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Abstract: The first proton-promoted intermolecular
hydroamination reaction of the enynes, o,a-dialk-
ynylketene S,S-acetals 2, is described. A series of
benzo[b][1,4]diazepines, with the structures of 3 and
5, were prepared chemo- and regioselectively in
good to high yields by reacting the readily available

1,4-diynes 2 with both terminal and internal alkyne
functions with o-phenylenediamines under very mild
conditions.
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Introduction

The generation of C—N bonds is of tremendous cur-
rent interest. From the atom economic point of view,
catalytic hydroamination is one of the most efficient
approaches for the synthesis of nitrogen-containing
products, which are important bulk and fine chemicals
or building blocks in organic chemistry."! The cata-
lyzed hydroamination of alkynes has been attracting
increasing interest in recent years with the aim to de-
velop economic and efficient catalysts and to control
the regioselectivity."” However, most of the catalysts
have some disadvantages with respect to their ex-
treme air- and water-sensitivity, high costs and/or tox-
icity. Therefore, the development of new protocols for
the hydroamination reactions of alkynes remains an
important goal in organic chemistry.

Acid-promoted hydroamination is generally unsuc-
cessful mainly due to the buffering effect of the
amine substrate. However, some proton-catalyzed hy-
droamination reactions of alkenes were recently car-
ried out in the presence of Brgnsted acids.”! In con-
trast to many examples of proton-catalyzed hydroami-
nation of alkenes, the proton-catalyzed hydroamina-
tion of alkynes is scarcely reported, although selected
metal-catalyzed hydroaminations of alkynes did use
acids as co-catalysts.”! To the best of our knowledge,
only two examples of proton-catalyzed hydroamina-
tion of alkynes have been reported by Fensterbank
and co-workers®™ and Cossy and co-workers,”® but
these reactions were limited to intramolecular hydro-
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aminations. Herein, we report the first proton-pro-
moted intermolecular hydroamination reaction of al-
kylthio-activated enynes under mild conditions.

Over the past decades, the potential of a-oxoketene
S,S-acetals as versatile intermediates in organic syn-
thesis has been recognized.” During the course of
our studies on the chemistry of functionalized ketene
dithioacetals,) a series of a,o-dialkynylketene S,S-
acetals 2 (Scheme 1) and analogues were prepared in
high yields via a consecutive Vilsmeier—-Haack and
dehydrochlorination reaction starting from easily
available a-oxoketene dithioacetals under mild condi-
tions.®! As synthetic applications of these electron-
rich enynes, we have described the self-coupling reac-
tions of the a-ethynylketene cyclic dithioacetals to the
corresponding heteroatom-substituted expanded 1,3-
dithiolan[5]radialene”® and alkyne-spaced TTFs!™
and the aza-Diels—Alder reaction of a-ethynylketene
dithioacetals with N-arylimines to afford 4-functional-
ized quinolines.""? Recently, the addition reaction of

(0] (0] R R
R R (a) POCI,-DMF X ZF
| (b) NaOH I
S S S S
i), ),
1a:R=H; n=2 2a:R=H; n=2yield =83%
1b:R=H; n=1 2b:R=H; n=1yield =86%
1c:R=Me;n=2 2c: R = Me; n=2yield = 90%

Scheme 1. Synthesis of a,a-dialkynylketene S,S-acetals 2.

5‘},};- | WWILEY 5
‘@ InterScience’ 1537



FULL PAPERS

Yu-Long Zhao et al.

carboxylic acids to a-ethynylketene S,S-acetals at the
carbon-carbon triple bond was also performed succes-
sively in the absence of catalysts.!'!! These studies and
our continued interest in the development of new
general methods for biologically important heterocy-
cles" promoted us to explore the feasibility of the
hydroamination reaction of a-alkynylketene S,S-ace-
tals with amines. In this paper we describe the results
of the hydroamination reaction of a,a-dialkynylke-
tene S,S-acetals with amines.

Results and Discussion

In the initial experiment, the hydroamination reaction
of the 1,4-diyne 2a (1.0 equiv.) with o-phenylenedi-
amine (1.0 equiv.) was examined under various reac-
tion conditions (Table 1). With ethanol as the solvent,
when Cu(OAc), (2.0 equiv.) or FeCl; (2.0 equiv.) was
used as a promoter, no reaction was observed at
room temperature for 24 h (Table 1, entries 1 and 2).
To our delight, under essentially identical conditions
as above, the hydroamination reaction of 2a with o-
phenylenediamine can easily proceed in the presence
of BF;-OEt, (2.0 equiv.) at room temperature for 0.5 h
to give benzo[b][1,4]diazepine 3al in 75% yield
(Table 1, entry 3). Meanwhile, it was found that cata-
lytic amounts of BF;-OEt, (1.0 or 0.5 equiv.) led to
lower yields of 3a (Table 1, entries 4 and 5). Among
the solvents tested, ethanol seemed to be the best
choice although comparable results were obtained

Table 1. Hydroamination of diyne 2a with o-phenylenedi-
amine under various reaction conditions.

Y @[NHz catalyst ©:N_ S:>
solvent r.t.
NH, N=CS
2a 3a1
Entry Catalyst (equiv.) Solvent  Time [h] 3al
Yield [%]%®
1 Cu(OAc), (2.0) CHsOH 24 -
2 FeCl; (2.0) CH;OH 24 -
3 BF;-OEt, (2.0) CH;OH 0.5 75
4 BF;-OEt, (1.0) CH;OH 24 30
5 BF;OEt, (0.5) CH;OH 24 13
6 BF;-OEt, (20) CH,;CN 0.5 70
7 BF,OEt, (20) CH,ClL 2 35
8 BF;-OEt, (2.0) (CH;),0 2 28
9 BF;-OEt, (2.0) benzene 24 trace
10 BF;-OEt, (2.0)  toluene 24 trace
11 CF,COOH (2.0) CHsOH 0.5 73
12 CF,COOH (1.0) GH;OH 24 32
13 CF;COOH (0.5) CH;OH 24 15

[l Tsolated yields.
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with acetonitrile as the solvent (Table 1, entry 6).
Other solvents examined, such as dichloromethane
and diethyl ether, gave lower yields (Table 1, entries 7
and 8). When the reaction was carried out in benzene
or toluene, only a trace amount of 3al was observed
(TLC) (Table 1, entries 9 and 10). In addition, it was
found that the protic acid, CF;COOH (2.0 equiv.),
was as efficient as BF;-OEt, for the above hydroami-
nation reaction and 3al was obtained in 73% yield
under essentially identical conditions as above
(Table 1, entry 11). Similarly, a catalytic amount of
CF;COOH (1.0 or 0.5 equiv.) led to lower yields of
3al (Table 1, entries 12 and 13). The structure of 3al
was determined based on its spectroscopic and analyt-
ical data and confirmed by X-ray crystal structure
analysis (Figure 1).I"¥ The above experimental results
showed that the hydroamination reaction is chemo-
and regioselective since the two amino groups of o-
phenylenediamine were added to the two triple bonds
of 2a in the Markovnikov fashion.
Benzo[1,4]diazepines constitute an important class
of heterocyclic compounds because of their wide
range of therapeutic and pharmacological proper-
ties.'"¥ Obviously, the above results provide an effi-
cient route to benzo[l,4]diazepine derivatives from
readily available starting materials. Therefore, the
scope of this novel and efficient hydroamination reac-
tion was extended by the use of 2a or 2b and some
typical o-phenylenediamines in the presence of
CF;COOH or BF;-OEt, (Table 1, entries3 and 11)
and the results are described in Table 2. It was found
that, with either CF;COOH or BF;-OEt, as a promot-
er, all of the selected o-phenylenediamines with
either electron-withdrawing or electron-donating
groups on the aryl ring could efficiently react with
1,4-diynes 2a or 2b to give the corresponding benzo-
[1,4]diazepines 3a or 3b in good to high yields, respec-
tively (Table 2, entries 1-16). It was obvious that the
o-phenylenediamine bearing an electron-donating
group on the aryl ring, such as 4-methyl-o-phenylene-
diamine led to higher yields of 3 (Table 2, entries 3, 4,
11 and 12). In comparison, o-phenylenediamines with
an electron-withdrawing group on the aryl ring, for

Figure 1. ORTEP drawing of 3al.
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Table 2. Hydroamination of diynes 2a and 2b with o-phenyl-
enediamines.

X pZ
N 7 R NH, R! N= s
| + \C[ catalyst \©: ;|
s” s NH, C,HsOH, rt. N= s—n
\_é')n

2

2a:n=2 3a:n=

2b:n=1 3b:n=1

Entry n R' Catalyst Time Product Yield
(h] (%]

1 2 H CF;COOH 0.5 3al 77
2 2 H BF;OEt, 0.5 3al 75
3 2 CH; CF;COOH 0.5 3a2 80
4 2 CH; BF;OEt, 05 3a2 82
5 2 Cl CF;COOH 0.5 3a3 61
6 2 Cl BF;-OEt, 0.5 3a3 66
7 2 PhCO CF;COOH 0.5 3ad 66
8 2 PhCO BF;OEt, 0.5 3ad4 60
9 1 H CF;COOH 0.5 3b1 76
10 1 H BF;-OEt, 0.5 3b1 71
11 1 CH; CF;COOH 0.5 3b2 83
12 1 CH; BF;OEt, 05 3b2 80
13 1 Cl CF;COOH 0.5 3b3 60
14 1 Cl BF;OEt, 0.5 3b3 63
15 1 PhCO CF;COOH 0.5 3b4 55
16 1 PhCO BF;OEt, 0.5 3b4 58
17 2 NO, CF;COOH 1 3as 65
18 1 NO, CF;COOH 1 3b5 40

2 Isolated yields.

example, 4-chloro-o-phenylenediamine and 4-benzo-
yl-o-phenylenediamine, gave relatively lower yields of
3 (Table 2, entries 5-8 and 13-16). In the above cases,
the effects of both the dialkylthio moiety of 1,4-
diynes 2a or 2b and promoters (CF;COOH and
BF;-OEt,) on the hydroamination reaction were not
significant.

However, it was noticed that when the o-pheny-
lenediamine bears a very strong electron-withdrawing
group on the aryl ring, for example, 4-nitro-o-phenyl-
enediamine, the orientation of the reaction was found
to be strongly influenced by both the structure of the
dialkylthio moiety in 1,4-diynes 2a or 2b and the pro-
moters. As a result, when CF;COOH was used as a
promoter, the hydroamination reactions of 2a and 2b
with 4-nitro-o-phenylenediamine produced the corre-
sponding benzo[1,4]diazepines 3a5 and 3b5 in 65%

O,N
N\ X S <—2b
s\> BF,OEt,
NH, HN
4 yield = 72%

2a
BF;-OEt,

and 40% yields, respectively (Table 2, entries 17 and
18). However, with BF;-OEt, as the promoter, the re-
action of 2b with 4-nitro-o-phenylenediamine gave
imine 4 in 72% yield and the benzo[b][1,4]diazepine 5
was obtained in 55% yield by reacting 2a with 4-
nitro-o-phenylenediamine (Scheme 2). The molecular
structures of both imine 4 and diazepine 5§ were con-
firmed by X-ray analysis (Figure 2 and Figure 3).!""!

In addition, the hydroamination of internal 1,4-
diyne 2c¢ was also investigated in the presence of
CF;COOH (2.0 equiv.) under essentially identical
conditions as above. As expected, the hydroamination
reactions of 2¢ with o-phenylenediamine and 4-
chloro-o-phenylenediamine could also proceed

smoothly at room temperature for 5-6 h to give the

NH, 5 yield = 55%

Scheme 2. Reaction of 4-nitro-o-phenylenediamine with 1,4-diynes 2a and 2b in the presence of BF;-OEt,.
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2c

Scheme 3. Hydroamination of 2¢ with o-phenylenediamines.

corresponding benzo[1,4]diazepines 3¢l and 3¢2 in
75% and 65% yields, respectively (Scheme 3).

In the next studies, the hydroamination reaction of
diyne 2b with some typical anilines with either elec-
tron-withdrawing or electron-donating groups on the
aryl ring was investigated in the presence of
CF,COOH or BF;-OEt, and the results are described
in Table 3. Under identical conditions as above for
2 h, it was found that both aniline and 4-nitroaniline
readily underwent the hydroamination reaction with
2b to give the corresponding imine products 6b1 (the
Z/E isomer ratio of 85/15) and 6b2 (the Z/E isomer
ratio of 75/25) in good to high yields, respectively
(Table 3, entries 1-4). However, in the case of the re-
action of 4-methylaniline with 2b, although diyne 2b
was exhausted completely, no hydroamination prod-
uct 6b3 was observed (Table 3, entries 5 and 6). Simi-
larly, with either CF;COOH or BF;-OEt, as a promot-
er, the reaction of diyne 2b with ethylenediamine
(1.0 equiv.) also did not produce the corresponding
[1,4]diazepine product under identical conditions as
above and only a polymer was formed. Additionally,
the polymerization of diyne 2b was also observed
when 2b was treated with BF;-OEt, (2.0 equiv.) in eth-
anol solvent in the absence of ethylenediamine or o-

Table 3. Hydroamination of diyne 2b with anilines.

R2
X Z
Y +
s s
— NH,

RZ

P
@{Q

catalyst
—_—

C,HsOH, r.t.

2b 6b R2
Entry n R?> Catalyst Time [h] Product Yield [%]?
1 1 H CF;COOH 2 6b1 70
2 1 H BF;OEt 2 6b1 65
3 1 NO, CF;COOH 2 6b2 60
4 1 NO, BF;OEt, 2 6b2 62
5 1 CH; CF;COOH 12 6b3 -
6 1 CH; BF;OEt, 12 6b3 -

[l Tsolated yields.
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1
CF,COOH R\C[N - 3:>
C,HsOH, rit. N= s
3¢c1R'=H yield = 75%
3c2R'=Cl Yield = 65%
phenylenediamine.'” In the present research, the re-

action of a,o-diacetylketene S§,S-acetal 1b with o-phe-
nylenediamine (1.0 equiv.) was also examined and the
results indicated that 1b was intact under the identical
conditions (solvent: ethanol; BF;-OEt, or CF;COOH:
2.0 equiv.).

The above results reveal that: 1) diynes 2 are sensi-
tive to BF;-OEt, or CF;COOH and both the hydro-
amination of a diyne 2 with a suitable aniline and the
polymerization of diynes 2 could be initiated in the
presence of BF;-OEt, or CF;COOH; 2) the hydroami-
nation of diynes 2 is amine-dependent due to the for-
mation of a complex or salt between amine and
BF;-OEt, or CF;COOH. Strong basic amines, such as
aliphatic ethylenediamine and aromatic 4-methylben-
zeneamine could not give the hydroamination prod-
ucts due to the preferential formation of the complex
or salt between the strongly basic amines and
BF;-OEt, or CF;COOH. However, in the case of the
hydroamination of diynes 2 and o-phenylenediamines,
although the basicity of some o-phenylenediamines,
such as o-phenylenediamine and 4-methyl-o-pheny-
lenediamine, is higher than that of 4-methylbenzene-
amine and aniline and thus a complex or salt may be
created preferentially by the interaction of these
amines with boron trifluoride etherate or CF;COOH,
nevertheless, there should be only one of the two
amino groups with relatively strong basicity involved
and a free amino group left as a nucleophilic center.
According to the above analysis and the regioselectiv-
ity of the hydroamination reaction of diynes 2, a pos-
sible mechanism is proposed in Scheme 4 (with
BF;-OEt, as a promoter).

As depicted in Scheme 4, initially, the reaction of
BF;-OEt, with trace amounts of water in the system
generates the Brgnsted acid catalyst A" On the
other hand, owing to the strong electron-donating
effect of the alkylthio groups (S—C sp’-conjugation),
the carbon atom adjacent to R group of diyne 2 is be-
lieved to be more electron-rich, which favors the pro-
tonation occurring at the carbon atom adjacent to the
R group of the carbon-carbon triple bond and leads
to the formation of intermediate B (Scheme 4).1']
Then, the nucleophilic attacking of the free or higher
basic amino group of an o-phenylenediamine could
occur at either carbon cation of intermediate B or the

Adv. Synth. Catal. 2008, 350, 1537-1543
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BF,OEt, 2LWAler —~ HBF (OH),

A

R
\/(\ \//( o-phenylenediamine
Lwn

Scheme 4. Proposed mechanism for proton-catalyzed hydroamination reaction of diynes 2.

carbon cation of intermediate B’ and the attacking at
the carbon cation of intermediate B (Scheme 4, B to
D) would be preferred at this stage for reasons of
steric hindrance. Subsequently, intramolecular hydro-
amination followed by an ene-amine to imine tauto-
mer will finally lead to the formation of benzo[b]-
[1,4]diazepines (Scheme 4, C/D to 3). For intermedi-
ate E, generated by the intermolecular hydroamina-
tion of diyne 2a with 4-nitro-o-phenylenediamine, the
nucleophilicity of the amino group would be largely
reduced due to the existence of two strong EWGs
(imine and nitro group at 2- and 4-positions of the
aryl ring of intermediate E) and the further transfor-
mation of the imine intermediate E may be directed
by the relative electrophilicity of the carbon cation
and the methylene carbon atom of the 1,3-dithiane
moiety of intermediate E.

In the previous research, we have found that the
methylene carbon atom at the 2-position of the 1,3-di-
thiane moiety of an a-oxoketene dithioacetal com-
pound was more prone to be attacked by a tethered
nucleophilic group than that of 1,3-dithiolane cata-
lyzed by a Lewis acid."*"® This might be the reason
why benzo[b][1,4]diazepine 5 was formed via a se-
quential intramolecular SyV!"*" (Scheme 4, E to F),
thiolation process (Scheme 4, G to H) and tautomeri-
zation (Scheme 4, H to 5). According to the above
analysis, the formation of the imine 4 is not difficult
to understand. For the CF;COOH-promoted hydro-
amination reaction of 2 with 4-nitro-o-phenylenedi-
amine, the methylene carbon atom of the dithiane/di-

Adv. Synth. Catal. 2008, 350, 1537-1543

© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

thiolane methylene moiety of intermediate C was not
activated as in the formation of the complex of
BF;-OEt, with the sulfur atoms of 2, as a result,
benzo[1,4]diazepines 3a5 and 3b5 were finally pro-
duced via a consecutive intramolecular hydroamina-
tion and rearrangement from C to 3 (Scheme 4).

Conclusions

In conclusion, we have documented the first proton-
catalyzed intermolecular hydroamination reaction of
electron-rich alkynes, a,a-dialkynylketene S,S-acetals
2, with various aromatic amines. The hydroamination
reaction can proceed in a highly chemo- and regiose-
lective manner under very mild conditions in the
open air and no metal-based catalyst is required. The
synthesis of benzo[b][1,4]diazepines 3 and 5 provides
a new and facile route to these biologically important
molecules. Further research on the synthetic applica-
tions of the alkylthio activated enynes 2 is in progress.

Experimental Section
Typical Procedure for the Preparation of 3-5 (3al as
Example)

To a solution of 2a (1.0 mmol, 180 mg) and o-phenylenedi-
amine (1.0 mmol, 108 mg) in C,H;OH (10 mL) was cooled
to 0°C in an ice bath, and BF;OEt, (2.0 mmol, 0.25 mL)

asc.wiley-vch.de 1541
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was added dropwise by syringe within 3 min. The reaction
mixture was stirred for 0.5 h at room temperature. After 2a
had been consumed (monitored by TLC), the reaction mix-
ture was poured into water (30 mL). The solid crude prod-
uct 3al was filtered off, then purified by silica gel chroma-
tography (diethyl ether/hexane =1/1, v/v) to give 3al; yield:
216 mg (75%).

Physical Data of Typical Compounds Isolated

3al: white crystals; mp 200-202°C; 'HNMR (CDCl,,
500 MHz): 6=2.03-2.24 (m, 2H), 2.76 (s, 6H), 2.78-2.82 (m,
2H), 2.94-2.99 (m, 2H), 7.20 (dt, J=6.0, 3.5 Hz, 2H), 7.38
(dt, J=6.0, 3.5 Hz, 2H); "CNMR (CDCl,;, 125 MHz): §=
23.4,25.4 (2C), 28.5 (2C), 124.8 (2C), 127.6 (2C), 129.9 (2C),
135.2 (2C), 140.1, 160.1; IR (KBr): v=762, 790, 1213, 1272,
1365, 1426, 1460, 1559, 1620, 2916, 2956, 3442 cm™'; MS
(E): m/z=289 [(M+1)]*; anal. caled. (found) for
CisH¢N,S,: C 62.46 (62.59), H 5.59 (5.64), N 9.71 (9.76).

4: red crystals; mp 183-185°C; 'HNMR (CDCl,,
500 MHz): 6=2.26 (s, 3H), 3.40-3.44 (m, 4H), 3.72 (s, 1H),
4.65 (s, 2H), 6.68 (d, /=9.0 Hz, 1H), 7.52 (s, 1H), 7.89 (q,
J=9.0 Hz, 1H); "C NMR (CDCl,;, 125 MHz): §=19.3, 35.7,
40.7, 82.3, 86.5, 107.9, 112.9, 115.9, 122.1, 134.9, 138.9, 145.9,
165.1, 166.0; IR (KBr): v="740, 830, 1212, 1264, 1309, 1460,
1484, 1500, 1592,1613, 3261, 3351, 3462cm™'; MS (EI):
mlz=320 [(M+1)]*; anal. caled. (found) for C;H3N;0,S,:
C 52.65 (52.70), H 4.10 (4.05), N 13.16 (13.24).

5: white crystals; mp 220-222°C; 'HNMR (CDCl,,
500 MHz): 6=1.88 (s, 3H), 2.36 (s, 3H), 2.38-2.41 (m, 2H),
2.58 (d, J=16.0 Hz, 1H), 3.06 (d, J=16.0 Hz, 1H), 3.75-3.81
(m, 1H), 3.93-3.99 (m, 1H), 7.56 (d, /=9.0Hz, 1H), 8.03
(d, J=9.0Hz, 1H), 828 (s, 1H); "CNMR (CDCl,,
125 MHz): 6=20.9, 26.0, 27.4, 30.2, 36.2, 119.6, 123.3, 125.8,
128.5, 134.7, 139.9, 143.9, 145.0, 161.9, 163.2; IR (KBr): v=
884, 1085, 1168, 1211, 1248, 1343, 1450, 1511, 1623, 2962,
3433cm™; MS (EI): m/z=334 [(M+1)]"; anal. calcd.
(found) for C;sHsN30,S,: C 54.03 (54.13), H 4.53 (4.55), N
12.60 (12.66).

6b1: yellow crystals; mp 112-114°C; 'HNMR (CDCl,,
500 MHz): 6=2.04 (s, 6H), 3.31 (s, 4H), 6.86 (d, /J=7.5 Hz,
4H), 7.08 (q, J=7.5Hz, 2H), 7.36 (t, /J=7.5Hz, 4H);
BCNMR (CDCl;, 125 MHz): $=20.1 (2C), 37.5 (2C), 119.8,
119.9 (2C), 120.3, 123.8 (2C), 124.5, 128.2, 128.8, 129.0, 129.3
(2C), 150.2 (2C), 153.8, 166.5; IR (KBr): v=3378, 3060,
1618, 1592, 1483, 1364, 1212, 1159, 802, 701 cm™'; MS (EI):
mlz=353 [(M+1)]".
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