Indium–Bipyridine Catalyzed, Enantioselective Aminolysis of meso-Epoxides

Enzo Mai, Christoph Schneider*

Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany Fax +49(341)9736599; E-mail: schneider@chemie.uni-leipzig.de *Received 11 April 2007*

Key words: amine, asymmetric catalysis, bipyridine, epoxides, indium

The catalytic asymmetric ring opening of meso-epoxides has proven to be a valuable tool for the straightforward synthesis of enantiomerically highly enriched 1,2-difunctionalized fine chemicals.¹ In particular, chiral 1,2-azido alcohols,² 1,2-diol derivatives,³ 1,2-cyano alcohols,⁴ 1,2mercapto alcohols,⁵ and 1,2-halohydrins⁶ have become available in partly excellent optical purity using this strategy. The direct nucleophilic addition of amines to meso-epoxides is complicated by compatibility problems between the Lewis basic amine and the typically Lewis acidic chiral catalyst. Therefore the azidolysis of mesoepoxides has been used extensively as a solution to this problem. There are, however, some protocols for the direct aminolysis of *meso*-epoxides giving rise to 1,2-amino alcohols in varying enantioselectivities and typically rather limited substrate scope.⁷

We have developed a highly enantioselective scandium– bipyridine-catalyzed process for the addition of alcohols and amines to *meso*-epoxides furnishing 1,2-diol monoethers and 1,2-amino alcohols in up to 97% ee.⁸ In addition, we have recently shown that a highly enantioselective thiol addition to aromatic *meso*-epoxides takes place when the corresponding indium(III)–bipyridine complex was employed as chiral catalyst and 1,2-mercapto alcohols were obtained in excellent yields and enantioselectivities.⁹

We now report that a chiral indium(III)–bipyridine catalyst may also be employed for the highly enantioselective aminolysis of *meso*-epoxides.^{10,11} In the model reaction of *cis*-stilbene oxide (**1a**) and aniline in CH₂Cl₂ various indium(III) salts were tested in combination with the bipyridine ligand **2a** (Table 1).¹² Whereas the InCl₃–bipyridine **2a** complex (10 mol% each) displayed only moderate catalytic activity (entry 1), the corresponding InBr₃–bipyridine and In(OTf)₃–bipyridine complexes were more reactive and furnished 1,2-amino alcohol **3a** in yields

 Table 1
 Indium–Bipyridine 2a Catalyzed Aminolysis of *cis*-Stilbene Oxide (1a) with Aniline

^a With respect to the epoxide.

^b Isolated yield after chromatography.

^c Determined by chiral HPLC analysis.

close to 50% yield and up to 91% ee (entries 2 and 3). When the latter reaction was run in more concentrated solution (0.50 M in CH_2Cl_2), the conversion was further improved and the product **3a** was obtained in 69% yield thereby slightly compromising the ee to 87% (entry 4). Interestingly, in the absence of the ligand or when bipyridine bis-*O*-methylether **2b** (Figure 1) was employed as chiral ligand a completely unreactive indium(III) catalyst was formed documenting the assistance of the hydroxyl protons in the catalytic cycle possibly by hydrogen bonding to the amine.¹³

Under the optimized reaction conditions¹⁴ a variety of aromatic amines was reacted with *cis*-stilbene oxide (1) and furnished 1,2-amino alcohols $3\mathbf{a}-\mathbf{k}$ in typically good yields and enantioselectivities approaching and in many

Abstract: The enantioselective aminolysis of *meso*-epoxides is efficiently catalyzed by an indium(III)–bipyridine catalyst to furnish highly enantiomerically enriched 1,2-amino alcohols in good yields and up to 98% ee.

SYNLETT 2007, No. 13, pp 2136–2138 Advanced online publication: 17.07.2007 DOI: 10.1055/s-2007-984902; Art ID: G09707ST

[©] Georg Thieme Verlag Stuttgart · New York

cases exceeding 90% (Table 2, entries 1–10). In particular, electron-deficient and sterically hindered anilines gave rise to very high enantioselectivities of up to 98% ee thereby maintaining the yields at a good level (entries 5–10). Other aromatic *meso*-epoxides were ring-opened with aniline in good yields and up to 95% ee (entries 11–13). Just as in the scandium–bipyridine-catalyzed process alkyl-substituted epoxides were ring-opened with only moderate enantioselectivities (entries 14 and 15).⁸

3g

 Table 2
 Indium–Bipyridine 2a Catalyzed Aminolysis of meso-Epoxides 1

 Table 2
 Indium–Bipyridine 2a Catalyzed Aminolysis of meso-Epoxides 1 (continued)

^a The absolute configuration of the products was determined by comparison of the rotation values with literature values or by analogy. ^b Isolated yield after chromatography.

^c Determined by chiral HPLC analysis.

A crystal structure⁹ of the related $InBr_3$ -bipyridine **2a** catalyst revealed a pentagonal-bipyramidal coordination geometry around the metal center with the hydroxyl protons still attached to the complex which very closely resembles

Synlett 2007, No. 13, 2136-2138 © Thieme Stuttgart · New York

the related scandium–bipyridine complex.¹⁵ Consequently, the sense of asymmetric induction is identical in both processes furnishing the products with the same absolute configuration.

In conclusion, we have devised a novel chiral indium(III)based catalyst for the aminolysis of *meso*-epoxides furnishing 1,2-amino alcohols in generally good yields and up to 98% ee at ambient temperature. Aromatic *meso*epoxides were ring-opened with good to excellent enantioselectivity whereas alkyl-substituted epoxides underwent the aminolysis with only moderate selectivity. Work is currently being continued to further improve the efficiency and enantioselectivity of the process.

Acknowledgment

This work was generously supported by the Deutsche Forschungsgemeinschaft (Schn 441/3-2). We thank BASF and Wacker for the generous donation of chemicals.

References and Notes

- (a) Reviews: Schneider, C. Synthesis 2006, 3919.
 (b) Pastor, I. M.; Yus, M. Curr. Org. Chem. 2005, 9, 1.
 (c) Jacobsen, E. N.; Wu, M. H. Comprehensive Asymmetric Catalysis, Vol. 2; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer: Berlin, 1999, 649.
- (2) (a) Nugent, W. A. J. Am. Chem. Soc. 1992, 114, 2768.
 (b) Martinez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen, E. N. J. Am. Chem. Soc. 1995, 117, 5897.
- (3) (a) Jacobsen, E. N.; Kakiuchi, F.; Konsler, R. G.; Larrow, J. F.; Tokunaga, M. *Tetrahedron Lett.* **1997**, *38*, 773.
 (b) Matsunaga, S.; Das, J.; Roels, J.; Vogl, E. M.; Yamamoto, N.; Iida, T.; Yamaguchi, K.; Shibasaki, M. *J. Am. Chem. Soc.* **2000**, *122*, 2252.
- (4) (a) Cole, B. M.; Shimizu, K. D.; Krueger, C. A.; Harrity, J. P. A.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. Engl. 1996, 35, 1668; Angew. Chem. 1996, 108, 1776.
 (b) Shimizu, K. D.; Cole, B. M.; Krueger, C. A.; Kuntz, K. W.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. Engl. 1997, 36, 1704; Angew. Chem. 1997, 109, 1782.
 (c) Schaus, S. E.; Jacobsen, E. N. Org. Lett. 2000, 2, 1001.
 (d) Zhu, C.; Yuan, F.; Gu, W.; Pan, Y. Chem. Commun. 2003, 692.
- (5) (a) Iida, T.; Yamamoto, N.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1997, 119, 4783. (b) Wu, M. H.; Jacobsen, E. N. J. Org. Chem. 1998, 63, 5252. (c) Wu, J.; Hou, X. L.; Dai, L. X.; Xia, L. J.; Tang, M. H. Tetrahedron: Asymmetry 1998, 9, 3431.
- (6) (a) Nugent, W. A. J. Am. Chem. Soc. 1998, 120, 7139.
 (b) Denmark, S. E.; Barsanti, P. A.; Wong, K. T.; Stavenger, R. A. J. Org. Chem. 1998, 63, 2428. (c) Tao, B.; Lo, M. M. C.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 353.
 (d) Nakaijama, M.; Saito, M.; Uemura, M.; Hashimoto, S. Tetrahedron Lett. 2002, 43, 8827. (e) Tokuoka, E.; Kotani, S.; Matsunaga, H.; Ishizuka, T.; Hashimoto, S.; Nakaijama, M. Tetrahedron: Asymmetry 2005, 16, 2391.

- (7) (a) Hou, X. L.; Wu, J.; Dai, L. X.; Xia, L. J.; Tang, M. H. *Tetrahedron: Asymmetry* **1998**, *9*, 1747. (b) Sagawa, S.; Abe, H.; Hase, Y.; Inaba, T. J. Org. Chem. **1999**, *64*, 4962.
 (c) Sekine, A.; Ohshima, T.; Shibasaki, M. *Tetrahedron* **2002**, *58*, 75. (d) Azoulay, S.; Manabe, K.; Kobayashi, S. Org. Lett. **2005**, *7*, 4593. (e) Ogawa, C.; Azoulay, S.; Kobayashi, S. *Heterocycles* **2005**, *66*, 201. (f) Carree, F.; Gil, R.; Collin, J. Org. Lett. **2005**, *7*, 1023. (g) Kureshy, R. I.; Singh, S.; Khan, N. H.; Abdi, S. H. R.; Suresh, E.; Jasra, R. V. Eur. J. Org. Chem. **2006**, 1303. (h) Arai, K.; Salter, M. M.; Yamashita, Y.; Kobayashi, S. Angew. Chem. Int. Ed. **2007**, *46*, 955; Angew. Chem. **2007**, *119*, 973.
- (8) (a) Schneider, C.; Sreekanth, A. R.; Mai, E. Angew. Chem. Int. Ed. 2004, 43, 5691; Angew. Chem. 2004, 116, 5809.
 (b) Mai, E.; Schneider, C. Chem. Eur. J. 2007, 13, 2729.
 (c) Tschöp, A.; Marx, A.; Sreekanth, A. R.; Schneider, C. Eur. J. Org. Chem. 2007, 2318.
- (9) Nandakumar, M. V.; Tschöp, A.; Krautscheid, H.; Schneider, C. *Chem. Commun.* **2007**, 2756.
- (10) For previous reports on non-enantioselective indium(III)catalyzed aminolyses of epoxides, see: (a) Rajender Reddy, R.; Arjun Reddy, M.; Bhanumathi, N.; Rama Rao, K. New J. Chem. 2001, 25, 221. (b) Rodriguez, J. R.; Navarro, A. Tetrahedron Lett. 2004, 45, 7495.
- (11) For selected recent reports on enantioselective, indiumcatalyzed transformations, see: (a) Harada, S.; Takita, R.; Ohshima, T.; Matsunaga, S.; Shibasaki, M. *Chem. Commun.* **2007**, 948. (b) Takita, R.; Yakura, K.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. **2005**, 127, 13760. (c) Teo, Y.-C.; Tan, K.-T.; Loh, T.-P. Chem. Commun. **2005**, 1318. (d) Teo, Y.-C.; Loh, T.-P. Org. Lett. **2005**, 7, 2539. (e) Harada, S.; Handa, S.; Matsunaga, S.; Shibasaki, M. Angew. Chem. Int. Ed. **2005**, 44, 4365. For reviews, see: (f) Loh, T.-P.; Chua, G.-C. Chem. Commun. **2006**, 2739. (g) Podlech, J.; Maier, T. C. Synthesis **2003**, 633. (h) Ranu, B. C. Eur. J. Org. Chem. **2002**, 2347.
- (12) For the first synthesis and application of ligand 2a in asymmetric catalysis, see: Bolm, C.; Zehnder, M.; Bur, D. *Angew. Chem., Int. Ed. Engl.* 1990, 29, 191; *Angew. Chem.* 1990, 102, 206.
- (13) We have made the same observation in the related indium(III)-bipyridine 2a catalyzed thiolysis of *meso*epoxides (ref. 9).

(14) **Typical Experimental Procedure**

In an oven-dried flask and under inert atmosphere $In(OTf)_3$ (28 mg, 0.05 mmol) and bipyridine **2a** (20 mg, 0.05 mmol) were dissolved in CH₂Cl₂ (1 mL) and treated with epoxide (0.50 mmol) and amine (1.00 mmol) at r.t. The reaction mixture was stirred for 48 h at r.t. whereupon it was concentrated in vacuo and purified by silica gel chromatography. For analytical and spectroscopic details of the products, see ref. 8b.

(15) Ishikawa, S.; Hamada, T.; Manabe, K.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 12236. Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.