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Abstract—A synthesis of the enamine (−)-(1�S)-5-ethyl-1-(1�-phenylethyl)-1,2,3,4-tetrahydropyridine 4 and its application in a
synthesis of (−)-(1�S,4aS,8aR)- and (+)-(1�S,4aR,8aS)-4a-ethyl-1-(1�-phenylethyl)-octahydroquinolin-7-ones 5 and 6 is described. In
addition, an X-ray study of 6 is reported. Finally, the preparation of (+)-(4aS,8aR)-4a-ethyl-octahydroquinolin-7-one 7 is
described. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The endocyclic enamine 5-ethyl-1,2,3,4-tetrahydro-
pyridine1–5 I and 3-(1-ethyl-4-oxo-cyclohex-2-enyl)-
propionamide6–10 II have both been used in the prep-
aration of 4a-ethyl-octahydroquinolin-7-one III. Com-
pound III is a versatile starting structure, which is
commonly used in the synthesis of aspidosperma alka-
loids.1,6–8 Stevens et al.,4 observed that treatment of
non-chiral endocyclic enamines with methyl vinyl ketone
affords racemic cis-fused cycles, but it is not known if
this is due to kinetic or thermodynamic control.

In a preliminary communication we reported11 the
preparation of (−)-(1�R)-1-(2�-hydroxy-1�-phenylethyl)-
3,4-dihydro-1H-pyridin-2-one and its application in the
synthesis of (S)-(+)-coniine. To explore other applica-
tions of 3,4-dihydro-1H-pyridin-2-ones in asymmetric
synthesis, we prepared the (−)-(1�S)-5-ethyl-1-(1�-
phenylethyl)-3,4-dihydro-1H-pyridin-2-one 3, which
was transformed into the corresponding enantiopure

enamine 4 and then used for the synthesis of 4a-ethyl-1-
(1�-phenylethyl)-octahydroquinolin-7-ones 5 and 6.

The first step of this synthesis was the condensation12 of
(−)-(S)-1-phenylethylamine 1 with 4-formyl-hexanoic
acid methyl ester 2 in dry toluene to give (−)-(1�S)-5-
ethyl-1-(1�-phenylethyl)-3,4-dihydro-1H-pyridin-2-one 3
(90% yield, after purification on column Al2O3, n-hex-
ane; n-hexane/CH2Cl2). Compound 3 was reduced with
LiAlH4/THF affording 4 (90% yield, after purification
on column Al2O3, n-hexane) (Scheme 1). Assignments of
the 1H NMR of 313 and 414 were confirmed via 13C–1H
correlation techniques.

Condensation of enamine 4 with methyl vinyl ketone
(MVK) in the presence of KOH/18-crown-6/methanol
led to a mixture of compounds 5 and 6 in 85% overall
yield.15 The 1H and 13C NMR spectral data of the crude
reaction showed only two diastereoisomers and only
two compounds were observed by TLC analysis. The
mixture was easily separated by chromatography
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Scheme 1.

(Al2O3, 1% Et3N, n-hexane) obtaining 516 ([� ]D20 −98)
and 617 ([� ]D20 +5.0) in a 2:1 ratio (Scheme 2). The
diastereomeric enhancement (33%) is particularly high
compared to that from a similar study reported by
Jankowski et al.18

Compound 5 becomes synthetically useful after
removal of the 2-phenylethyl auxiliary. Catalytic hydro-
genation of 5 with MeOH/HCl/Pd/C at pH ca. 5–6 led
to 7 without complication. The crude material was
purified by chromatography (SiO2, 1% Et3N, CH2Cl2/
MeOH) giving 7 ([� ]D20 +27.6) in 90% yield. The specific
rotation, 1H and 13C NMR spectral data for 719 are
comparable to those data reported for the same com-
pound prepared by Meyers9 (Scheme 3).

2. Results and discussion

The 1H NMR (400 MHz, CDCl3) spectral data for 5
and 6 showed important differences. For example, the
spectrum of 5 showed a doublet–doublet at 2.61 ppm
for H-8a and a triplet at 0.72 ppm for CH3 of the
angular ethyl group, while for 6 these signals appeared
at 3.15 and 0.89 ppm. Assignments in 1H NMR for 5

and 6 were confirmed via 13C–1H correlation
techniques.

To confirm the cis-fused ring for 5 and 6 we carried out
1H NMR (CDCl3) 1D NOE and ROESY experiments
and only a strong enhancement between the CH2 of the
angular ethyl group and C(8a)H was observed for
compound 5.

Fortunately, 6 can be crystallised from benzene/n-hex-
ane and its X-ray diffraction analysis was performed
and confirmed the cis-fused ring for 6. The absolute
configuration of the stereogenic centers C(4a) and C(8a)
were determined as (R) and (S), respectively, based on
the configuration of the auxiliary stereocenter, which is
C(1�S) (source of chirality: (−)-(S)-1-phenylethylamine
1) (Fig. 1). These results permitted us to assign the
absolute configurations of the stereocenters of 5 as
C(1�S), C(4aS) and C(8aR).

3. Conclusion

We have prepared the octahydroquinolin-7-ones 5 and
6 in good yields starting from the enantiopure endocy-

Scheme 2.

Scheme 3.
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Figure 1. Crystal structure of 6. The hydrogens are omitted for clarity.

cle enamine 4 and demonstrated by 1H NMR, 1D
NOE, and ROESY experiments on 5, and by X-ray
analysis of 6, that both structures have cis-fused ring
stereochemistries.
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