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Abstract 

The hydrolysis and halogenolysis of optically active allenyltitaniums, generated by the reaction of a Ti(O- 
i-Pr)4 / 2 i-PrMgC1 reagent with optically active propargyl alcohol derivatives, proceed in a regioselective way 
and with excellent degree of chiral transfer, thus opening up a highly efficient and practical route to chiral 
alkynes having 2H or CI at the stereogenic propargylic center. © 1998 Elsevier Science Ltd. All rights reserved. 
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As described in the preceding paper, the reaction of a Ti(O-i-Pr)4 / 2 i-PrMgC1 

reagent with optically active propargylic alcohol derivatives proceeds with excellent chiral 
transfer to provide optically active allenyltitanium complexes. 1 Thus, the reaction of 

secondary propargyl phosphate 1 (96.7% e.e.) and tertiary propargyl carbonate 2 (87.2% 
e.e.) proceeded respectively with more than 97% chiral transfer, providing the 
corresponding di- or tri-substituted allenyltitaniums 3 (94% e.e.) and 4 (85% e.e.). (Scheme 

1). 
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Scheme I 

We have shown the utility of allenyltitaniums thus obtained by preparation of optically 
active homopropargyl  alcohols by their reaction with aldehydes. 1 The reaction of 
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allenyltitaniums with electrophiles other than carbonyl compounds 2 and imines,3 however, 
has scarcely been reported; 4 the paucity of relevant data is probably due to the fact that the 
allenyltitaniums have been usually prepared by transmetallation reaction using the 
corresponding organolithium compounds, and it is considered that this method offers no 
definite synthetical advantage in carrying out the reaction after transmetallation to titanium. 
However, the finding of a direct and easy access to optically active allenyltitaniums alters the 
case, and we thought that the reaction with other electrophiles might also become useful as an 
asymmetric synthetic method. We, moreover, anticipated that the stereochemical outcome of 
the reaction might provide significant information on the mechanism of electrophilic 
cleavage of the titanium-carbon bond. Herein reported are the results of the hydrolysis and 
halogenolysis of optically active allenyltitaniums. 

Firstly, we investigated the hydrolysis of 4 (85% e.e.) by treatment with a large excess 
of H20 at -78 ° C-0 o c  which afforded the alkyne 5 in 93% yield (Scheme 2). The e.e. 
value and absolute configuration of 5 thus obtained were confirmed by GLC analysis using a 
chiral column after converting into 2,6-dimethylheptanoic acid (6) by treatment with NalO4 
in the presence of RuCI35 and comparison with the authentic (R)-6 prepared from (R)-(+)- 
citronellal according to the procedure shown in Scheme 3. 6 It was found that 5 had an (R)- 
configuration and the e.e. value was 82% e.e. which indicated that the hydrolysis of 4 
proceeded with a very high degree of chiral transfer of 94%. The regio- and stereochemical 
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outcome of the reaction can be explained by assuming that the hydrolysis of titanium-carbon 
proceeds through the coordination of the H20 to the titanium and the following electrophilic 
cleavage via an SE2'-type reaction as shown in Scheme 2. With this result in hand, we 
carded out the deuterolysis of 4 which afforded optically active alkyne 78 containing 2H at 
the tertiary propargylic stereogenic center (Scheme 2). The deuterolysis of 3 also provided 
87% yield of the chiral alkyne 8 (88% e.e.)9 having 2H at the secondary propargylic center 
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(Scheme 4),10 the configuration of which is based on the analogy of the reactions of 4 
providing 5 and 7. 
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8; 87% yield, 88% e.e. 
(calcd. e.e., 91%) 7 

Scheme 4 

In summary, a one-pot method for synthesizing optically active alkynes having a 
stereogenic propargylic center from readily available propargylic alcohol derivatives has 
been developed which proceeds with a very high degree of chiral transfer. 11,12 Noteworthy 
is the easy one-pot synthesis of deuterated compounds such as 7 and 8 because their synthetic 
methods so far developed require multi-step transformation. 13 Noteworthy also is the fact 
that the present method might allow the synthesis of alkynes having 3H at the stereogenic 
propargylic center by workup with 3H20. 

Halogenolysis of optically active allenyltitaniums also proceeds with a high to excellent 
degree of chiral transfer to provide optically active propargylic halides. Thus, the reaction 
of 3 with Br2 (1.5 equiv., -78 oc~0 oc)  proceeded with 94% chiral transfer to provide 
optically active secondary propargylic bromide 9 (Scheme 5). The e.e. value of 9 was 
determined by a chiral GLC analysis and the absolute configuration was confirmed to be (S) 
by comparing with the authentic compound. 14 Similarly, optically active tertiary 
propargylic chloride 10 (73% e.e.)15,16 was obtained from 4 (85% e.e.) by treatment with 
NCS (1.5 equiv.).17 The stereochemical outcome obtained here strongly indicates that the 
halogenolysis proceeds according to the mechanism shown in Scheme 5 which involves the 
generation of a halogenium cation intermediate and the following SE2'-anti-type 
halodemetallation reaction. 18 We have now succeeded in developing an efficient access to 
optically active propargyl halides. Especially noteworthy is the easy entry to optically active 
tertiary propargylic chloride, which is otherwise difficult to synthesize. 19 
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In summary, we have developed a highly efficient one-pot method for synthesizing 
optically active alkynes having 2H or halogen at the secondary or tertiary propargylic 
stereogenic center from readily available propargyl alcohol derivatives. The stereochemical 
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outcome obtained here provides important information for elucidation of the mechanism of 
hydrolysis and halogenolysis of  allenyltitaniums. 
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