chem. 1998, 41, 3387.
- 21. Sajiki, H.; Ikawa, T.; Hirota, K. Org. Lett. 2004, 6, 4977.
- 22. Iranpoor, N.; Firouzabadi, H.; Pourali, A.-R. Synthesis 2003, 10, 1591.
- 23. Iffland, D. C.; Cerda, E. J. Org. Chem. 1963, 28, 2769.
- WX's Binding assay conditions:Reagent: wheatgerm-agglutinin coated SPA beads and [125]]IL-8 were from GE Healthcare (Piscataway, NJ), receptor 24. membranes CXCR2 and CXCR1 were from Chemicon (Temecula, CA). HEPES was from Sigma (St Louis, MO). MgCl₂ and KOH were from SCRC (Shanghai, China). DMSO was from Sigma-Aldrich (Steinheim, Germany). Method: for each 200 µL reaction, a working mixture of receptor over-expressing membranes (0.020 µg/µL CXCR2 or 0.040 µg/µL CXCR1) and 2 mg/mL wheatgermagglutinin coated SPA beads was prepared in assay buffer. The assay buffer was 25 mM HEPES, 3 mM MgCl2, pH 7.4. This mixture was incubated on ice for 5 min. A 0.040 nM 125I labeled IL-8 stock solution was prepared in the assay buffer. Test compounds were serially diluted by half-log concentration in DMSO. The above solutions were added to a 96 well plate (Perking Elmer) in the following sequence: 45 µL assay buffer and 5 µL test compound or DMSO, 100 μL of membranes and SPA bead mixture and 50 μL [1251]IL-8 solution stock solution. The assay plates were incubated for 2 h at room temperature, keeping from light. Binding was detected using a Perking Elmer-Wallace Microbeta 1450 liquid scintillation counter. The data was analyzed using SigmaPlot (Systat Software Inc., San Jose, CA).