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ABSTRACT

A convenient method is described for the synthesis of isolevoglucosenone 5,

via allylic selenide 3, and its rearrangement to allylic alcohol 4, followed by

oxidation with manganese oxide. Isolevoglucosenone 5, is produced in 62%

overall yield.

INTRODUCTION

Levoglucosenone 1 [1 – 4] and its isomer isolevoglucosenone 5 [5 – 9] (Figure 1), are

excellent chiral precursors for the functionalization and introduction of biologically

important functional groups such as thio- azido- fluoro, fluoromethyl etc. The bicyclic

rigidity of 1 and 5 allows for the stereoselective functionalization of the ring system. An

efficient and economically feasible method to synthesize isolevoglucosenone is a

desirable goal in carbohydrate chemistry.

As part of our continuing studies on thiodisaccharides, [10,11] we required a

convenient, quick, and efficient way to produce both enones 1 and 5 for their further

stereoselective conversion into S-thiodisaccharides [10 – 12] and C-disaccharides. [13] Exist-
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ing methods of preparing isolevoglucosenone require multiple steps, and are labor

intensive. [5,6] Köll and coworkers [5] reported the first chemical synthesis of enone 5 in

six steps.

The second synthetic approach, reported by Furneaux and coworkers, [6] also

started from levoglucosenone 1 and produced isomeric enone 5 in low yield over seven

steps. The general methodology, developed by Horton and Roski [7] for the synthesis of 5
is based on the rearrangement of 3-mesyl-D-glucofuranose, but requires anhydrous

reaction conditions and an excess of the catalyst. A new approach to 5 from non-car-

bohydrate precursor 2-vinylfuran via an Achmatowicz rearrangement [8] was reported by

Ogasawara. [9] Recently, we developed a direct route to enone 5 from D-glucal through

the 2,3-allylic alcohol 4. [12] In this paper we report a new and convenient approach for

direct conversion of levoglucosenone 1 into its isomeric isolevoglucosenone 5 in 62%

overall yield.

RESULTS AND DISCUSSION

Our strategy for the functionalization of C-2 of levoglucosenone 1, required a

stereoselective reduction, followed by the selenium mediated functionalization and

oxidation of the allylic selenide. The practical synthesis of 5 is as follows (Scheme 1):

the carbonyl group of 1 was reduced with L-Selectride1 in THF at �78 �C according to

the literature methodology [19] or alternatively with lithium aluminum hydride in ethyl

ether to give allylic alcohol 2 in 70% yield as a crystalline derivative, mp 53–54 �C.

Figure 1. Bicyclic rigidity of levoglucosenone 1 and isolevoglucosenone 5. Molecular models

generated by ACD ChemSketch 4.0, 3D (http://www.acdlabs.com).

Scheme 1.
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The hydroxy group of 2 was further functionalized by utilizing a combination of the

selenium reagent [20] o-nitrophenylselenocyanate/tributyl phosphine [21] in a tetrahydro-

furan solution with the formation of allylic selenate 3 in 94% yield. The oxidative

elimination reaction of the o-nitrobenzeneselenyl group with hydrogen peroxide in pyri-

dine at�20 �C for 2 h produced the 1,3 rearranged allylic alcohol 4 in 89% yield (Scheme 1).

The oxidation of 3 with a stoichiometric amount of hydrogen peroxide performed at

low temperature (preferably at �20 �C) produced the allylic alcohol 4 in good yield

(68%) along with the formation of o-nitrobenzeneselenenic acid o-NO2C6H4SeOH easily

separated from the reaction mixture. The stoichiometric amount of hydrogen peroxide is

critical as the o-nitrobenzeneselenenic acid formed by further oxidation will be converted

to o-nitro-benzeneseleninic acid, o-NO2C6H4Se(O)OH, which is known to catalyze the

epoxidation of allylic alcohols. [14] In the oxidation of 3, described above, the formation

of the epoxide 6 [14] was not observed.

The [2,3]-sigmatropic shift leading to rearrangement of the allylic selenide via the

intermediate selenoxide during hydrogen peroxide oxidation is presumably catalysed by

evolved o-nitrophenylseleninic acid, as described by Kametani et. al. [14]

The mechanism of this sigmatropic rearrangement [15] is shown in Scheme 2. This

key-step results in double bond transposition and introduction of allylic functionality at

C-4 of isolevoglucosenone. To our knowledge, this is the first example of a [2.3]-sig-

matropic rearrangement of a functionalized carbohydrate selenide.

The 2,3-allylic alcohol 4, prepared by this method was identical to the product

synthesized by the Oberdorfer procedure. [16,17]

Oxidation of allylic alcohol 4 was performed with manganese oxide [18] in dichlo-

romethane solution to produce the enone 5 in high 89% yield. Alternatively, oxidation of

4 with pyridinium dichromate (PDC) in dichloromethane/acetic anhydride solution

produced enone 5 in comparable yield (88%) but required purification by column chro-

matography to remove residual colloidal chromium complex. In summary, isolevoglu-

cosenone was synthesized in four efficient steps from levoglucosenone, using a sig-

matropic rearrangement of an allylic selenoxide as the key step.

Scheme 2.
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EXPERIMENTAL

General Methods. Unless otherwise noted, starting materials were obtained from

commercial suppliers and used without purification. Organic extracts were dried with

MgSO4 and concentrated with a rotary evaporator under reduced pressure (aspirator).

Flash column chromatography was carried out with Silica Gel 60 (70-213 mesh, Merck

No. 7734). Thin-layer chromatography (TLC) was performed with Merck F-254 TLC

plates. All melting points were uncorrected and were measured in open capillary tubes.

Optical rotations were measured with a Jasco DIP-370 polarimeter. 1H NMR spectra were

recorded at 250 MHz and 13C NMR spectra at 50 MHz, with TMS as an internal standard

on a Bruker DPX250 spectrometer. Levoglucosenone was produced according to the

convenient published methodology [4,5] and 1,6-anhydro-3,4-dideoxy-b-D-threo-hex-3-

enopyranose [2] was prepared according to the method of Shafizadeh et al. [1]

1,6-Anhydro-3,4-dideoxy-2-Se-(o-nitrobenzyl)-bb-D-erythro-hex-3-enopyran-ose
(3). A solution of 2 (0.72 g, 5.6 mmol) in 15 mL of dry THF containing o-nitro-

benzeneselenylcyanate, (1.28 g, 5.6 mmol) under nitrogen was treated dropwise with tri-

n-butylphosphine (300 mg, 1.48 mmol) at room temperature. After the reaction was

stirred for 30 min the solvent was removed in vacuo. Column chromatography of the

residue on silica gel using hexane–ether (3:1) gave 1.72 g (94%) of o-nitrophenylsele-

nide 3, crystallized as white–yellow crystals mp 160–161.5 �C, 94%, Rf = 0.52 (EtOAc),

[a]D �238� (c 1.0 CHCl3), 1H NMR (CDCl3): d 3.72–3.84 (2H, m H-6 and H-60), 4.85–

4-82 (1H, m, H-5), 5.0 (1H, d, J = 4.0 Hz, H-2), 5.69 (1H, br, H-1), 5.9 (1H, ddd, J = 9.8,

4.0, 2.0 Hz, H-3), 6.38 ddd (1H, J = 9.5, 4.8, 1.1 Hz, H-4), 8.24–8.32 (4H, m, aromatic

H). 13C NMR: (CDCl3) d 65.10 (C-2), 118.68, 125.90, 127.4–128.6 (CH-arom), 137.8–

138.8 (C-arom), 99.36 (C-1), 71.85 (C-5), 130.24 (C-4), 66.0 (C-6), 132.56 (C-3). HRMS

(M)+ m/z: Calcd for C12H11NO4Se: 312.9853. Found: 312.6195.

Anal. Calcd for C12H11NO4Se: C, 46.17; H, 3.55; N, 4.49. Found: C, 46.56, H,

3.53, N, 4.55.

1,6-Anhydro-2,3-dideoxy-bb-D-erythro-hex-2-enopyranose (4). To a cooled sol-

ution of 3 (1.25 g, 3.9 mmol) in dry pyridine (35 mL), a solution of 32 wt.% water

solution of hydrogen peroxide 25 mL was added dropwise at �20 �C. The resulting

solution was warmed to ambient temperature and stirred for 4 h. The solution was added

to saturated aqueous sodium hydrogen carbonate (100 mL) and the mixture was extracted

with chloroform (3�30 mL). The organic layer was washed with water, dried (MgSO4),

and concentrated to a yellow oil. Column chromatography on silica gel with hexane/ethyl

acetate (5:1) as eluant yielded compound 4 (0.45 g in 89% yield) which crystallized (mp

61–62 �C) upon refrigeration. Compound 4 was independently prepared by the Ober-

dorfer [16,17] method. Rf = 0.59 (EtOAc), mp 60–61.5 �C, Lit. 58–59 �C, [16] [a]D + 318�
(c 1.0 CHCl3), [a]D + 318� (c 1.0 CHCl3): for NMR data see (16, 17). For 13C NMR see

(17).

1,6-Anhydro-2,3-dideoxy-bb-D-glycero-hex-2-enopyranos-4-ulose (5) (Isolevo-
glucosenone). (a) A mixture of the crude allylic alcohol 4 (2.56 g, 20 mmol) was

dissolved in dry chloroform or dichloromethane (300 mL) and manganese dioxide

(MnO2), (29 g, 334 mmol) was stirred at room temperature for 6 h. After filtration,
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the mixture was concentrated to a syrup and the crude product was purified by flash

chromatography with 5:1, n-pentane-Et2O, to give enone 5, (2.25 g, 89%) as a pale

yellow oil.

(b) The crude allylic alcohol 4 (2.56 g, 20 mmol) was dissolved in dichloromethane

(30 mL). Pyridinium dichromate (PDC), (9.63 g, 25.6 mmol) was added to the mixture

while stirring at room temperature for 40 h. Filtration through a column of silica/sand/

Celite and concentration afforded a brown syrup (1.5 g, 59.5%) which was purified by

flash chromatography using 5:1, n-pentane-Et2O, to produce the enone 5, as a pale yellow

oil (2.22 g, 88%).

Enone 5 could be obtained as an analytically pure colorless syrup after a second

chromatographic purification using 5:1, n-pentane-Et2O. ([a]D + 319.6 o (c 1.0 CHCl3)

lit. [a]D+321� (c 1.1 CHCl3). [9] The 1H NMR and 13C NMR spectra of 5 were identical

with those published in the literature. [5 – 9]
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