Synthesis of (-)-(1'S,4aS,8aR)- and (+)-(1'S,4aR,8aS)-4a-ethyl-1-(1'-phenylethyl)-octahydro-quinolin-7-ones

E. Vázquez, A. Galindo,* D. Gnecco* and S. Bernès
Centro de Química del Instituto de Ciencias, BUAP, 14 Sur 6303, C.P. 72570, Ciudad Universitaria Puebla, Puebla, Mexico

Received 3 August 2001; accepted 27 August 2001

Abstract

A synthesis of the enamine (-)-(1'S)-5-ethyl-1-(1'-phenylethyl)-1,2,3,4-tetrahydropyridine 4 and its application in a synthesis of $(-)-\left(1^{\prime} S, 4 \mathrm{a} S, 8 \mathrm{a} R\right)$ - and $(+)-\left(1^{\prime} S, 4 \mathrm{a} R, 8 \mathrm{a} S\right)-4 \mathrm{a}$-ethyl-1-(1'-phenylethyl)-octahydroquinolin-7-ones 5 and $\mathbf{6}$ is described. In addition, an X-ray study of 6 is reported. Finally, the preparation of $(+)-(4 a S, 8 a R)-4 a$-ethyl-octahydroquinolin- 7 -one 7 is described. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The endocyclic enamine 5-ethyl-1,2,3,4-tetrahydropyridine ${ }^{1-5}$ I and 3-(1-ethyl-4-oxo-cyclohex-2-enyl)propionamide ${ }^{6-10}$ II have both been used in the preparation of 4a-ethyl-octahydroquinolin-7-one III. Compound III is a versatile starting structure, which is commonly used in the synthesis of aspidosperma alkaloids. ${ }^{1,6-8}$ Stevens et al., ${ }^{4}$ observed that treatment of non-chiral endocyclic enamines with methyl vinyl ketone affords racemic cis-fused cycles, but it is not known if this is due to kinetic or thermodynamic control.

In a preliminary communication we reported ${ }^{11}$ the preparation of $(-)-\left(1^{\prime} R\right)-1-\left(2^{\prime}\right.$-hydroxy-1'-phenylethyl)-3,4-dihydro- $1 H$-pyridin-2-one and its application in the synthesis of $(S)-(+)$-coniine. To explore other applications of 3,4-dihydro-1 H -pyridin-2-ones in asymmetric synthesis, we prepared the $(-)-\left(1^{\prime} S\right)$-5-ethyl-1-(1'-phenylethyl)-3,4-dihydro-1 H -pyridin-2-one 3 , which was transformed into the corresponding enantiopure
enamine 4 and then used for the synthesis of 4a-ethyl-1-(1'-phenylethyl)-octahydroquinolin-7-ones 5 and 6.

The first step of this synthesis was the condensation ${ }^{12}$ of (-)-(S)-1-phenylethylamine 1 with 4-formyl-hexanoic acid methyl ester 2 in dry toluene to give $(-)-\left(1^{\prime} S\right)-5-$ ethyl-1-(1'-phenylethyl)-3,4-dihydro-1 H-pyridin-2-one 3 (90% yield, after purification on column $\mathrm{Al}_{2} \mathrm{O}_{3}$, n-hexane; n-hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$). Compound 3 was reduced with $\mathrm{LiAlH}_{4} / \mathrm{THF}$ affording $4(90 \%$ yield, after purification on column $\mathrm{Al}_{2} \mathrm{O}_{3}, n$-hexane) (Scheme 1). Assignments of the ${ }^{1} \mathrm{H}$ NMR of 3^{13} and 4^{14} were confirmed via ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ correlation techniques.

Condensation of enamine 4 with methyl vinyl ketone (MVK) in the presence of $\mathrm{KOH} / 18$-crown-6/methanol led to a mixture of compounds 5 and $\mathbf{6}$ in 85% overall yield. ${ }^{15}$ The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of the crude reaction showed only two diastereoisomers and only two compounds were observed by TLC analysis. The mixture was easily separated by chromatography

I

II

III

[^0]0957-4166/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0957-4166(01)00391-3

Scheme 1.

$\left(\mathrm{Al}_{2} \mathrm{O}_{3}, 1 \% \mathrm{Et}_{3} \mathrm{~N}\right.$, n-hexane) obtaining $5^{16}\left([\alpha]_{\mathrm{D}}^{20}-98\right)$ and $6^{17}\left([\alpha]_{\mathrm{D}}^{20}+5.0\right)$ in a $2: 1$ ratio (Scheme 2$)$. The diastereomeric enhancement (33%) is particularly high compared to that from a similar study reported by Jankowski et al. ${ }^{18}$

Compound 5 becomes synthetically useful after removal of the 2-phenylethyl auxiliary. Catalytic hydrogenation of 5 with $\mathrm{MeOH} / \mathrm{HCl} / \mathrm{Pd} / \mathrm{C}$ at pH ca. $5-6$ led to 7 without complication. The crude material was purified by chromatography $\left(\mathrm{SiO}_{2}, 1 \% \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{MeOH})$ giving $7\left([\alpha]_{\mathrm{D}}^{20}+27.6\right)$ in 90% yield. The specific rotation, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data for $7{ }^{19}$ are comparable to those data reported for the same compound prepared by Meyers ${ }^{9}$ (Scheme 3).

2. Results and discussion

The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectral data for 5 and 6 showed important differences. For example, the spectrum of 5 showed a doublet-doublet at 2.61 ppm for $\mathrm{H}-8 \mathrm{a}$ and a triplet at 0.72 ppm for CH_{3} of the angular ethyl group, while for 6 these signals appeared at 3.15 and 0.89 ppm . Assignments in ${ }^{1} \mathrm{H}$ NMR for 5
and 6 were confirmed via ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ correlation techniques.

To confirm the cis-fused ring for 5 and $\mathbf{6}$ we carried out ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ 1D NOE and ROESY experiments and only a strong enhancement between the CH_{2} of the angular ethyl group and $\mathrm{C}(8 \mathrm{a}) \mathrm{H}$ was observed for compound 5.

Fortunately, 6 can be crystallised from benzene/ n-hexane and its X-ray diffraction analysis was performed and confirmed the cis-fused ring for 6 . The absolute configuration of the stereogenic centers $C(4 a)$ and $C(8 a)$ were determined as (R) and (S), respectively, based on the configuration of the auxiliary stereocenter, which is $\mathrm{C}\left(1^{\prime} S\right)$ (source of chirality: $(-)-(S)-1$-phenylethylamine 1) (Fig. 1). These results permitted us to assign the absolute configurations of the stereocenters of 5 as $\mathrm{C}\left(1^{\prime} S\right), \mathrm{C}(4 \mathrm{a} S)$ and $\mathrm{C}(8 \mathrm{a} R)$.

3. Conclusion

We have prepared the octahydroquinolin-7-ones 5 and 6 in good yields starting from the enantiopure endocy-

Scheme 2.

Scheme 3.

Figure 1. Crystal structure of $\mathbf{6}$. The hydrogens are omitted for clarity.
cle enamine 4 and demonstrated by ${ }^{1} \mathrm{H}$ NMR, 1D NOE, and ROESY experiments on 5, and by X-ray analysis of 6, that both structures have cis-fused ring stereochemistries.

Acknowledgements

D.G. and A.G. are grateful for financial support from CONACyT-México (Project 28906N). E.V. thanks CONACyT for a doctoral scholarship \# 121966. S.B. thanks CONACyT for financial support (retention program \# 000027).

References

1. Stevens, R. V.; Mehra, R. K.; Zimmerman, R. L. Chem. Соттии. 1969, 877-878.
2. Stevens, R. V.; Fitzpatrick, J. M.; Kaplan, M.; Zimmerman, R. L. Chem. Commun. 1971, 857-858.
3. Stevens, R. V.; DuPree, L. E. Chem. Commun. 1970, 23, 1585-1586.
4. Stevens, R. V. Acc. Chem. Res. 1977, 10, 193-198; Acc. Chem. Res. 1984, 17, 289-296.
5. Matsumura, Y.; Terauchi, J.; Yamamoto, T.; Konno, T.; Shono, T. Tetrahedron 1993, 49, 8503-8512.
6. Stork, G.; Dolfini, J. E. J. Am. Chem. Soc. 1963, 85, 2872-2873.
7. Ban, Y.; Sato, Y.; Inoue, I.; Nagai, M.; Oishi, T.;

Terashima, M.; Yonemitsu, O.; Kanoaka, Y. Tetrahedron Lett. 1965, 27, 2261-2268.
8. Pearson, A. J.; Rees, D. C. J. Chem. Soc., Perkin Trans. 1 1982, 2467-2476.
9. Meyers, A. I.; Berney, D. J. Org. Chem. 1989, 54, 46734676.
10. Lawton, G.; Saxton, J. E.; Smith, A. J. Tetrahedron 1977, 33, 1641-1653.
11. Terán, J. L.; Gnecco, D.; Galindo, A.; Juárez, J.; Bernès, S.; Enríquez, R. G. Tetrahedron: Asymmetry 2001, 12, 357-360.
12. Norman, M. H.; Heathcock, C. H. J. Org. Chem. 1988, 53, 3370-3371.
13. Compound 3. $R_{\mathrm{f}}=0.46\left(\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; (90%) pale yellow liquid. IR (film, cm^{-1}): 3061, 2967, 1661; $[\alpha]_{\mathrm{D}}^{20}-75$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}, J \mathrm{~Hz}\right): 0.91(\mathrm{t}, 3 \mathrm{H}-8$, $7.32,7.68$); 1.51 (d, $3 \mathrm{H}-2^{\prime}, 7.32$); 1.96 (q, 2H-7, 7.32, 7.68); 2.17 (m, 2H-4, 7.68, 8.05, 8.42); 2.55 (t, 2H-3, 8.05); 5.60 (s, 1H-6); 6.02 (q, 1H-1', 6.95); 7.20-7.40 (m, 5H, $\phi-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right): 12.50(\mathrm{C}-8) ; 17.47$ (C-2'); 23.83 (C-4); 27.12 (C-7); 31.72 (C-3); 49.35 (C-1'); 118.92 (C-6); 122.39 (C-5); 127.14 (2C-10); 127.31 (C-12); 128.54 (2C-11); 140.89 (C-9); 168.70 (C-2).
14. Compound 4. $R_{\mathrm{f}}=0.52\left(\mathrm{Al}_{2} \mathrm{O}_{3} / n\right.$-hexane); (90%) colorless liquid. IR (film, cm^{-1}): 2960, 2929, 1452; $[\alpha]_{\mathrm{D}}^{20}-23$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}, J \mathrm{~Hz}\right): 0.96(\mathrm{t}, 3 \mathrm{H}-8$, 7.32, 7.68); 1.46 (d, 3H-2', 6.95); 1.78 (m, 2H-3, 5.49, 5.86); 1.92 (m, 2H-4, 2H-7, 4.76, 6.56, 7.32); 2.72 (m, $2 \mathrm{H}-2,4.39,4.76,5.86$); 4.01 (q, $1 \mathrm{H}-1^{\prime}, 6.95$); 5.89 (s, $1 \mathrm{H}-6), 7.15-7.40(\mathrm{~m}, 5 \mathrm{H}, \phi-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta(\mathrm{ppm}$, CDCl_{3}): 13.36 (C-8); 18.05 (C-2'); 22.90 (C-3); 25.00
(C-7); 28.61 (C-4); 44.84 (C-2); 61.69 (C-1'); 112.00 (C-5); 126.80 (C-12); 127.30 (2C-10); 128.10 (C-6); 128.21 (2C11); 143.45 (C-9). HRMS. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}$. Calcd $215.1674\left(\mathrm{M}^{+}\right)$, found 215.1664.
15. Condensation of non-chiral enamine 1-benzyl-5-ethyl-1,2,3,4-tetrahydropyridine with MVK led to a racemic mixture of 1-benzyl-4a-ethyl-octahydroquinolin-7-one: $[\alpha]_{\mathrm{D}}^{20} 0$ in 90% overall yield.
16. Compound 5. $R_{\mathrm{f}}=0.32\left(\mathrm{Al}_{2} \mathrm{O}_{3} / n\right.$-hexane:ethyl acetate $=$ 92:8); (56.6%) pale yellow oil. IR (film, cm^{-1}): 3050, 2934, 1713; $[\alpha]_{\mathrm{D}}^{20}-98\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR: $\delta(\mathrm{ppm}$, CDCl_{3}): 0.72 (t, $3 \mathrm{H}-10,7.70$); 1.15-1.25 (m, 1H-4, $1 \mathrm{H}-3$, $1 \mathrm{H}-9$); 1.27 (d, 3H-2', 6.60); 1.55-1.85 (m, 1H-3, 2H-5, 1H-4); 2.00-2.12 (m, 1H-6); 2.15 (hept, 1H-9, 7.70); 2.282.45 (m, 1H-8, 1H-6, 1H-2); 2.61 (dd, 1H-8a, 4.40, 11.20); 2.75 (t, 1H-8, 11.70); 2.96 (dt, 1H-2, 3.30, 12.0); 3.55 (q, $1 \mathrm{H}-1^{\prime}, 6.60$); 7.20-7.40 (m, 5H, $\phi-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR: $\delta(\mathrm{ppm}$, CDCl_{3}): 7.50 (C-10); 21.72 (C-5); 22.47 (C-2'); 24.79 (C-5); 29.56 (C-9); 33.67 (C-3); 34.61 (C-8); 35.78 (C-4a); 37.15 (C-6); 41.11 (C-2); 59.58 (C-1'); 61.62 (C-8a); 126.90 (C-14); 127.27 (2C-12); 128.42 (2C-13); 145.25 (C-11); 212.80 (C-7). EI/MS: 285 (9); 270 (11); 256 (11); 228 (10) 215 (21); 214 (28); 105 (100); 104 (30); 103 (22); 79 (51); 77 (49); 42 (50). HRMS C ${ }_{19} \mathrm{H}_{27} \mathrm{NO}$. Calcd $285.2093\left(\mathrm{M}^{+}\right)$, found 285.2077.
17. Compound 6. $R_{\mathrm{f}}=0.40\left(\mathrm{Al}_{2} \mathrm{O}_{3} / n\right.$-hexane:ethyl acetate $=$ 92:8); (28.4\%). Mp 76-78 ${ }^{\circ} \mathrm{C}$. IR (film, cm^{-1}): 3050, 2933, 1711; $[\alpha]_{\mathrm{D}}^{20}+5\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right)$: 0.89 (t, 3H-10, 7.70); 1.21 (d, 3H-2', 6.60); 1.30 (dt, 1H-4, 4.40, 13.56); 1.38 (dt, $1 \mathrm{H}-5,4.40,13.56$); 1.48-1.65 (m, $1 \mathrm{H}-3,1 \mathrm{H}-5,1 \mathrm{H}-9)$; 1.77 (td, $1 \mathrm{H}-4,4.40,11.70$); 1.93 (dt, 1H-3, 4.47, 13.56); 2.06 (hept, 1H-9, 7.70); 2.18-2.36 (m, 2H-2, 1H-6); 2.38 (dd, 1H-8, 1.83, 2.20); 2.45 (td, 1H-6, 6.23, 11.56); 2.86 (dd, 1H-8, 12.04); 3.15 (dd, 1H-8a, 4.40, 10.45); 3.54 (q, H-1', 6.60); 7.15-7.40 (m, $5 \mathrm{H}, \phi-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right): 7.45(\mathrm{C}-10) ; 19.48\left(\mathrm{C}-2^{\prime}\right) ; 21.28$
(C-5); 26.16 (C-4); 29.93 (C-9); 33.61 (C-3); 35.38 (C-8); 35.85 (C-4a); 37.40 (C-6); 43.78 (C-2); 59.51 (C-1'); 60.60 (C-8a); 126.58 (C-14); 127.00 (2C-10); 128.26 (2C-12); 146.83 (C-11); 212.64 (C-7). EI/MS: 285 (9); 270 (11); 256 (10); 228 (10); 215 (18); 214 (22); 105 (100); 104 (24); 103 (21); 79 (46); 77 (48); 42 (37). HRMS. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}$. Calcd $285.2093\left(\mathrm{M}^{+}\right)$, found 285.2077.
X-Ray analysis of 6 . Crystallised from benzene $/ n$-hexane. Colourless, irregular crystal, $0.7 \times 0.6 \times 0.6 \mathrm{~mm}^{3}$, $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=6.3490(10)$, $b=$ 13.6643(17), $c=19.468$ (3) $\AA, Z=4$. Bruker P4 diffractometer using Mo $\mathrm{K} \alpha$ radiation, $T=298(2) \mathrm{K}, 5058$ reflections measured up to $2 \theta=57.50^{\circ}, 4264$ independent data ($R_{\text {int }}=5.64 \%$) for 3641 refined parameters. The structure was refined on basis on non absorption-corrected data, using standard methods ${ }^{20}$ without neither restraints nor constraints. Final R indices: $R_{1}=4.24 \%$ for 3641 data having $F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)$ and $w R_{2}=11.62 \%$ for all data. The crystallographic data have been deposited in CDCC, UK (deposition number 171160).
18. Jankowski, K.; Labrecque, D.; Jones, P.; Paré, J. R. Spectroscopy 1991, 9, 39-45.
19. Compound 7. $R_{\mathrm{f}}=0.30\left(\mathrm{SiO}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=80: 20\right)$; pale yellow oil; IR (film, cm^{-1}): 3325, 2936, 1714; $[\alpha]_{\mathrm{D}}^{20}+27.6$ (c $1.0, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right): 0.93(\mathrm{t}, 3 \mathrm{H}-10$, 7.70); 1.27 (td, $1 \mathrm{H}-5,4.77,13.56$); 1.40-150 (m, 1H-3, $1 \mathrm{H}-4,1 \mathrm{H}-9) ; 1.59(\mathrm{dt}, 1 \mathrm{H}-5,13.56) ; 1.62-1.71$ (dt, $1 \mathrm{H}-4$, 4.40, 13.20); 1.72-1.82 (sext, 1H-9, 7.70); 2.03 (dt, 1H-8, 15.04); 2.26 (dt, 2H-6, 2.56, 14.68); 2.40 (qd, 1H-3, 5.52); 2.58 (td, 1H-2, 3.30, 11.73); 2.76 (dd, 1H-8, 4.04, 14.85); 2.85 (broad signal, 1H-8a); 3.03 (dt, 1H-2, 1.84, 11.36); ${ }^{13} \mathrm{C}$ NMR: $\delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right): 7.23(\mathrm{C}-10) ; 21.79(\mathrm{C}-4) ;$ 26.85 (C-3); 29.04 (C-9); 32.76 (C-5); 34.92 (C-4a); 37.19 (C-6); 44.67 (C-8); 47.27 (C-2); 62.59 (C-8a); 212.20 (C-7).
20. Sheldrick, G. M. SHELX97 Users Manual, University of Göttingen, Germany, 1997.

[^0]: * Corresponding authors.

