

Journal of Fluorine Chemistry 111 (2001) 213-216

www.elsevier.com/locate/jfluchem

Synthesis of 2-[(*Z*)-1-hydropolyfluoro-1-alkenyl]-4H-3, 1-benzoxazin-4-ones

Jin-Tao Liu*. He-Jun Lü

Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

Received 29 March 2001; accepted 29 June 2001

Abstract

N,N'-dicyclohexylcarbodiimide induced condensation of 2,2-dihydropolyfluoroalkanoic acid and anthranilic acid or its derivatives followed by a dehydrating ring-closure reaction in the presence of Ac₂O gave 2-[(Z)-1-hydropolyfluoro-1-alkenyl]-4H-3,1-benzoxazin-4-ones in good to excellent yields. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: 2-[(Z)-1-Hydropolyfluoro-1-alkenyl]-4H-3,1-benzoxazin-4-one; 2,2-Dihydropolyfluoroalkanoic acid; Synthesis

1. Introduction

4H-3,1-Benzoxazin-4-ones have been known for more than a century [1] and show interesting pharmacological properties. For example, they are potent inactivators of chymotrypsin [2] as well as inhibitors of HSV-1 protease [3]. Since the phenyl derivative was first synthesized in 1883 [4], numerous 2-substituted-4H-3,1-benzoxazin-4-ones have been prepared. However, substituents at the C-2 position are usually the common alkyl, alkenyl or aryl groups. The synthesis of 2-polyfluoroalkyl or alkenyl substituted 4H-3,1benzoxazin-4-ones has been comparatively less studied [5]. It is known that fluorine has profound and special effects on the biological activity of organic compounds [6], so it is our interest to develop efficient methods to synthesize fluorinecontaining 4H-3,1-benzoxazin-4-ones and their derivatives. In this paper, we report a convenient synthesis of 2-[(Z)-1hydropolyfluoro-1-alkenyl]-4H-3,1-benzoxazin-4-ones from 2,2-dihydropolyfluoroalkanoic acid.

2. Results and discussion

2,2-Dihydropolyfluoroalkanoic acids are versatile fluor-ine-containing building blocks developed in our laboratory. They are easily prepared from polyfluoroalkyl iodides as shown in Scheme 1 [7].

In the presence of N,N'-dicyclohexylcarbodiimide (DCC), 2,2-dihydropolyfluoroalkanoic acids condensed with anthranilic acid or its derivatives in CH_2Cl_2 at room temperature or under reflux to give the corresponding amides (3, major) as well as cyclic products (4, minor). The results are summarized in Table 1. Subsequently, treatment of the mixture with Ac_2O afforded 2-[(Z)-1-hydropolyfluoro-1-alkenyl]-4H-3,1-benzo-xazin-4-ones in good to excellent yields (Scheme 2, Table 1).

Dicyclohexylurea formed in the reaction from DCC has very low solubility in CH₂Cl₂ and can be removed conveniently from the reaction mixture by filtration. This simplified the procedure for the separation of the desired product and raised the overall yield consequently.

The configuration of the carbon–carbon double bond in compound 4 was assigned to be the Z-form from the coupling constant between the olefinic hydrogen and fluorine atom ($J_{\rm H-F}=29.4$ Hz). No E-isomer was isolated in this reaction. The yields of 4 with short polyhaloalkyl tails were comparatively less than those of 4 with longer tails. The major by-product 5fh was isolated and characterized to have the structure shown in Scheme 3, and was assumed to be formed by the reaction of 4 with acetic acid. Interestingly, this kind of by-product was not detected when $R_{\rm F}$ is C_5F_{11} , C_3F_6Cl or C_3F_7 .

Boutevin et al. reported the synthesis of 4ag in 1992 [5], but their method involved the use of $C_5F_{11}CH_2COCl$, which is difficult to handle, and the yield was low (43%). The above reactions provide a convenient and useful route to 2-[(Z)-polyfluoro-1-alkenyl]-4H-3,1-benzoxazin-4-ones with high yield and stereoselectivity, mild reaction conditions as well as easy availability of the starting material.

^{*}Corresponding author. Fax: +86-21-64166128. *E-mail address*: jtliu@pub.sioc.ac.cn (J.-T. Liu).

$$R_FI+$$
 O $Na_2S_2O_4/NaHCO_3$ R_FCH_2CHO CrO_3 R_FCH_2COOH

$$R_{E} = a$$
, $C_{5}F_{11}$, **b**, $C_{3}F_{6}CI$; **c**, $C_{3}F_{7}$, **d**, $CF_{2}CI$; **e**, $CF_{2}Br$; **f**, CF_{3} .

Scheme 1.

Table 1 Condensation of 2,2-dihydropolyfluoroalkanoic acids with anthranilic acids

Entry	1	2	Temperature	Time (h)	Product	
					4	Yields (%) ^a
1	1a	2g	RT	8.0	4ag	90.5
2	1b	2g	RT	7.0	4bg	92.0
3	1c	2g	RT	7.5	4cg	90.0
4	1d	2g	RT	7.0	4dg	75.0
5	1e	2g	RT	7.0	4eg	75.0
6	1f	2g	RT	7.0	4fg	75.0
7	1a	2h	RT	3.5	4ah	95.0
8	1b	2h	RT	3.0	4bh	93.5
9	1c	2h	RT	3.0	4ch	95.0
10	1d	2h	RT	3.0	4dh	78.5
11	1e	2h	RT	3.0	4eh	78.0
12	1f	2h	RT	3.0	4fh	78.0
13	1a	2i	Reflux	5.0	4ai	90.0
14	1b	2i	Reflux	5.0	4bi	88.5
15	1c	2i	Reflux	5.0	4ci	88.0
16	1d	2i	Reflux	4.0	4di	68.0
17	1e	2i	Reflux	4.0	4ei	65.0
18	1a	2j	Reflux	6.5	4aj	75.0
19	1b	2j	Reflux	6.5	4bj	76.0
20	1c	2j	Reflux	6.0	4cj	78.0

^a Isolated yield of two steps.

3. Experimental

Melting points were uncorrected. IR spectra were taken on a Perkin-Elmer 983G IR spectrophotometer using KBr pellets. ¹H NMR spectra were recorded on a Bruker AM 300 (300 MHz) spectrometer using TMS as internal standard. ¹⁹F NMR spectra were recorded on a Varian EM-360L

spectrometer at 56.4 MHz using TFA as external standard. In ^{19}F NMR spectra, chemical shifts (in ppm) are regarded as positive for upfield shifts and the values are reported as δ_{CFCl_3} ($\delta_{CFCl_3}=\delta_{TFA}+76.8$). Mass spectra were obtained on a Finnigan GC-MS 4021 spectrometer. Column chromatography was performed using silica gel H, particle size $10\text{--}40~\mu m$.

3.1. Synthesis of 2-[(Z)-hydropolyfluoro-1-alkenyl]-4H-3,1-benzoxazin-4-ones

Typical procedure: A mixture of 1 (1.0 mmol) and DCC (1.1 mmol) in CH_2Cl_2 (10 ml) was stirred at room temperature for a few minutes. A white suspension was formed. Then a solution of 2 (1.0 mmol) in CH_2Cl_2 (5 ml) was added dropwise to the above suspension with stirring at room temperature. After addition, the resulting mixture was stirred at room temperature or under reflux till the reaction was complete (monitored by TLC). The reaction mixture was filtered with suction to give a clear yellow solution. After removal of the solvent, the pale yellow solid was dissolved in $10 \text{ ml Ac}_2\text{O}$ and the mixture was stirred under reflux for 1.5–2.0 h. Excess Ac_2O was evaporated under vacuum and the oily residue thus obtained was subjected to column chromatography using light petroleum and EtOAc (20:1) as eluant to give compound 4 as white solids.

3.1.1. Compound 4ag

Mp 103–104.5°C. ¹H NMR (CDCl₃) δ : 7.57–8.24 (4H, m, ArH), 6.31 (1H, d, J = 29.4 Hz, =CH) ppm; ¹⁹F NMR (CDCl₃) δ : 79.8 (3F, t, CF₃), 106.1 (1F, m, =CF), 114.5–122.5 (8F, m, 4CF₂) ppm; IR ν_{max} (cm⁻¹): 1764 (C=O), 1230

Scheme 2.

Scheme 3.

(C–F), 1141 (C–O); MS m/z (%): 459 (M^+ , 100.0), 146 (26.2); Anaysis: Found: C, 39.43; H, 1.43; N, 2.88%. $C_{15}H_5F_{12}NO_2$ requires: C, 39.24; H, 1.10; N, 3.05%.

3.1.2. Compound 4bg

Mp 105–107°C. ¹H NMR (CDCl₃) δ : 7.55–8.22 (4H, m, ArH), 6.30 (1H, d, J=29.4 Hz, =CH) ppm; ¹⁹F NMR (CDCl₃) δ : 66.8 (2F, t, ClCF₂), 105.5 (1F, m, =CF), 116.6 (2F, m, CF₂), 120.1 (2F, m, CF₂) ppm; IR $\nu_{\rm max}$ (cm⁻¹): 1765 (C=O), 1200 (C-F); MS m/z (%): 377 (34.3), 375 (M^+ , 100.0), 146 (55.5); HRMS Found: 374.99088; C₁₃H₅ClF₇NO₂ requires: 374.98970.

3.1.3. Compound 4cg

Mp 105–106°C. ¹H NMR (CDCl₃) δ : 7.57–8.24 (4H, m, ArH), 6.31 (1H, d, J = 29.4 Hz, =CH) ppm; ¹⁹F NMR (CDCl₃) δ : 79.8 (3F, t, CF₃), 106.5 (1F, m, =CF), 118.6 (2F, m, CF₂), 126.3 (2F, m, CF₂) ppm; IR ν_{max} (cm⁻¹): 1776 (C=O), 1226 (C-F), 1124 (C-O); MS m/z (%): 359 (M^+ , 100.0); 146 (29.9); Analysis: Found: C, 43.45; H, 1.45; N, 4.04%; C₁₃H₅F₈NO₂ requires: C, 43.47; H, 1.40; N, 3.90%.

3.1.4. Compound 4dg

Mp 98–99°C. ¹H NMR (CDCl₃): δ : 7.56–8.24 (4H, m, ArH), 6.24 (1H, d, J = 28.7 Hz, =CH) ppm; ¹⁹F NMR (CDCl₃): δ : 60.1 (2F, d, ClCF₂), 106.8 (1F, m, =CF) ppm; IR ν_{max} (cm⁻¹): 1766 (C=O), 1275 (C–F), 1161 (C–O); MS m/z (%): 277 (37.1), 275 (M^+ , 100.0), 146 (53.4); HRMS Found: 274.99969; $C_{11}H_5$ ClF₃NO₂ requires: 274.99609.

3.1.5. Compound 4eg

Mp 99–101°C. ¹H NMR (CDCl₃) δ : 7.56–8.23 (4H, m, ArH), 6.19 (1H, d, J=28.4 Hz, =CH) ppm; ¹⁹F NMR (CDCl₃) δ : 57.4 (2F, d, CF₂Br), 106.1 (1F, m, =CF) ppm; IR $\nu_{\rm max}$ (cm⁻¹): 1766 (C=O), 1240 (C–F), 1152 (C–O); MS m/z (%): 321 (26.4), 319 (M^+ , 26.8), 240 (100.0), 146 (17.0); Analysis: Found: C, 41.68; H, 1.72; N, 4.36; C₁₁H₅BrF₃NO₂ requires: C, 41.28; H, 1.57; N, 4.38%.

3.1.6. Compound 4fg

Mp 97.0–98.5°C. ¹H NMR (CDCl₃) δ: 7.56–8.23 (4H, m, ArH), 6.27 (1H, d, $J_{\rm HF}$ = 29.2 Hz, =CH) ppm; ¹⁹F NMR (CDCl₃) δ: 71.08 (3F, s. CF₃), 111.5 (1F, m, =CF) ppm; IR $\nu_{\rm max}$ (cm⁻¹): 1758 (C=O), 1601 (C=N), 1258, 1211 (C-F), 1129 (C-O); MS m/z (%): 259 (M^+ , 100.0), 240 (M^+ –F, 5.9), 190 (M^+ –CF₃, 36.4), 146 (M^+ –CF₃CF=CH, 59.4); Analysis:

Found: C, 50.83; H, 2.06; N, 5.17%; C₁₁H₅NF₄O₂ requires: C, 50.98; H, 1.94; N, 5.40%.

3.1.7. Compound 4ah

Mp 138.5–140°C. ¹H NMR (CDCl₃) δ: 7.53 (1H, s, ArH), 7.04 (1H, s, ArH), 6.27 (1H, d, J = 29.4 Hz, =CH), 4.02 (3H, s, OCH₃), 4.00 (3H, s, OCH₃) ppm; ¹⁹F NMR (CDCl₃) δ: 79.3 (3F, t, CF₃), 107.1 (1F, m, =CF), 117.0 (2F, m, CF₂), 121.5 (4F, m, 2CF₂), 124.8 (2F, m, CF₂) ppm; IR $\nu_{\rm max}$ (cm⁻¹): 1751 (C=O), 1246 (C-F), 1132 (C-O); MS m/z (%): 519(M^+ , 100.0); HRMS Found: 519.03446; $C_{17}H_9F_{12}NO_4$ requires: 519.03400.

3.1.8. Compound 4bh

Mp 136–138°C. ¹H NMR (CDCl₃) δ : 7.53 (1H, s, ArH), 7.04 (1H, s, ArH), 6.26 (1H, d, J = 29.5 Hz, =CH), 4.01 (3H, s, OCH₃), 3.99 (3H, s, OCH₃) ppm; ¹⁹F NMR (CDCl₃) δ : 66.9 (2F, t, ClCF₂), 107.1 (1F, m, =CF), 116.8 (2F, m, CF₂), 120.1 (2F, m, CF₂) ppm; IR $\nu_{\rm max}$ (cm⁻¹): 1753 (C=O), 1291 (C-F), 1175 (C-O); MS m/z (%): 437 (37.3), 435 (M^+ , 100.0); HRMS Found: 435.01488; C₁₅H₉ClF₇NO₄ requires: 435.01083.

3.1.9. Compound **4ch**

Mp 133.5–135°C. ¹H NMR (CDCl₃) δ : 7.53 (1H, s, ArH), 7.04 (1H, s, ArH), 6.26 (1H, d, J = 29.5 Hz, =CH), 4.01 (3H, s, OCH₃), 4.00 (3H, s, OCH₃) ppm; ¹⁹F NMR (CDCl₃) δ : 79.3 (3F, t, CF₃), 107.3 (1F, m, =CF), 117.8 (2F, m, CF₂), 125.8 (2F, m, CF₂) ppm; IR ν_{max} (cm⁻¹): 1758 (C=O), 1248 (C-F), 1114 (C-O); MS m/z (%): 419(M⁺, 100.0); Analysis: Found: C, 43.17; H, 2.55; N, 3.36%; C₁₅H₉ F₈NO₄ requires: C, 42.97; H, 2.16; N, 3.34%.

3.1.10. Compound 4dh

Mp 125–127°C. ¹H NMR (CDCl₃) *δ*: 7.51 (1H, s, ArH), 7.03 (1H, s, ArH), 6.19 (1H, d, J = 28.9 Hz, =CH), 4.01 (3H, s, OCH₃), 3.99 (3H, s, OCH₃) ppm; ¹⁹F NMR (CDCl₃) *δ*: 60.0 (2F, d, ClCF₂), 108.1 (1F, m, =CF) ppm; IR ν_{max} (cm⁻¹):1736 (C=O), 1274 (C-F), 1140 (C-F); MS m/z (%): 337 (34.1), 335 (M^+ , 100.0), 300 (18.1), 250 (22.0); HRMS Found: 335.01842; C₁₃H₉ClF₃NO₄ requires: 335.01722.

3.1.11. Compound 4eh

Mp 132–133°C. ¹H NMR (CDCl₃) δ: 7.50 (1H, s, ArH), 7.03 (1H, s, ArH), 6.19 (1H, d, J = 28.8 Hz, =CH), 4.01 (3H, s, OCH₃), 3.99 (3H, s, OCH₃) ppm; ¹⁹F NMR (CDCl₃) δ: 58.1 (2F, d, BrCF₂), 109.3 (1F, m, =CF) ppm; IR ν_{max}

 (cm^{-1}) : 1736 (C=O), 1272 (C-F), 1136 (C-O); MS m/z (%): 381 (44.3), 379 (M^+ , 45.3), 300 (100.0); HRMS Found: 378.96643; $C_{13}H_9BrF_3NO_4$ requires: 378.96671.

3.1.12. Compound 4fh

Mp 127–128°C. ¹H NMR (CDCl₃) δ: 7.52 (1H, s, ArH), 7.03 (1H, s, ArH), 6.23 (1H, d, J = 29.3 Hz, =CH), 4.02 (3H, s, OCH₃), 4.00 (3H, s, OCH₃) ppm; ¹⁹F NMR (CDCl₃) δ: 72.8 (3F, s, CF₃), 113.2 (1F, m, =CF) ppm; IR ν_{max} (cm⁻¹): 1753 (C=O), 1604 (C=O), 1291, 1229 (C-F), 1131 (C-O); MS m/z (%): 319 (M^+ , 100.0); 304(M^+ -CH₃, 20.9); HRMS Found: 304.02159; C₁₃H₉F₄NO₄ requires: 304.02329.

3.1.13. Compound 4ai

Mp 120–121°C. ¹H NMR (CDCl₃) δ : 7.45–8.17 (3H, m, ArH), 6.26 (1H, d, J = 29.1 Hz, =CH) ppm; ¹⁹F NMR (CDCl₃) δ : 80.7 (3F, s, CF₃), 105.2 (1F, m, =CF), 118.1 (2F, m, CF₂), 122.4 (4F, m, 2CF₂), 125.9 (2F, m, CF₂) ppm; IR ν_{max} (cm⁻¹): 1760 (C=O), 1253 (C–F), 1140 (C–O); MS m/z (%): 495 (34.2), 493 (M⁺, 100.0), 180 (30.2); HRMS Found: 473.97743; C₁₅H₄ClF₁₂NO₂ requires: 473.97549.

3.1.14. Compound **4bi**

Mp 121–123°C. ¹H NMR (CDCl₃) δ : 7.53 (3H, m, ArH), 6.42 (1H, d, J = 29.3 Hz, =CH) ppm; ¹⁹F NMR (CDCl₃) δ : 66.8 (2F, t, ClCF₂), 104.5 (1F, m, =CF), 116.8 (2F, m, CF₂), 120.3 (2F, m, CF₂) ppm; IR $\nu_{\rm max}$ (cm⁻¹): 1754 (C=O), 1229 (C–F), 1145 (C–O); MS m/z (%): 409 (M⁺, 5.5), 399 (80.4), 354 (100.0); HRMS Found: 408.94974, C₁₃H₄Cl₂ F₇NO₄ requires: 408.95073.

3.1.15. Compound 4ci

Mp 119–120°C. ¹H NMR (CDCl₃) δ : 7.53–8.17 (3H, m, ArH), 6.30 (1H, d, J = 29.1 Hz, =CH) ppm; ¹⁹F NMR (CDCl₃) δ : 80.3 (3F, t, CF₃), 105.5 (1F, m, =CF), 119.0 (2F, m, CF₂), 126.5 (2F, m, CF₂) ppm; IR ν_{max} (cm⁻¹): 1770 (C=O), 1237 (C-F), 1126 (C-O); MS m/z (%): 395 (34.6), 393 (M^+ , 100.0), 180 (34.7); HRMS Found: 373.98350; C₁₃H₄ClF₈NO₂ requires: 373.98188.

3.1.16. Compound 4di

Mp 118–119°C. ¹H NMR (CDCl₃) δ: 7.52–8.16 (3H, m, ArH), 6.22 (1H, d, J = 29.2 Hz, =CH) ppm. ¹⁹F NMR (CDCl₃) δ: 60.3 (2F, d, CF₂Cl), 105.5 (1F, m, =CF) ppm; IR ν_{max} (cm⁻¹): 1755 (C=O), 1284 (C-F), 1147 (C-O); MS m/z (%): 313 (11.3), 311 (66.0), 309 (M^+ , 100.0), 180 (45.6); HRMS Found: 308.95349; C₁₁H₄Cl₂F₃NO₂ requires: 308.94986.

3.1.17. Compound 4ei

Mp 118–119°C. ¹H NMR (CDCl₃) δ : 7.51–8.15 (3H, m, ArH), 6.22 (1H, d, J = 28.5 Hz, =CH) ppm; ¹⁹F NMR (CDCl₃) δ : 56.8 (2F, d, ClCF₂), 104.5 (1F, m, =CF) ppm; IR ν_{max} (cm⁻¹):1754 (C=O), 1214 (C-F), 1145 (C-O); MS m/z (%):357 (8.7), 355 (36.3), 353 (M^+ , 41.3), 274 (100.0); Analysis: Found: C, 37.48; H, 1.42; N, 3.98%; C₁₁H₄BrCl F₃NO₂ requires: C, 37.27; H, 1.14; N, 3.95%.

3.1.18. Compound **4aj**

Mp 105–107°C. ¹H NMR (CDCl₃) δ : 8.33 (2H, dd, J = 2.1 Hz, ArH), 6.45 (1H, d, J = 28.9 Hz, =CH) ppm; ¹⁹F NMR (CDCl₃) δ : 80.3 (3F, t, CF₃), 103.8 (1F, m, =CF), 118.0 (2F, m, CF₂), 122.1 (4F, m, 2CF₂), 125.6 (2F, m, CF₂) ppm; IR v_{max} (cm⁻¹):1770 (C=O), 1238 (C-F), 1138 (C-O); MS m/z (%): 619 (50.0), 617 (100.0), 615 (M^+ , 53.2), 538 (9.7); HRMS Found: 614.83322; C₁₅H₃Br₂F₁₂NO₂ requires: 614.83388.

3.1.19. Compound 4bj

Mp 97–98°C. ¹H NMR (CDCl₃) δ : 8.40 (2H, dd, J = 2.1 Hz, ArH), 6.43 (1H, d, J = 28.9 Hz, =CH) ppm; ¹⁹F NMR (CDCl₃) δ : 66.8 (2F, t, ClCF₂), 103.0 (1F, m, =CF), 116.8 (2F, m, CF₂), 120.3 (2F, m, CF₂) ppm; IR ν_{max} (cm⁻¹): 1771 (C=O), 1297 (C–F), 1130 (C–O); MS m/z (%): 537 (3.3), 535 (19.7), 533 (54.2), 531 (M^+ , 100.0); HRMS Found: 530.80947; C₁₃H₃ Br₂ClF₇NO₂ requires: 530.81072.

3.1.20. Compound 4cj

Mp 101–102°C. ¹H NMR (CDCl₃) δ: 8.38 (2H, dd, J = 2.1 Hz, ArH), 6.50 (1H, d, J = 28.9 Hz, =CH) ppm; ¹⁹F NMR (CDCl₃) δ: 79.5 (3F, t, CF₃),102.8 (1F, m, =CF), 118.3 (2F, m, CF₂), 126.0 (2F, m, CF₂) ppm; IR ν_{max} (cm⁻¹): 1772 (C=O), 1235 (C–F),1126 (C–O); MS m/z (%): 519 (9.4), 517 (19.3), 515 (M^+ , 10.5), 241 (100.0); HRMS Found: 514.84026; C₁₃H₃ Br₂F₈NO₂ requires: 514.84027.

3.1.21. Compound 5fh

Mp 135–137°C. ¹H NMR (CDCl₃) δ : 7.48 (1H, s, ArH), 6.97 (1H, s, ArH), 6.61 (1H, s, =CH), 3.99 (6H, s, 2OCH₃), 2.47 (3H, s, COCH₃) ppm; ¹⁹F NMR (CDCl₃) δ : 72.2 (3F, s, CF₃) ppm; IR $\nu_{\rm max}$ (cm⁻¹): 1784, 1742 (C=O), 1596 (C=N), 1201 (C-F), 1149 (C-O); MS m/z (%): 359 (M^+ , 2.6), 316 (M^+ -CH₃CO, 100.0); Analysis: Found: C, 50.39; H, 3.89; N, 3.85%; C₁₅H₁₂F₃NO₆ requires: C, 50.15; H, 4.21; N, 3.90%.

Acknowledgements

We thank the National Natural Science Foundation of China (No. 29772041 and 29902008) and Shanghai Municipal Scientific Committee (No. 00QA14030) for financial support.

References

- [1] G.M. Coppola, J. Heterocycl. Chem. (1999) 563.
- [2] T. Teshima, J.C. Griffin, J.C. Power, J. Biol. Chem. 257 (1982) 5085.
- [3] R.L. Jarvest, M.J. Parratt, C.M. Debouck, J.G. Gorniak, L.J. Jennings, H.T. Serafinowska, J.E. Strickler, Bioorg. Med. Chem. Lett. 6 (1996) 2463.
- [4] P. Friedlaender, S. Wleügel, Chem. Ber. 16 (1883) 2229.
- [5] B. Boutevin, R.L. Ranjalahy, A. Rousseau, J. Garapon, B. Sillion, J. Fluorine Chem. 58 (1992) 29.
- [6] P. Goldman, Science 164 (1969) 1123.
- [7] W.Y. Huang, L. Lü, Y. F. Zhang, Chin. J. Chem. (1990) 281.